Dataset Open Access

Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland

Karmakar Chandrabali; Dumitru Octavian; Datcu Mihai


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.5075861</identifier>
  <creators>
    <creator>
      <creatorName>Karmakar Chandrabali</creatorName>
      <affiliation>DLR</affiliation>
    </creator>
    <creator>
      <creatorName>Dumitru Octavian</creatorName>
      <affiliation>DLR</affiliation>
    </creator>
    <creator>
      <creatorName>Datcu Mihai</creatorName>
      <affiliation>DLR</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Latent Dirichlet Allocation, Topics, Sentinel-1</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-07-06</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5075861</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">10.1109/JSTARS.2020.3039012</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5075860</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/polarops</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;strong&gt;Data description&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;File type : -.npy (python numpy file)&lt;/p&gt;

&lt;p&gt;File content: Each file is a numpy array of size (number of 256x256 patches, 4096) indexed by id of the patch (each scene contains 6,400 patches, each patch has 4,096 micropatches of size 4x4, assigned one topic [1] per micropatch, resulting in 4,096 topics per patch). Each file has 4 months of observation. Array size is 25600 x 4096. We provide 6 files containing 24 months of observation (see the excel file for the Sentinel-1 ids) [2].&lt;/p&gt;

&lt;p&gt;Software to open with: Python&lt;/p&gt;

&lt;p&gt;Example code:&lt;/p&gt;

&lt;p&gt;import numpy&lt;/p&gt;

&lt;p&gt;Data= numpy.load(&amp;ldquo;filename_with_path&amp;rdquo;)&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;Reference:&lt;/p&gt;

&lt;p&gt;1. C. Karmakar, C.O. Dumitru, G. Schwarz, and M. Datcu, &amp;ldquo;&lt;em&gt;Feature-Free Explainable Data Mining in SAR Images Using Latent Dirichlet Allocation&lt;/em&gt;&amp;rdquo;, IEEE JSTARS, vol. 14, pp. 676-689, 2021.&lt;/p&gt;

&lt;p&gt;2. C. Karmakar, C.O. Dumitru, and M. Datcu, &amp;ldquo;Explainable AI for SAR Image Time Series: Knowledge Extraction for Polar Areas&amp;rdquo;, MDPI Remote Sensing Journal, 2021, pp. 1-21 (under review).&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/825258/">825258</awardNumber>
      <awardTitle>From Copernicus Big Data to Extreme Earth Analytics</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
31
5
views
downloads
All versions This version
Views 3131
Downloads 55
Data volume 1.2 GB1.2 GB
Unique views 2525
Unique downloads 55

Share

Cite as