Dataset Open Access
Sylvain Lobry;
Begüm Demir;
Devis Tuia
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5084904</identifier> <creators> <creator> <creatorName>Sylvain Lobry</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-4738-2416</nameIdentifier> <affiliation>LIPADE, Université de Paris, Paris, France</affiliation> </creator> <creator> <creatorName>Begüm Demir</creatorName> <affiliation>Technische Universität Berlin</affiliation> </creator> <creator> <creatorName>Devis Tuia</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0374-2459</nameIdentifier> <affiliation>Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland</affiliation> </creator> </creators> <titles> <title>RSVQAxBEN</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <subjects> <subject>Visual Question Answering</subject> <subject>Remote Sensing</subject> <subject>Sentinel 2</subject> </subjects> <dates> <date dateType="Issued">2021-07-14</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5084904</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5083737</relatedIdentifier> </relatedIdentifiers> <version>1.0</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Visual Question Answering is a new task that can facilitate the extraction of information from images through textual queries: it aims at answering an open-ended question formulated in natural language about a given image. In this work, we introduce a new dataset to tackle the task of visual question answering on remote sensing images: this large-scale, open access dataset extracts image/question/answer triplets from the BigEarthNet dataset.This new dataset contains close to 15 millions samples and is openly available</p></description> <description descriptionType="Other">With data splits</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 314 | 290 |
Downloads | 3,211 | 3,210 |
Data volume | 21.7 TB | 21.7 TB |
Unique views | 279 | 264 |
Unique downloads | 484 | 483 |