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Abstract: The value of an ecological indicator is no better than the 

uncertainty associated with its estimate. Nevertheless, indicator 

uncertainty is seldom estimated, even though legislative frameworks such 

as the European Water Framework Directive stress that the confidence of 

an assessment should be quantified. We introduce a general framework for 

quantifying uncertainties associated with indicators employed to assess 

ecological status in waterbodies. The framework is illustrated with two 

examples: eelgrass shoot density and chlorophyll a in coastal ecosystems. 

Aquatic monitoring data vary over time and space; variations that can 

only partially be described using fixed parameters, and remaining 

variations are deemed random. These spatial and temporal variations can 

be partitioned into uncertainty components operating at different scales. 

Furthermore, different methods of sampling and analysis as well as people 

involved in the monitoring introduce additional uncertainty. We have 

outlined 18 different sources of variation that affect monitoring data to 

a varying degree and are relevant to consider when quantifying the 

uncertainty of an indicator calculated from monitoring data. However, in 

most cases it is not possible to estimate all relevant sources of 

uncertainty from monitoring data from a single ecosystem, and those 

uncertainty components that can be quantified will not be well determined 

due to the lack of replication at different levels of the random 

variations (e.g. number of stations, number of years, and number of 

people). For example, spatial variations cannot be determined from 

datasets with just one station. Therefore, we recommend that random 

variations are estimated from a larger dataset, by pooling observations 

from multiple ecosystems with similar characteristics. We also recommend 

accounting for predictable patterns in time and space using parametric 

approaches in order to reduce the magnitude of the unpredictable random 

components and reduce potential bias introduced by heterogeneous 

monitoring across time. We propose to use robust parameter estimates for 

both fixed and random variations, determined from a large pooled dataset 

and assumed common across the range of ecosystems, and estimate a limited 

subset of parameters from ecosystem-specific data. Partitioning the 

random variation onto multiple uncertainty components is important to 



obtain correct estimates of the ecological indicator variance, and the 

magnitude of the different components provide useful information for 

improving methods applied and design of monitoring programs. The proposed 

framework allows comparing different indicators based on their precision 

relative to the cost of monitoring. 

 

Response to Reviewers: Reviewers’ comments are in black and our responses 

in blue. 

Reviewer #1:  

The central message of this manuscript is that it is important to 

adequately quantify the different major uncertainty components in 

ecological monitoring data. The manuscript discusses the inherent 

challenges and some solutions and why this issue matters. Although 

resolving contributions from different uncertainty components is not 

novel in itself this is a useful and very well written manuscript that 

develops a number of lines of thinking and is probably one of the most 

comprehensive and helpful studies addressing this subject. The chosen 

case studies are ideal because between them they capture many of the key 

elements of pelagic (chlorophyll) and benthic (seagrass) monitoring. 

 

Thank you. 

 

The only significant point that I feel is neglected is an acknowledgment 

that uncertainty in monitoring data is not the only form of uncertainty 

that contributes to uncertainty in status classifications. Even if 

monitoring data could be obtained, theoretically, without error, there 

would be uncertainty in status classifications due to uncertainty in 

reference conditions (e.g. associated with the models used to predict 

reference conditions and the measurement error associated with model 

predictors). Many compositional metrics also use some form of species 

score, which though not specifically relevant here, introduces a further 

source of uncertainty to information derived from monitoring data as 

these species scores themselves are inherently uncertain. Perhaps a 

comment that addresses these points would be appropriate in section 2. 

 

We acknowledge that uncertainty associated with reference conditions and 

class boundaries will also affect the confidence of a status assessment 

from a scientific point-of-view. In practice, these boundaries are 

treated as fixed values since they are typically incorporated into the 

legislative framework. Most legislative frameworks introduce fixed target 

values (speed limits, tolerances in manufacturing, etc.) although the 

scientific results underpinning these values are associated with 

uncertainty. We have added a paragraph in the introduction to address 

this issue. It reads: 

“Boundaries or target values defining different status classes are 

typically derived from model results, historical data or expert judgement 

and are, as such, inherently uncertain. In theory, this uncertainty 

associated with boundary or target values will also affect the confidence 

of the status assessment. In practice, however, these boundaries, based 

on best scientific knowledge, are typically formulated as part of the 

legislative framework and for the purpose of status assessment considered 

fixed values, despite the inherent uncertainty. “ 

 

Page 3, line 30 - should be installed 

 

Corrected. 

 



Page 3, line 56 etc. There are some additional parallel analyses for 

river macrophytes in Davey & Garrow (2009) 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file

/291734/scho1109brhq-e-e.pdf 

that it would be useful to refer to. 

 

Thank you for the reference. We have added a sentence with reference to 

this study. 

 

Page 4, line 13,  allowing temporal variations to be quantified  

 

Changed. 

 

Page 4, line 30, in order to avoid biased assessments 

 

Corrected. 

 

Section 2.4 line 8, …and analysis also introduce uncertainty…. 

Corrected. 

 

Section 2.4, line 12 - different personnel - whether performing the 

sampling (also relevant), or analysing samples  

 

Amended the suggested change. 

 

Section 2.4, line 15 - the assumption that methodological uncertainty is 

independent of season and location should probably be discussed. Some 

conditions are unquestionably easier to survey than others with a given 

method, and surveyor motivation tends to be reduced in the cold, dark and 

wet! 

 

We believe it is fair to assume that the errors introduced by different 

methods are independent of season and location, e.g. the errors are not 

systematically negative or positive for certain months, years or specific 

stations. Monitoring methods are generally designed to be independent of 

the given monitoring conditions. However, it is possible that the 

magnitude of the methodological errors could increase under specific 

conditions, but we are not aware of any studies documenting such claims. 

We have commented on this issue in Section 2.4. 

 

Section 2.4 line 24 - I suspect the act of sampling could be better 

described (at least statistically) as a device x operator interaction  

 

True, this interaction describes the combination of devices and operators 

and hence includes the simpler model assuming additive effects of devices 

and operators. However, we maintain these two sources as independent main 

factors for simplicity and keeping the degrees of freedom low, and 

because we believe the interaction of device and operator will be 

marginal in most cases.  

 

Section 2.4 line 38 - efforts have been made in the past to correct for 

the systematic recording bias of some personnel  

 

We agree that this issue is (or should be) continuously addressed by most 

monitoring programs and we have added a sentence to recognize these 

efforts. 

 



Generally I think that the transition from section 2 to section 3 would 

be easier for the reader to make if you had introduced some of the 

notation from Table 1 into section 2. 

 

Point taken. We have now included the notation from Table 1 in section 2 

as the different terms are being introduced. 

 

Page 9, line 19, shouldn't it be gr 

 

We have corrected it. 

 

Section 3 develops a framework for estimating different sources of 

uncertainty. Does this allow for the fact that the variance in an 

indicator is unlikely to be randomly distributed over the gradient of 

that indicator (e.g. because it is likely to be bounded - certainly at 

zero and potentially at some upper value). Perhaps relevant to discussion 

at end of section 5.1. 

 

We have added text in both Section 3 and Section 5.1, describing that the 

basic assumption of the model is that all parameters (including variance 

parameters) are constant, and this assumption can be justified through 

appropriate selection of data and transformation of these data. 

 

Page 12, line 29, may potentially exhibit trends  

 

Corrected. 

 

Page 14: In terms of the analysis of spatial variation in eelgrass stem 

density some of this variation can be accounted for by depth. I suspect 

that substrate and fetch could also account for other variation that if 

not 'extracted' will be treated as random. Maybe it is worth emphasising 

that other easily measured environmental predictors should, where 

realistic, be integrated as fixed effects. Also relevant to section 5.2 

on page 18. 

 

We have addressed this in Section 5.2. We believe the case study should 

only relate to the available information, whereas in Section 5.2 we have 

discussed the possibility of reducing the random spatial variation 

further by including fetch and substrate as explanatory variables. 

 

Page 16 line 51 - should be made (or obtained) rather than estimated 

 

We have replaced ‘estimated’ with ‘obtained’. 

 

Page 17, line 34 - state that you are referring to the eelgrass data here  

 

Done. 

 

Page 17, line 49, dependence  

 

Corrected. 

 

Page 18, line - desired properties are low bias and high precision 

 

Corrected. 

 

Table 1 



Line 7 - assume should be gr (not g), Line 18 assume should be yr (not y) 

Generally the tables are not standalone as the codes for the variance 

components require reference to Table 1 or equations within the text. 

 

Corrected gr and yr. In Section 2 we have introduced all the terms in the 

text as they appear with reference to Table 1. See also our response 

above. 

 

Figure 1 and 2 - dots indicating individual sampling sites are hard to 

discern and may need to be shown larger and as different symbol types 

rather than colours 

 

In preparation of this figure we carefully considered different symbol 

sizes and colors. Larger symbols would imply a much higher degree of 

overlapping. Since the symbols cannot be larger we do not believe that 

choosing different symbols would make it easier to distinguish sampling 

areas. We are confident that the symbols in the figure represent the best 

compromise between symbol, size and color. 

 

Figure 5 - this would be better as a histogram with paired bars for 

estuaries and coasts for the different variance components. I'm not not 

sure what value the 'combined' line has. 

 

We have now displayed variances in a bar plot as suggested. ‘combined’ is 

actually the entire dataset and we have changed the legend to reflect 

this. 

 

Reviewer #2:  

Your paper covers an actual aspect of long-term data analysis. The 

proposed GLMM approach is quite very interesting. But, often such 

additive model is not so comfortable because of missing information on 

sources of uncertainty. Give a clear and comprehensive red line how you 

got the results. Therefore, you should add more details in chapter 3. 

 

We think the reviewer has misunderstood the objectives of the manuscript. 

The manuscript is not about long-term data analysis, but the formulation 

of a statistical framework for assessing uncertainties associated with 

typical aquatic monitoring data. The objectives are clearly articulated 

in the last paragraph of the introduction. Overall, this apparent 

misunderstanding recurs in the additional comments below. Furthermore, we 

do not understand why the reviewer has reservations against GLMM – GLMM 

actually allows for including different sources of uncertainty. 

 

Additional comments to the Author: 

 

1. The highlights are too general and do not characterise the content of 

your paper. The same is valid for the abstract. 

 

This comment is not intelligible. It is very unspecific and difficult to 

address. We believe the comment is based on an overall misunderstanding 

of the objectives of the study (see last paragraph in the introduction). 

See also our response to point 6 below. 

 

2. In the cases of general statements you add examples (pp. 3,5, 7, 8, 9, 

10, 17, 19). Readers which are familiar with the topic do not need such 

examples for explanations. For the other one, your example is too short. 

Therefore, you should delete such examples. 

 



We would appreciate if this comment was made more specific, pointing out 

sentences where examples were not needed or needed to be elaborated. We 

believe there is an adequate balance between describing the uncertainty 

framework and using examples to support the theoretical descriptions. 

 

3. What does it mean "XX" on page 4?Take it off. 

 

We have removed the ‘XX’ from the parenthesis. 

 

4. Chapter 2 is too general and not really an overview on sources of 

uncertainty. 

 

Table 1 lists the sources of uncertainty and these are described in 

Section 2. We have included the notation from Table 1 throughout the text 

to make this linkage clearer (see also our response to reviewer #1). 

Hopefully, this amendment will improve the readability to provide the 

overview. 

 

5. In chapter 3 nothing is said the computational methods (hardware, 

software, computer time). 

 

We do not find it relevant to include such information. Most statistical 

software packages can analyze GLMM (e.g. R, SAS, SPSS) and they run on an 

ordinary PC within a reasonable time. Computation time mostly depends on 

the number of observations and to a lesser degree on the complexity of 

the GLMM, but in our examples computation time was less than one minute. 

 

6. Chapter 5 is too general and not an understandable discussion of your 

results. You stress more general aspects of quantifying uncertainty than 

a discussion of your experimental results. And what about sensitivity you 

mentioned on page 18? You should give some further comment concerning 

this essential aspect of long-term data analysis. 

 

We believe this comment is based on a misunderstanding of our objective. 

The objective is to introduce a framework for quantification of different 

sources of uncertainty affecting typical aquatic monitoring data used for 

deriving indicators for status assessment. The two examples are included 

to demonstrate the usability of the framework. The intention is not to 

discuss the specific implications of the two examples regarding seasonal 

patterns or trends. 

 

7. In section 5.2 you stress the modelling aspect. But, you should add 

some further comments. 

 

We believe we have discussed and exemplified how modelling can be used to 

reduce uncertainty. If the comment was more specific, we would be happy 

to address it. 
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AARHUS UNIVERSITY 
 

 

Ecological Indicators 

Resubmission of manuscript for Ecological Indicators 

Dear Editor, 

 

We hereby resubmit our manuscript ‘Confidence in ecological indicators: A 

framework for quantifying uncertainty components from monitoring data’ for 

consideration as an original research paper in Ecological Indicators. 

 

Our resubmission includes the revised manuscript as well as a response letter 

addressing each comment from the two reviewers separately. We would like 

to emphasize that we found the comments from reviewer #2 unspecific and 

unsubstantial, and that the critique of this reviewer is most likely based on a 

misunderstanding of the objectives of the manuscript. The objectives are 

clearly stated in the last paragraph of the introduction. If the paper will be 

sent out for a second round of review, we recommend that an alternative re-

viewer is chosen or that the editor provides some guidance to reviewer #2. 

 

On behalf of the authors, 

 

Yours sincerely, 

 

Jacob Carstensen 

Dept. of Bioscience 

Aarhus University 

Frederiksborgvej 399 

DK-4000 Roskilde 

DENMARK 

Phone: (+45) 46301345 

Fax: (+45) 46301114 

email: jac@bios.au.dk 
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Responses to reviewers’ comments 
Reviewers’ comments are in black and our responses in blue. 

Reviewer #1:  
The central message of this manuscript is that it is important to adequately quantify the different major 
uncertainty components in ecological monitoring data. The manuscript discusses the inherent challenges 
and some solutions and why this issue matters. Although resolving contributions from different uncertainty 
components is not novel in itself this is a useful and very well written manuscript that develops a number of 
lines of thinking and is probably one of the most comprehensive and helpful studies addressing this subject. 
The chosen case studies are ideal because between them they capture many of the key elements of pelagic 
(chlorophyll) and benthic (seagrass) monitoring. 
 
Thank you. 
 
The only significant point that I feel is neglected is an acknowledgment that uncertainty in monitoring data 
is not the only form of uncertainty that contributes to uncertainty in status classifications. Even if 
monitoring data could be obtained, theoretically, without error, there would be uncertainty in status 
classifications due to uncertainty in reference conditions (e.g. associated with the models used to predict 
reference conditions and the measurement error associated with model predictors). Many compositional 
metrics also use some form of species score, which though not specifically relevant here, introduces a 
further source of uncertainty to information derived from monitoring data as these species scores 
themselves are inherently uncertain. Perhaps a comment that addresses these points would be appropriate 
in section 2. 
 
We acknowledge that uncertainty associated with reference conditions and class boundaries will also affect 
the confidence of a status assessment from a scientific point-of-view. In practice, these boundaries are 
treated as fixed values since they are typically incorporated into the legislative framework. Most legislative 
frameworks introduce fixed target values (speed limits, tolerances in manufacturing, etc.) although the 
scientific results underpinning these values are associated with uncertainty. We have added a paragraph in 
the introduction to address this issue. It reads: 
“Boundaries or target values defining different status classes are typically derived from model results, 
historical data or expert judgement and are, as such, inherently uncertain. In theory, this uncertainty 
associated with boundary or target values will also affect the confidence of the status assessment. In 
practice, however, these boundaries, based on best scientific knowledge, are typically formulated as part of 
the legislative framework and for the purpose of status assessment considered fixed values, despite the 
inherent uncertainty. “ 
 
Page 3, line 30 - should be installed 
 
Corrected. 
 
Page 3, line 56 etc. There are some additional parallel analyses for river macrophytes in Davey & Garrow 
(2009) 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291734/scho1109brhq-
e-e.pdf 
that it would be useful to refer to. 
 

Response to Reviewers

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291734/scho1109brhq-e-e.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291734/scho1109brhq-e-e.pdf
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Thank you for the reference. We have added a sentence with reference to this study. 
 
Page 4, line 13,  allowing temporal variations to be quantified  
 
Changed. 
 
Page 4, line 30, in order to avoid biased assessments 
 
Corrected. 
 
Section 2.4 line 8, …and analysis also introduce uncertainty…. 
Corrected. 
 
Section 2.4, line 12 - different personnel - whether performing the sampling (also relevant), or analysing 
samples  
 
Amended the suggested change. 
 
Section 2.4, line 15 - the assumption that methodological uncertainty is independent of season and location 
should probably be discussed. Some conditions are unquestionably easier to survey than others with a 
given method, and surveyor motivation tends to be reduced in the cold, dark and wet! 
 
We believe it is fair to assume that the errors introduced by different methods are independent of season 
and location, e.g. the errors are not systematically negative or positive for certain months, years or specific 
stations. Monitoring methods are generally designed to be independent of the given monitoring conditions. 
However, it is possible that the magnitude of the methodological errors could increase under specific 
conditions, but we are not aware of any studies documenting such claims. We have commented on this 
issue in Section 2.4. 
 
Section 2.4 line 24 - I suspect the act of sampling could be better described (at least statistically) as a device 
x operator interaction  
 
True, this interaction describes the combination of devices and operators and hence includes the simpler 
model assuming additive effects of devices and operators. However, we maintain these two sources as 
independent main factors for simplicity and keeping the degrees of freedom low, and because we believe 
the interaction of device and operator will be marginal in most cases.  
 
Section 2.4 line 38 - efforts have been made in the past to correct for the systematic recording bias of some 
personnel  
 
We agree that this issue is (or should be) continuously addressed by most monitoring programs and we 
have added a sentence to recognize these efforts. 
 
Generally I think that the transition from section 2 to section 3 would be easier for the reader to make if 
you had introduced some of the notation from Table 1 into section 2. 
 
Point taken. We have now included the notation from Table 1 in section 2 as the different terms are being 
introduced. 
 
Page 9, line 19, shouldn't it be gr 
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We have corrected it. 
 
Section 3 develops a framework for estimating different sources of uncertainty. Does this allow for the fact 
that the variance in an indicator is unlikely to be randomly distributed over the gradient of that indicator 
(e.g. because it is likely to be bounded - certainly at zero and potentially at some upper value). Perhaps 
relevant to discussion at end of section 5.1. 
 
We have added text in both Section 3 and Section 5.1, describing that the basic assumption of the model is 
that all parameters (including variance parameters) are constant, and this assumption can be justified 
through appropriate selection of data and transformation of these data. 
 
Page 12, line 29, may potentially exhibit trends  
 
Corrected. 
 
Page 14: In terms of the analysis of spatial variation in eelgrass stem density some of this variation can be 
accounted for by depth. I suspect that substrate and fetch could also account for other variation that if not 
'extracted' will be treated as random. Maybe it is worth emphasising that other easily measured 
environmental predictors should, where realistic, be integrated as fixed effects. Also relevant to section 5.2 
on page 18. 
 
We have addressed this in Section 5.2. We believe the case study should only relate to the available 
information, whereas in Section 5.2 we have discussed the possibility of reducing the random spatial 
variation further by including fetch and substrate as explanatory variables. 
 
Page 16 line 51 - should be made (or obtained) rather than estimated 
 
We have replaced ‘estimated’ with ‘obtained’. 
 
Page 17, line 34 - state that you are referring to the eelgrass data here  
 
Done. 
 
Page 17, line 49, dependence  
 
Corrected. 
 
Page 18, line - desired properties are low bias and high precision 
 
Corrected. 
 
Table 1 
Line 7 - assume should be gr (not g), Line 18 assume should be yr (not y) Generally the tables are not 
standalone as the codes for the variance components require reference to Table 1 or equations within the 
text. 
 
Corrected gr and yr. In Section 2 we have introduced all the terms in the text as they appear with reference 
to Table 1. See also our response above. 
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Figure 1 and 2 - dots indicating individual sampling sites are hard to discern and may need to be shown 
larger and as different symbol types rather than colours 
 
In preparation of this figure we carefully considered different symbol sizes and colors. Larger symbols 
would imply a much higher degree of overlapping. Since the symbols cannot be larger we do not believe 
that choosing different symbols would make it easier to distinguish sampling areas. We are confident that 
the symbols in the figure represent the best compromise between symbol, size and color. 
 
Figure 5 - this would be better as a histogram with paired bars for estuaries and coasts for the different 
variance components. I'm not not sure what value the 'combined' line has. 
 
We have now displayed variances in a bar plot as suggested. ‘combined’ is actually the entire dataset and 
we have changed the legend to reflect this. 
 

Reviewer #2:  
Your paper covers an actual aspect of long-term data analysis. The proposed GLMM approach is quite very 
interesting. But, often such additive model is not so comfortable because of missing information on sources 
of uncertainty. Give a clear and comprehensive red line how you got the results. Therefore, you should add 
more details in chapter 3. 
 
We think the reviewer has misunderstood the objectives of the manuscript. The manuscript is not about 
long-term data analysis, but the formulation of a statistical framework for assessing uncertainties 
associated with typical aquatic monitoring data. The objectives are clearly articulated in the last paragraph 
of the introduction. Overall, this apparent misunderstanding recurs in the additional comments below. 
Furthermore, we do not understand why the reviewer has reservations against GLMM – GLMM actually 
allows for including different sources of uncertainty. 
 
Additional comments to the Author: 
 
1. The highlights are too general and do not characterise the content of your paper. The same is valid for 
the abstract. 
 
This comment is not intelligible. It is very unspecific and difficult to address. We believe the comment is 
based on an overall misunderstanding of the objectives of the study (see last paragraph in the 
introduction). See also our response to point 6 below. 
 
2. In the cases of general statements you add examples (pp. 3,5, 7, 8, 9, 10, 17, 19). Readers which are 
familiar with the topic do not need such examples for explanations. For the other one, your example is too 
short. Therefore, you should delete such examples. 
 
We would appreciate if this comment was made more specific, pointing out sentences where examples 
were not needed or needed to be elaborated. We believe there is an adequate balance between describing 
the uncertainty framework and using examples to support the theoretical descriptions. 
 
3. What does it mean "XX" on page 4?Take it off. 
 
We have removed the ‘XX’ from the parenthesis. 
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4. Chapter 2 is too general and not really an overview on sources of uncertainty. 
 
Table 1 lists the sources of uncertainty and these are described in Section 2. We have included the notation 
from Table 1 throughout the text to make this linkage clearer (see also our response to reviewer #1). 
Hopefully, this amendment will improve the readability to provide the overview. 
 
5. In chapter 3 nothing is said the computational methods (hardware, software, computer time). 
 
We do not find it relevant to include such information. Most statistical software packages can analyze 
GLMM (e.g. R, SAS, SPSS) and they run on an ordinary PC within a reasonable time. Computation time 
mostly depends on the number of observations and to a lesser degree on the complexity of the GLMM, but 
in our examples computation time was less than one minute. 
 
6. Chapter 5 is too general and not an understandable discussion of your results. You stress more general 
aspects of quantifying uncertainty than a discussion of your experimental results. And what about 
sensitivity you mentioned on page 18? You should give some further comment concerning this essential 
aspect of long-term data analysis. 
 
We believe this comment is based on a misunderstanding of our objective. The objective is to introduce a 
framework for quantification of different sources of uncertainty affecting typical aquatic monitoring data 
used for deriving indicators for status assessment. The two examples are included to demonstrate the 
usability of the framework. The intention is not to discuss the specific implications of the two examples 
regarding seasonal patterns or trends. 
 
7. In section 5.2 you stress the modelling aspect. But, you should add some further comments. 
 
We believe we have discussed and exemplified how modelling can be used to reduce uncertainty. If the 

comment was more specific, we would be happy to address it. 
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Abstract 

The value of an ecological indicator is no better than the uncertainty associated with its estimate. 

Nevertheless, indicator uncertainty is seldom estimated, even though legislative frameworks such as the 

European Water Framework Directive stress that the confidence of an assessment should be quantified. 

We introduce a general framework for quantifying uncertainties associated with indicators employed to 

assess ecological status in waterbodies. The framework is illustrated with two examples: eelgrass shoot 

density and chlorophyll a in coastal ecosystems. Aquatic monitoring data vary over time and space; 

variations that can only partially be described using fixed parameters, and remaining variations are deemed 

random. These spatial and temporal variations can be partitioned into uncertainty components operating 

at different scales. Furthermore, different methods of sampling and analysis as well as people involved in 

the monitoring introduce additional uncertainty. We have outlined 18 different sources of variation that 

affect monitoring data to a varying degree and are relevant to consider when quantifying the uncertainty of 

an indicator calculated from monitoring data. However, in most cases it is not possible to estimate all 

relevant sources of uncertainty from monitoring data from a single ecosystem, and those uncertainty 

components that can be quantified will not be well determined due to the lack of replication at different 

levels of the random variations (e.g. number of stations, number of years, and number of people). For 

example, spatial variations cannot be determined from datasets with just one station. Therefore, we 

recommend that random variations are estimated from a larger dataset, by pooling observations from 

multiple ecosystems with similar characteristics. We also recommend accounting for predictable patterns 

in time and space using parametric approaches in order to reduce the magnitude of the unpredictable 

random components and reduce potential bias introduced by heterogeneous monitoring across time. We 

propose to use robust parameter estimates for both fixed and random variations, determined from a large 

pooled dataset and assumed common across the range of ecosystems, and estimate a limited subset of 

parameters from ecosystem-specific data. Partitioning the random variation onto multiple uncertainty 

components is important to obtain correct estimates of the ecological indicator variance, and the 

magnitude of the different components provide useful information for improving methods applied and 

design of monitoring programs. The proposed framework allows comparing different indicators based on 

their precision relative to the cost of monitoring.  
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1 INTRODUCTION 

The growing human pressure on nature’s ecosystems has prompted increasing monitoring efforts to assess 

consequences of human activities in order to protect these systems from degradation and potential 

collapse. Measurement programs for aquatic ecosystems were initiated throughout the western world in 

the 20th century to monitor pollution effects, starting with physical-chemical characteristics in urban rivers 

and streams (e.g. Delaware River near Philadelphia; Sharp 2010) and lakes (e.g. Great Lakes; Chapra et al. 

2012). As downstream pollution effects became evident monitoring programs were similarly established in 

estuaries (e.g. Chesapeake Bay; Hagy et al. 2004) and coastal waters (e.g. Tampa Bay; Greening et al. 

2014).Over the years the physical-chemical monitoring has increasingly been supplemented with biological 

measurements. These monitoring programs were originally initiated with the aim to assess changes over 

time in various indicators compiled from the monitoring data; often relying on a single monitoring point or 

station assuming the trends of this location to be representative of the larger system. However, the actual 

indicator level may not represent the mean of the entire system as temporal evolution was only 

considered. 

In recent years the objective of many monitoring programs have changed from reporting trends to 

reporting status, and to assess the compliance of the status with established target values. For instance, in 

the European Water Framework Directive (WFD, European Commission 2000) and Marine Strategy 

Framework Directive (MSFD, European Commission 2008) the status during a 6-year assessment period 

should be compared to the boundary between “Good” and “Moderate” ecological status (WFD) or the 

boundary between “Good” and below “Good” environmental status (MSFD). Both directives mandate that 

management measures should be installed in case “Good” ecological/environmental status is not achieved. 

Thus, the two directives are unique by directly linking assessment of monitoring data and management. 

Since management measures can be quite costly and the failure of mitigating pollution in time can have 

severe ecological consequences, it is important that the confidence in the status assessment is sufficient 

(European Commission 2000). However, the confidence can only be assessed provided that the 

uncertainties of the indicator values used in the status assessment are quantified.  

Boundaries or target values defining different status classes are typically derived from model results, 

historical data or expert judgement and are, as such, inherently uncertain. In theory, this uncertainty 

associated with boundary or target values will also affect the confidence of the status assessment. In 

practice, however, these boundaries, based on best scientific knowledge, are typically formulated as part of 

the legislative framework and for the purpose of status assessment considered fixed values, despite the 

inherent uncertainty.   

It is well known that benthic and planktonic assemblages of animals and plants in aquatic environments 

vary at a broad range of spatial and temporal scales (e.g. Pinel-Alloul et al. 1988; Levin 1992; Morrisey et al. 

1992; Downes et al. 1993; Norén and Lindegarth 2005). Despite this and considering the importance of 

knowing the confidence in ecological status assessments, it is surprising that the uncertainty of ecological 

indicators and the different sources contributing to this uncertainty are seldom quantified. Dromph et al. 

(2013) employed a specific sampling design to partition variation in measurements of phytoplankton 

density and pigments into variations among coastal waterbodies, among stations within waterbodies, 

among samples at each station, among sub-samples after splitting the samples, and among persons 

analyzing the sample (analysts). They found that spatial variations among stations contributed the most to 
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the uncertainty within waterbodies; however, the study was carried out within two summer months 

implying that temporal variability was not truly addressed. In a similar study of lakes, Carvalho et al. (2013) 

and Thackeray et al. (2013) found that variations between stations within lakes was relatively small 

compared to  variations between samples at the same station and variation between analysts. Dudley et al. 

(2013) examined four different macrophytes community indicators and found that the large-scale spatial 

variation among stations within lakes was generally larger than the small-scale spatial variation among 

transects within stations, but their study did not address temporal variations. Macrophyte communities in 

UK rivers also displayed large spatial variability and large operator variability, whereas temporal variations 

were relatively small (Davey and Garrow 2009). Using a macroinvertebrate dataset from the UK, Clarke et 

al. (2013) found that spatial, temporal and replicate variability were of same magnitude for two different 

community indicators.  

In contrast to the abovementioned studies that were based on data specifically collected to quantify 

different uncertainty components, Balsby et al. (2013) used Danish monitoring data of eelgrass depth limits 

and reported that spatial variations (both large- and small-scale within coastal waterbodies) were largest, 

although interannual variation and variation between divers were also considerable. Monitoring data have 

the advantage of spanning multiple years (and different seasons for some measurements), allowing 

temporal variations to be quantified. Sampling programs specifically designed to estimate different 

uncertainty components often take excessive dimensions, if all relevant sources of uncertainty are 

included. For instance, interannual variation cannot be estimated from a single year of data (Carvalho et al. 

2013; Dromph et al. 2013; Dudley et al. 2013; Thackeray et al. 2013), but this does not imply that this 

source of variation is negligible. In fact, omitting significant sources of variation will result in 

underestimating the overall indicator uncertainty. Thus, it is important to include all significant uncertainty 

components when assessing the uncertainty of an indicator. 

One common feature of many contemporary assessment systems aimed at estimating and classifying the 

status of aquatic environments (e.g. the WFD and MSFD), is that they are intended to provide holistic, 

integrated assessments based on a number of ecological indicators (Borja et al. 2010). Depending on the 

exact context, this means that two or more indicators, each associated with particular uncertainties, are 

combined and aggregated and potentially contributing to uncertainty in the overall status classification 

(e.g. Caroni et al. 2013). In order to avoid biased assessments and to ensure that uncertainties can be 

estimated and assessed on a common scale, a unified quantitative approach accounting for spatial, 

temporal and methodological sources of variation is needed (e.g. Hering et al. 2010; Clarke 2013). 

The objective of this study is to formulate a generic framework for assessing the uncertainty of an indicator 

compiled from aquatic monitoring data. We will describe a list of uncertainty components that are relevant 

to consider and show how subsets and/or combinations of these sources can be quantified. Furthermore, 

we will demonstrate how estimates of relevant variance components obtained from studies of larger 

datasets can be used to achieve more realistic estimates of uncertainty when only a small and potentially 

incomplete dataset is available for determining the status of an indicator. Finally, we will describe how the 

aggregation of different uncertainty components influences the overall indicator uncertainty. The 

framework will be exemplified and tested using both benthic and pelagic monitoring data. 
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2 SOURCES OF UNCERTAINTY IN MONITORING DATA 

Characterizing an entire waterbody over a given assessment period (e.g. 6 years for WFD and MSFD) by 

means of an indicator compiled from a discrete number of samples is inherently uncertain, and the number 

of potential sources to this overall uncertainty can be large. However, whereas some sources of uncertainty 

are small and can be disregarded, other sources of uncertainty may contribute substantially to the overall 

indicator uncertainty (Table 1). Moreover, the different sources of variation can be described with a finite 

set of possible values (fixed effects with parameters for each possible outcome) or an infinite set of 

possible values (random effects described as stochastic distributions). Fixed effects do not contribute 

uncertainty to the indicator, but can, in general, be estimated and accounted for. 

Any given measurement used for calculating an indicator is affected by uncertainties related to both 

sampling and analysis of the sample. Sampling produces a finite number of observations to characterize the 

infinite spatial-temporal distribution representing the entire waterbody over the assessment period. The 

key question is how well the data represent underlying spatial variations (large-scale gradients and small-

scale patchiness), temporal variations (interannual, seasonal, diurnal), and the spatial-temporal 

interactions? After sampling, the analysis of the sample can introduce variations caused by using different 

sampling devices, instruments, analysts, sub-sampling and replication. Such differences may introduce 

uncertainty additional to that introduced by sampling. 

2.1 Uncertainties associated with spatial variations 

The ecological status assessment of a waterbody should apply to the entire waterbody and not just a few 

sampling locations. Since it is impossible to monitor every parcel of water or every square meter of the 

bottom, the ecological indicator is normally calculated using data from a few spatially distinctive 

monitoring locations. The water column is traditionally sampled at a number of stations scattered 

throughout the waterbody, whereas benthic monitoring often involves replicated sampling within different 

stations to account for the small-scale heterogeneity in benthic communities. Thus, spatial variations can 

be partitioned into large-scale gradients (gr and GR) within the waterbody (typically described by different 

stations) and small-scale fluctuations or patchiness (pa and PA(GR)) (typically described by replicated 

sampling within stations) (Table 1). 

These small- and large-scale spatial patterns of variation can partly be explained by various environmental 

factors, assuming that the station-specific mean correlates with co-variables such as depth, substrate 

characteristics, and mean salinity. Such sources of variation are fixed (predictable) (gr and pa) and if they 

can be incorporated in the model, they do not add uncertainty to the indicator value. Small-scale 

patchiness can often be partitioned in fixed and random variation, provided that relevant co-variables are 

monitored together with the replicated samples. For example, variations in cover of macroalgae can often 

be explained by depth and the availability of hard substrate (e.g. Krause-Jensen et al. 2007, Svensson et al. 

2013). However, it is unlikely that all large-scale variation can be explained and the remaining variation 

(GR) is considered random (unpredictable). Similarly, unexplained small-scale variation between replicated 

samples is considered random and described as a nested effect within the large-scale gradient (PA(GR)), 

since the exact location of replicated samples shifts between visits to the station. 
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2.2 Uncertainties associated with temporal variations 

The ecological status assessment of a waterbody should also apply to the entire span of the assessment 

period and not just a finite number of sampling occasions in time. Most ecological variables display 

significant interannual and seasonal variation, and for some variables (e.g. phytoplankton) even diurnal 

variations (Table 1). The water column is typically sampled several times over the year due to the dynamic 

nature of pelagic processes, whereas benthic monitoring is typically carried out on an annual basis aiming 

to sample approximately the same period every year. 

Interannual variation describes the variation between years of sampling and this variation is partly fixed (yr) 

and partly random (YR). The fixed variation can be described by external factors influencing the 

environmental time series such as temperature, freshwater discharge etc., whereas the random variation 

describes the remaining unexplained interannual variation.  

Seasonal variation has a cyclic character repeating itself every year. It can also be partitioned into a fixed 

component (se) (typically discretized into monthly resolution), which is the mean seasonal variation, and a 

random component (SE×YR), describing fluctuations around the mean seasonal variation. The fixed 

seasonal variation can be calculated if multiple years of data have been collected; otherwise the seasonal 

variation is entirely random. Accounting for the fixed seasonal variation substantially reduces the 

uncertainty of pelagic indicators (Carstensen 2007). 

Similarly, diurnal variation has a cyclic character repeating itself every day. It can be partitioned into a fixed 

common variation (di) or fixed season-specific variation (di×se). These fixed diurnal variations can be 

calculated if multiple years of data have been collected. Deviations from the fixed diurnal variations are 

considered random (DI×SE×YR). Co-variables such as daylight, temperature can also be used to describe 

the fixed diurnal variation. However, most monitoring variables are not sampled sufficiently frequent to 

resolve diurnal variations and therefore these temporal variations are seldom considered. 

Irregular fluctuations (IR) are temporal variations that are not described by interannual, seasonal or diurnal 

patterns. For example, if a macroalgae transect is monitored twice within the same month and year the 

variation between the two dates is considered irregular fluctuations. Similarly, if the water column is 

sampled bi-weekly and the seasonality is described with a monthly resolution, the variation between 

samples from the same month and year is considered irregular fluctuations. 

2.3 Uncertainties associated with spatial-temporal interactions 

In addition to the pure spatial and temporal sources of variation, it is also relevant to consider their 

interactions, i.e. changes in spatial pattern over time or changes in temporal variations over space. In 

theory, there are many spatial-temporal interactions that could be considered (i.e. combinations of the 

spatial and temporal factors) but we have included only the two most relevant (Table 1), assuming that 1) 

small-scale patchiness is independent of all temporal variations, and 2) large-scale spatial gradients may 

change systematically between years and over the season but not over the course of the day. 
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The large-scale gradients can change between years (GR×YR) due to various reasons, e.g. benthic 

vegetation in shallower waters might disappear for several years after a storm or intrusion of hypoxic water 

might eradicate deeper benthic communities. Interannual variations in freshwater inputs, temperature, 

wind-mixing and other external factors may also systematically affect the spatial gradients within a 

waterbody. Similarly, the large-scale gradients may also change seasonally (GR×SE) in response to various 

external factors, e.g. the spatial distribution of phytoplankton biomass in an estuary varies seasonally. 

2.4 Uncertainties associated with sampling and analysis methodology 

The methods involved in sampling and analysis also introduce uncertainty to a varying degree depending on 

the specific type of measurement. Monitoring programs operating over several years typically involve 

different sampling devices, different instruments or procedures for the analysis of the sample, and different 

personnel - whether performing the sampling, or analyzing samples (Table 1). It is assumed that the 

uncertainties introduced by these different methodologies are independent of time and space, i.e. the 

methodological uncertainty is not changing systematically with year, season or spatial location of the 

sample. It is possible that the magnitude of methodological uncertainties could depend on time and space 

(e.g. measurement errors might be larger in areas with substantial wave movement of the research vessel), 

but such phenomena are most likely specific to certain types of measurements and therefore not included 

here. 

Different sampling devices are typically employed in most monitoring program, since equipment is replaced 

over time and different institutions using different equipment can be involved in the monitoring. For 

example, integrated water samples can be collected using Niskin bottles (mixing discrete-depth samples) or 

a hose, cover of benthic vegetation can be assessed by video or diver recording, benthic fauna can be 

sampled with van Veen, Smith-McIntyre grabs or another similar device. The population of sampling 

devices is finite and differences are described using fixed factors (sd). 

Similarly, different instruments (method, brand, model, etc.) can be employed for measuring the sample. 

For examples, chlorophyll can be measured using HPLC, spectrophotometry and fluorometry using 

equipment from different manufacturers having different models. Nevertheless, the population of 

analytical instruments used is finite and differences are described as fixed factors (ai).  

Involving different people in the sample analysis is unavoidable and inflates the uncertainty to a varying 

degree. Whereas the variation between technicians analyzing hydrochemistry is considered relatively small, 

variation is considerable between taxonomists analyzing phytoplankton (Jakobsen et al. in press) or 

macroinvertebrates (Haase et al. 2006) as well between divers surveying eelgrass transects (Balsby et al. 

2013). The number of analysts that have and will be involved in monitoring programs is essentially infinite 

and therefore this variation is random (AN). It should be stressed that monitoring programs continuously 

strive to keep this random variation low by training and inter-comparison among analysts. 

Occasionally, duplicate or triplicate measurements of the sample are carried out or the sample is split and 

each sub-sample is analyzed. This procedure is normally pursued when the analytical uncertainty is 

relatively large. The variation between these replicated measurements of the same sample is random (RE).
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3 UNCERTAINTY FRAMEWORK 

An observation from a monitoring program (y) is potentially influenced by all the relevant sources of 

variation described in Section 2 (using the notation from Table 1): 

                                    
                              

 

                                                                             
                               

 

                         
                             

 

                         
                                      

 

 

Eq. (1) 

which in standard statistical matrix notation is formulated as 

          Eq. (2) 
where   is the vector of observations,   is the design matrix for the fixed effects (in small letters),   is a 

vector of parameters for the fixed effects,   is the design matrix for the errors ( ) introduced by the various 

random effects (in capital letters) and  is the residual variation (e.g. Searle et al. (1992) for more 

information on the matrix formulation). The variance of   is: 

                  Eq. (3) 
where      is a diagonal matrix with variances for all the random effect errors and      is a diagonal matrix 

with the residual variance in the diagonal. For example, if the random effects included are GR and YR with 

4 and 3 levels, then       is a diagonal matrix (dimension 7×7) with the variance for GR in the first four 

diagonal elements and the variance for YR in the last three diagonal elements. 

However, it is often difficult to quantify all these sources in Eq. (1) separately, since this would require an 

unrealistically large monitoring program with combinations of the different factors at different levels. In 

practice, it is only possible to estimate a few of these factors (or combinations of factors) from monitoring 

data, and those identifiable factors will be specific for each monitoring dataset (exemplified in Section 4). 

Another important issue is that several of the factors contribute relatively little variation to the 

observations and therefore cannot be quantified. Therefore, it is only relevant to partition the variation in   

into those factors that significantly influence variations in the given monitoring data. 

3.1 Obtaining parameters for indicator estimation 

A statistical model including both fixed and random factors (Eq. 1) is termed a mixed model and is based on 

the assumption of normality. In many cases, observations can be normalized by choosing an appropriate 

transformation, although the distribution of   is not restricted to the normal distribution but can be 

selected within the exponential family (e.g. Poisson, binomial, multinomial, gamma, negative binomial) 

within the framework of generalized linear mixed models (GLMM). Here, we will consider the normal case 

only. An important assumption of the model is that all parameters (both fixed effect and variance 

parameters) are constant over the domain of observations. This assumption can be justified through careful 

selection of the spatial extent of data combined with appropriate transformation (see Section 5). 
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Different estimation methods exist (see discussion in Bolker et al. 2009) for quantifying the variation of 

fixed effects (coefficients/parameters for all levels) and random effects (variance parameters for their 

distributions). These parameters are more accurately estimated if a large monitoring dataset is used, since 

the number of parameters involved can be high (see examples in Section 4). This means that the variance 

parameters can be calculated from a large dataset covering several waterbodies and assessment periods, 

and these parameters can subsequently be used when estimating the uncertainty of an indicator for a 

subset or new dataset (denoted   ), i.e. data covering a specific waterbody during a given assessment 

period. 

Given the estimated variance parameters, the covariance matrix for    (denoted   ; asterisks are used to 

describe vectors/matrices derived from   ) is determined from the structure of the dataset using the 

design matrix (  ) for the random effects (cf. Eq. 2). Subsequently, parameters for the fixed effects can be 

computed by maximizing the likelihood or equivalently minimizing the generalized least squares, i.e. 

              
         . Following the same argument as above, it can be convenient to also fix 

some of the fixed effect parameters in         
        to the estimates obtained from the large data set 

and only estimate parameters that are considered specific to the waterbody and assessment period. For 

example, if the large-scale gradient gr is explained by depth with a well-established relationship from the 

entire data set, this parameter can be employed instead of using a more uncertain parameter estimated 

from a relatively small dataset. Similarly, parameters for se, sd and ai in Eq. (1) can be fixed to the estimates 

obtained from the entire dataset. Typically, only parameters for µ and yr will be estimated specifically with 

the dataset restricted to the given waterbody and assessment period. 

Special attention should be given to the variance contribution of the random temporal factors when 

calculating   . Within an assessment period the interannual variation (YR) is a finite population with levels 

corresponding to the number of years. If all years within the assessment period have been monitored then 

all levels of YR can be estimated and the variance contribution of YR is essentially zero, i.e. the entire finite 

population is estimated and V[YR]=0. However, if the number of years with monitoring data (        ) is 

less than the number of years in the assessment period (          ) then a finite population correction 

factor        
        

          
  (Cochran 1977) should be multiplied to V[YR] (see also Clarke and Hering 

2006). A similar finite population correction factor        
           

             
  should be employed for the 

random seasonal variation among years (SE×YR), where the number of observed combinations of years 

and seasons is            and               is the total number of combinations of years and seasons 

within the assessment period. Finally, the correction factor also applies to DI×SE×YR that has a finite 

population as well. Thus, for calculating    the correction factors should be multiplied to those diagonal 

elements in       associated with finite populations: 

                          Eq. (4) 
 

3.2 Standardizing indicators from parameter estimates 

Indicator values representing different waterbodies and assessment periods are calculated from the fixed 

effect parameter estimates obtained with the approach in Section 3.1, however, indicator calculations must 
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be carried out in a standardized way to allow comparison between waterbodies and assessment periods. 

For instance, different sampling depths, months and devices may have been used in different waterbodies 

such that these cannot be compared unless differences between sampling depths, months and devices are 

resolved. 

Fortunately, such differences are described by the parameter estimates obtained from the large dataset 

and can be accounted for by subtracting the fixed effects (i.e. deviations from the model expectations) or 

calculating the expected value of the indicator for a given combination of the fixed effects. In both cases, 

the standardized indicator can be expressed as a linear combination ( ) of the parameter estimates; 

i.e.    . As an example, consider an indicator based on observations with a fixed spatial gradient described 

by depth (linear gr relationship with slope parameter    ), fixed seasonal variation described by 4 seasonal 

coefficients (         ), and fixed variation between three different sampling devices (         ). 

Parameters estimated from the large dataset (9 in total) are used to describe these variations (     

                             ), and deviations from model predictions using these parameters are 

modelled with a mean (  ) estimated from   . In this case, 

        
                                         is a vector of 10 parameter estimates. Deviations 

from model predictions (using the parameters from large dataset;     ) have a mean of   , which can be 

expressed by means of    [1, 0   .  0 . However, it is also possible to use other combinations of    to 

express the expected indicator values that are more relevant for interpretation, e.g. the indicator value at a 

standard depth of 3 m, averaged over all 4 seasons and using the most recent sampling devices (given by 

   ). The value of the indicator for this standard set of fixed effects can be calculated using    [1, 1, 3, 
 

 
, 
 

 
, 
 

 
, 
 

 
, 1, 0, 0]. 

The variance of the standardized indicator,    
 , given by the linear combination    , is found as: 

   
           Eq. (5) 

where the covariance matrix for the parameter estimates is 

       
      

  0

0        
  

Eq. (6) 

Similarly, a confidence interval for the indicator value can be calculated assuming that     is approximately 

normal distributed, i.e. [             
 ;                

 ]. The assumption of normality is justified if 

the variances of the random effects have been estimated on a large dataset with >30 degrees of freedom 

used for their computation. Similarly, probabilities for the ecological indicator meeting target values (e.g. 

MSFD good environmental status) and probabilities for different intervals of the indicator (e.g. WFD 

ecological status classes) can be calculated. 

3.3 Partitioning the variance contributions for an indicator 

An important question arises when calculating an indicator: How much do the different random effects 

contribute to the overall indicator uncertainty? This question can be addressed by sequentially setting the 

different variance components to zero and calculate the reduction in the indicator variance, but such 

calculations can also be quite cumbersome, when assessing different combinations of sampling designs for 

a given waterbody. 
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However, to get a proxy measure of the importance of the various uncertainty components consider the 

simple case of averaging N observations from a waterbody during an assessment period. For each of the 

random factors affecting the observations the variance contribution to the average can be calculated. If a 

random factor X has been measured at k levels with ni (i=1,…,k) observations for each level 

(n1+n2+…+nk=N) then the variance contribution of the random factor to the average is 

  
 

 
   

 

 

    
 

 
    

  

 

      

  

 

     
  

 
     

  

 
    

   
  

   

  
     Eq. (7) 

 

If observations are balanced between levels (nk=N/k) the more common form of random factor variance 

partitioning is obtained, i.e.   
 

 
   

 
   

 

 
    . The total variance of the average is calculated by 

summing the variance contributions of all relevant random effects (Table 1), providing a measure of the 

relative importance of the different sources of random variation.  
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4 CASE STUDIES 

In Section 3 the uncertainty framework was presented in general terms that we submit can be applied to 

most monitoring data used to calculate ecological indicators. It is unlikely that all sources of variation can 

be determined with a given dataset due to spatial and temporal resolution of the data. In practice, a subset 

of the variations (Table 1) can be identified and used to calculate the indicator value and uncertainty. In this 

section we will exemplify the framework and show how the framework can be modified to three different 

types of indicators. The notation for the sources of variation (Table 1) is employed for all examples and 

additional variables used in the analyses are introduced as needed. 

4.1 Eelgrass shoot density 

Eelgrass has been monitored from 1995 to 2011 at a number of stations, covering eight WFD waterbodies, 

along the Swedish coast of the Sound (Fig. 1). Sampling was carried out using 6 or 12 frames with an area of 

0.0625 m2, which were randomly placed on top of representative meadows near the monitoring station. 

For each frame, the eelgrass shoot density (esd) was measured. For each station the depth (z; ranging from 

1.4 to 5.6 m) and the diver placing the frames (AN) were recorded. Monitoring was conducted between July 

and October every year and with a few exceptions stations were sampled only once per year. The 17 years 

of data were divided into three 6-year assessment periods (ap) in order to obtain an estimate of the 

variation between years within assessment periods as opposed to a variation between years over longer 

periods, where time series may potentially exhibit trends. 

Eelgrass samples were unevenly distributed over waterbodies and years (Table S1). Different divers carried 

out the sampling but the use of divers was non-systematic relative to monitored waterbodies and years. 

Hence, it was possible to determine variations caused by different divers. Eelgrass shoot density was 

approximated with a lognormal distribution as esd varied over a large span with a right-skewed distribution. 

4.1.1 Estimating variance components from waterbodies separately 

In order to illustrate the problem of identifying several variance components from small datasets, we 

partitioned variations in log(esd) for each waterbody separately replacing µ in Eq. (1) with means specific to 

each assessment period (ap). Moreover, large-scale spatial patterns in log(esd) were assumed linearly 

related to depth (gr(z)), i.e. shoot density was expected to decrease exponentially with depth. 

                                                   Eq. (8) 
 

Only three waterbodies had sufficient data to allow estimation of all variance components in Eq. (8) (Table 

2). Except for the random spatial variation between stations (GR), variance estimates were comparable 

across waterbodies; particularly those waterbodies with more data. The variation between frames 

(      ) was determined as the residual variation from the analysis. The random spatial variation 

between stations was not well determined, since there were generally few stations within waterbodies 

(Table S1). Therefore, more precise estimates of the variance components can be obtained by pooling 

observations, assuming that variance components have same magnitude across waterbodies. Moreover, 
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slopes for the depth relationship varied from -0.14 to -0.37 and could not be estimated for two 

waterbodies that did not have any variation in depth. Since a generic depth relationship would be 

expected, a more precise estimate of this parameter could also be obtained by pooling observations.  

4.1.2 Estimating variance components from the entire dataset 

Using the entire dataset, the model (Eq. 8) was expanded to incorporate variations between waterbodies 

(wb): 

                                                 
                         

Eq. (9) 

 

The first three fixed effects in Eq. (9) were used to describe the variations between combinations of 

waterbodies and assessment periods, i.e. each combination had its own mean value. The two other fixed 

effects, depth relationship (gr(z)) and seasonal variation (se), were assumed common to all waterbodies. 

The random variations in Eq. (9) had same magnitude for all combinations of waterbody and assessment 

period. GR(wb) described the variation between stations within waterbodies, YR(wb×ap) described the 

variation between years within an assessment period in a waterbody, GR×YR(wb×ap) described 

interannual changes in the variation between stations within an assessment period in a waterbody, 

PA(GR(wb)) described the variation between frame replicates at a given sampling station and time, and AN 

described the variation between divers. As above, PA(GR(wb)) was estimated as the residual variation. 

Eelgrass shoot density decreased significantly with depth (common slope= -0.31) and there were significant 

variations between waterbodies, whereas log(esd) did not change significantly between the four months 

with monitoring data or between the three assessment periods, neither in general (ap) nor specific to 

waterbodies (wb×ap) (Table 3). Random variations were largest between divers and frame replicates, 

whereas interannual variations within assessment periods, variation between stations within waterbodies 

and interannual changes in this spatial pattern among years were smaller (Table 3). However, the variance 

estimate for the variation between divers was relatively uncertain, since the monitoring program was not 

specifically designed to capture this variation, e.g. by rotating divers between years and stations.  

The log-transformation of esd implies that these variances for random variations can be interpreted as 

relative errors (using the transformation            , where     is the variance of the random 

factor). Using this formula we found that eelgrass shoot density typically varied by ±36% among frame 

replicates placed by the same diver, whereas different divers would increase the random variation 

additionally by ±%29. Consequently, variation between frame replicates at the same station but placed by 

different divers would be ±%49. The spatial variation between stations within a waterbody was smaller 

(±12%) than the patchiness between frame replicates, and changes in this spatial pattern over years had a 

similar magnitude (±18%). The overall variation between years within assessment periods was ±13%. The 

total variation accumulated to ±59% between two randomly selected frame samples from the entire 

population (eelgrass shoot density across all meadows in a waterbody over six years). 

4.1.3 Calculating eelgrass shoot density indicator value and uncertainty 
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The calculation of indicator value (   ) and its variance (   
 ) can be illustrated using data from Lomma 

Bay. During the three assessment periods 288, 192 and 96 frames were sampled, distributed over 4, 10 and 

4 stations, and sampled by 4, 2 and 1 divers, respectively (Table 4). Using the variance estimates (Table 3) 

for calculating the covariance matrix V as well as fixing parameters for the depth relationship (slope) and 

seasonal variation (four months’ estimates) to those obtained from analyzing the large dataset, the mean 

log(esd) was estimated as 6.75, 6.48, and 6.54 for the three assessment periods (for a standard depth of 3 

m and averaged over July-October, i.e.    [1, 1, 3, 
 

 
, 
 

 
, 
 

 
, 
 

 
 ), respectively, corresponding to geometric 

means of 852, 653, and 694 shoots per m2.  

The standard errors of the of the mean log(esd) for the three assessment periods were 0.15, 0.21, and 0.27, 

corresponding to relative uncertainties for the geometric means of 17%, 23%, and 32%. For the eelgrass 

shoot density the 95% confidence interval for the geometric means were [636;1143], [442;965], and 

[408;1180]. If the boundary for good environmental status for this indicator was set at 500 shoots per m2, 

then confidences of complying with this boundary were 99.98%, 90.98%, and 88.66% for the three 

assessment periods, respectively. Thus, the confidence of compliance was lower for 2007-2012 than for 

2001-2006 even though the geometric mean was higher in the more recent assessment period. The reason 

is that the mean log(esd) was more uncertain for the 2007-2012 period, because it was based on fewer 

observations, and consequently, the distribution of the indicator had heavier tails. 

However, it is not simply the number of observations that determines the uncertainty of the indicator; it is 

the actual distribution of samples across stations, years and divers. Using Eq. (7) proxy measures for the 

variance contribution of the different random effects to the average of log(esd) observations were 

calculated (Table 4). For all three assessment periods the variation between divers was the largest source of 

uncertainty, contributing between 78% and 93% of the total variance. Variation among stations was the 

second largest source of uncertainty. Moreover, the variance contribution from interannual variation was 

zero for the first two assessment periods, because all six years were sampled.  

The variance contribution from divers and stations was not strongly reduced despite the many samples due 

to limited replication of these two factors. In fact, all samples during 2007-2012 were carried out by a single 

diver, implying that the variance of the mean log(esd) could not be less than 0.066 (Table 4), because the 

same diver-specific error affected all samples during this assessment period. Since this source of variation 

was quite dominant, it will be important to reduce this uncertainty in future monitoring. This can be done 

by 1) developing a more precise guidance for placing frames to reduce variation between divers and 2) 

using (rotating) more divers in the monitoring. 

4.2 Chlorophyll a 

The uncertainty components associated with assessing the surface (top 10 m) chlorophyll a (    ) 

concentration were examined using observations from the Danish and Swedish national monitoring 

programs covering the WFD type NEA8b (Northeast Atlantic 8b). The      observations were distributed 

over 89 monitoring stations representing 39 WFD waterbodies (  ) (Fig. 2) and spanned a 30-year period 

(1985-2014), which was divided into five assessment periods (  ) of six years each. As for most monitoring 

programs the distribution of samples among waterbodies was heterogeneous (Table S2), and many 

waterbodies were represented by a single station implying that sources of spatial variation could not be 
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determined for such waterbodies. Hence, the random factors were determined from the combined dataset 

using the log-transform of      and assuming that random variations had the same magnitude across 

waterbodies on a relative scale. 

4.2.1 Estimating variance components from the entire dataset 

It was assumed that the uncertainty associated with sampling devices and measurement of the sample was 

small, and therefore uncertainties associated with sampling properties in time and space were considered 

only.  

                                              
                                           

Eq. (10) 

 

The first three fixed effects in Eq. (10) were used to describe the variations between combinations of 

waterbodies and assessment periods, i.e. each combination had its own mean value (see Section 4.2.2). The 

remaining fixed effect (se(wb)) described the seasonal variation specific to each waterbody using a monthly 

resolution.        described the random variation among stations within waterbodies,           

described the random variation between years within an assessment period in a waterbody,    

          described interannual changes in the seasonal pattern within the same waterbody and 

assessment period,              described the variation between stations among years within the 

same waterbody and assessment period,              described changes in the seasonal pattern 

among stations within the same waterbody and assessment period, and the residual variation described 

irregular temporal variation (  ) between      samples taken within the same month at the same station. 

The small-scale spatial variation (patchiness) could not be assessed from the data, since stations were not 

spatially subsampled, and it was therefore implicitly included as part of the large-scale spatial variation 

(      ). 

Irregular variation was the largest source of uncertainty (Table 5), suggesting that variation between 

samples taken at the same station and month could vary by ±81% (using the transformation 

           ). The second largest source of uncertainty was the interannual changes in the seasonal 

pattern within an assessment period, deviating from the common seasonal variation of the waterbody by 

±49%. Random spatial variation among stations within waterbodies was ±30%, and the spatial variation 

changed between years by ±19% and between seasons by ±16%. Interannual variation was the smallest 

random variation changing ±12% between years. The total variation between two randomly selected      

surface samples within the entire waterbodies and assessment period was ±124%, i.e. more than a factor 

two variation. 

4.2.2 Calculating chlorophyll a indicator value and uncertainty 

Three different waterbodies, each having five assessment periods, were used to show the calculation of the 

chlorophyll a indicator value (   ) and variance (   
 ). The mean      was calculated for each combination 

of waterbody and assessment period using fixed effect parameters for the mean and seasonal variation 

obtained from the large dataset, i.e.          
                         . The corresponding linear 

combination for calculating the indicator was    [1, 1, 
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Temporal trends at each waterbody were described by five mean values representing assessment periods, 

and a fixed seasonal variation common to all years were estimated for each waterbody (Fig. 3). The 

seasonal variation changed from a bimodal pattern in the open waters to unimodal pattern in shallow 

estuaries more strongly influenced by land-based nutrient inputs. For the three sites, the number of 

samples available for calculating the chlorophyll a indicator varied from 11 to 765 for combinations of 

waterbody and assessment period. Variances of the indicator values were computed using the variance 

estimates of the random factors (Table 5) and the finite population correction factor     for         

     and                . For most assessment periods at the three sites    =0, because all years 

and months had been monitored. Nevertheless,    >0 for the first assessment period in Central Sound 

coastal water and Hevring Bay as well as for the last assessment period in Hevring Bay, where only two 

years and 12 months of data were available (in the latter case    =0.67 and 0.83 for the two random 

factors with finite population correction factor). Overall, the confidence intervals of the mean      were 

relatively wider when the mean was based on fewer observations, whereas many observations resulted in 

higher precision of the mean estimate (Fig 3).  

If the boundary for good ecological status was set at 1.5 µg L-1 for Central Sound coastal water, the 

geometric      mean would comply with good ecological status in four out of five of the assessment 

periods with probabilities of 84%, 87%, 51%, 57% and 83%, respectively. Comparing the first two 

assessment periods it is observed that the geometric      mean is lowest in the first assessment period, 

but interestingly the probability of achieving good ecological status is lower as well, because the 

assessment of the first period is based on fewer observations and hence more uncertain, i.e. the 

distribution of the indicator value is wider. 

Irregular temporal variation (IR) was the largest source of uncertainty for individual observations (Table 5), 

but the contribution of this random variation to the chlorophyll a mean over an assessment period was 

strongly reduced due to many observations (replications for this factor, cf. Eq. 7) in each assessment period 

(Fig. 4). In most cases, this random variation contributed less than 10% to the total indicator variance, 

except for periods with few observations such as the first assessment period in the Central Sound coastal 

water (n=11) and last assessment period in Hevring Bay (n=21). Spatial variation between stations (GR) 

dominated the variance contribution to the mean     , because this variation was relatively large (Table 5) 

and most assessment periods were monitored using a single station. For the three waterbodies used to 

exemplify the calculations, only Skive Fjord was monitored with more than one station. In fact, three 

stations were sampled at least biweekly in Skive Fjord until 2009, when the monitoring program was 

reduced to a single station. The consequence of this reduction in monitoring efforts was quite apparent in 

the      indicator uncertainty that almost doubled from 2003-2008 to 2009-2014 (Fig. 3). The      results 

clearly show that the spatial variations are under-sampled, given that an estimate representative of the 

entire waterbody should be obtained. Increasing the number of monitoring stations within waterbodies will 

have a large effect on the      indicator uncertainty whereas increasing the monitoring frequency will only 

marginally reduce the indicator uncertainty. 
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5 DISCUSSION 

Monitoring data, which are used to assess the ecological status of a waterbody within the WFD-context, are 

influenced by many different sources of uncertainty. In order to evaluate and quantify the confidence any 

status classification and to minimize uncertainty, by modifying monitoring designs or accounting for 

predictable factors, it is necessary that the contribution of different sources of variability to the overall 

uncertainty can be understood and accounted for (Clarke and Hering 2006, Carstensen 2007, Clarke 2013, 

Dromph et al. 2013). Here we present a general framework that can be applied to a wide range of typical 

aquatic monitoring data, and we have illustrated the framework with two examples, using both benthic and 

pelagic monitoring data. In addition, the framework has been applied to a broad range of Swedish 

monitoring data, both freshwater and marine water, confirming the general applicability 

(www.waters.gu.se). The framework outlines 18 different sources of uncertainty that could be considered 

relevant for various types of monitoring data. Nevertheless, in practice only a subset of these uncertainty 

sources can be estimated from regular monitoring data that have not been specifically sampled to quantify 

specific sources. Some of the identifiable uncertainty components may combine several sources of 

uncertainty (e.g. for chlorophyll a sampling the variance between stations within waterbodies includes both 

large- and small-scale spatial variation), whereas some sources of random variation may not be relevant for 

specific types of monitoring data. Overall, we submit that the general framework can be adapted to analyze 

the most common types of monitoring data. 

5.1 Why is it important to quantify the different uncertainty components? 

Essentially, for most applications only the variance of an indicator values is of interest, but it is also 

important that the variance estimate is based on a correct interpretation of the different sources of 

uncertainty. An incorrect representation of the different sources of uncertainty may lead to a severe 

underestimation of the indicator variance. For example, using eelgrass data from Laholm Bay only the 

random variation between replicated frames could be estimated, due to lack of replication of other factors 

such as stations, years and divers (Table 2). Nevertheless, all the other unquantified sources of uncertainty 

affect the observations of eelgrass shoot density even if they cannot be estimated. This implies that the 

indicator variance will be grossly underestimated if it were calculated from observations in Laholm Bay only 

(cf. Table 3), as the variance of the indicator would not include random variation between stations, years 

and divers. However, even if all relevant sources of uncertainty were replicated (e.g. Lomma Bay in Table 

2), pooling all these sources together to a single error term will also underestimate the indicator variance. If 

a single uncertainty component is employed it is implicitly assumed that all observation errors are 

independent, which never is the case in standard monitoring data. For example in Lomma Bay, the 576 

observations were distributed over 20 stations, 17 years and 5 divers (Table S1), implying that the error 

terms associated with these factors cannot be independent for all 576 observations. If this spatial and 

temporal dependence would have been ignored and a single error term would have been employed with a 

variance for log(esd) of 0.2148 (Table 4) the variances of the average log(esd) for the three assessment 

periods would be 0.00075, 0.0521 and 0.01042 (corresponding to incorrect relative uncertainties for the 

geometric means of 3%, 7%, and 11%). This is much smaller than the variances accounting for the 

distribution of error terms between stations, years and divers and 2-5 times smaller than when properly 

accounting for the dependence according to the framework presented here, i.e. the average log(esd) is 

0.15, 0.20 and 0.27 for the three periods (relative uncertainties for the geometric means of 16%, 22%, and 
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31%). Hence, this example clearly demonstrates the importance of quantifying all the major uncertainty 

components, and employing a correct representation of the associated error terms to calculate indicator 

uncertainty. 

Furthermore, it is also important to have good estimates of the variances of the uncertainty components 

for calculating the indicator variance. In both examples above, the number of stations within waterbodies 

was relatively small and the number of divers monitoring eelgrass shoot density was even less (Table S1 

and S2). Therefore, variance estimates for the random variation between stations and divers will not be 

well-determined if these are based on data from a single waterbody only. Consequently, more precise 

variance estimates can be obtained if the uncertainty components are estimated from a larger dataset, by 

pooling observations from several waterbodies. The consequence of doing so is that the random variations 

are assumed to have the same magnitude across all waterbodies included. Naturally, this assumption can 

be violated if data from many and highly diverse waterbodies are combined.  

The waterbodies used in the two examples above were from restricted regions with somewhat similar 

characteristics. However, the chlorophyll a data spanned from enclosed estuaries to open coastal 

waterbodies, and it could be argued that variations are larger in those systems more strongly connected to 

land. On the other hand, chlorophyll a levels in such systems are also expectedly higher. Hence, the 

magnitude of random variations in chlorophyll a is presumably constant relative to the expected mean 

concentration, justifying that the analysis was carried out on log-transformed observations. In fact, similar 

variances for the random factors in Eq. (10) were obtained by splitting the large chlorophyll a dataset into 

estuarine and coastal stations (Fig. 5), supporting the estimation of variance components from a large 

dataset covering a broad gradient of waterbodies. Furthermore, appropriate transformation of 

observations can account for heteroscedasticity among waterbodies as well as within waterbodies. 

5.2 How can we reduce indicator uncertainty? 

Desired properties of ecological indicators are low bias and high precision. Unbiasedness implies that the 

calculated indicator is not sensitive to changes in the spatial and temporal distribution of samples, or the 

sampling and measurement equipment used. Precision implies that the calculated indicator provides an 

estimate close to the unknown “true indicator value”. 

Monitoring data are commonly heterogeneously distributed in time and space for various reasons. 

Therefore, statistical analyses of such heterogeneous data should include a description of temporal and 

spatial variations, corresponding to the resolution of the data, to ensure that changes in sampling across 

assessment periods will not affect the derived indicator value, i.e. estimated indicators are unbiased by 

changes in the sampling program. Similarly, if different sampling or analytical methods as well as different 

people (e.g. divers) have been involved in the monitoring, these variations should be described as part of 

the statistical analyses to ensure comparability of indicator values across assessment periods. 

These variations in spatial-temporal sampling as well as sampling and analysis methodology can be 

accounted for by a combination of fixed and random effects. Describing variations as fixed effects has the 

advantage of reducing the indicator uncertainty, since the variation is predictable and can be accounted 

for. However, only a subset of the sources of variation (Table 1) can be described as fixed effects. 

Importantly, the variance of the random factors decrease the better the model parameterization for the 
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fixed effects is. Spatial variation was considerable in both examples above, but for eelgrass shoot density it 

was demonstrated that a large portion of the variation between stations could be explained by depth 

differences. Without the depth model for log(esd), the variance between stations (V[GR]=0.1138) would be 

almost 10 times larger, highlighting the importance of incorporating fixed factors to describe variations and 

reduce uncertainty. Furthermore, because the variability among stations was generally the largest among 

the spatial and temporal sources, accounting for depth also had a major influence on the overall 

uncertainty for a whole assessment period. As an example the overall indicator standard error for the 

different periods would have been 0.21, 0.22 and 0.32 if depth was not accounted for, compared to 0.15, 

0.21 and 0.27 in the proposed model, and variation between stations dominated the indicator variance 

contribution in the first and third assessment period. It is possible that the random spatial variation could 

be further reduced by including fetch and substrate as explanatory variables, but such information was not 

available for the present study. 

For chlorophyll a, corrections for monthly means were made, but no attempts were made to explain the 

spatial variation using other fixed, environmental factors. It is, however, likely that including salinity as 

covariate could have accounted for some spatial and temporal variation and thereby improve the indicator 

precision as was demonstrated for total nitrogen in Carstensen (2007). Moreover, it is also possible that 

coupled hydrodynamic-biogeochemical models can account for a larger fraction of the variation in 

chlorophyll a measurements and consequently reduce the remaining variations, spatial as well as temporal 

random variations. 

5.3 How can uncertainty estimates improve monitoring networks? 

The analyses of variance contributions of different random factors to the overall indicator uncertainty 

clearly identify the most critical sources of uncertainty. For eelgrass shoot density it was obvious that 

variation between divers has large consequences on the uncertainty of eelgrass indicator. This could be due 

to lack of clear guidelines on where to place the frames to be representative of the eelgrass meadow. For 

chlorophyll a spatial variation between stations was the largest contribution to indicator variance. A single 

station was used to characterize the chlorophyll a level in most waterbodies (Table S2), and even if the 

random variation between stations was not the largest source of uncertainty (Table 5) the few stations 

relative to the number of levels of other random factors resulted in variation between stations being the 

most important contribution to indicator variance (Fig. 4). Hence, the uncertainty of the chlorophyll a 

indicator can only be substantially reduced, provided that more stations within waterbodies are monitored 

or that a large part of the spatial variation between stations can be described using salinity as covariate or 

through coupled hydrodynamic-biogeochemical models. 

Monitoring programs for assessing status of a waterbody can be designed to obtain the most precise 

indicators under a given financial frame. If costs associated with ship time, sampling and analysis are known 

then the optimal allocation of samples in time and space can be found as a minimization problem 

(minimum indicator variance) under the financial constraint. In the chlorophyll a example it is possible that 

shifting sampling efforts to less temporal and more spatial sampling will provide a more precise chlorophyll 

a indicator without being more costly. When the status assessment is based on multiple indicators the 

optimal monitoring program can be determined by minimizing a weighted average of the indicators’ 

variances. Thus, quantification of the different uncertainty components affecting monitoring data used for 

calculating ecological indicators allows for optimal distribution of samples in time and space.   



20 
 

Acknowledgements 

The present work is a contribution of the WATERS project funded by the Swedish Environmental Protection 

Agency and the DEVOTES project (ENV.2012.6.2-3, Grant agreement no. 308392) funded under the 

European Commission 7th framework program. We are grateful to Per Olsson, Toxicon AB, for providing the 

dataset on eelgrass shoot density and all the monitoring people in Denmark and Sweden who have 

collected and analyzed chlorophyll a samples as part of the national monitoring programs. 

 

  



21 
 

REFERENCES 

Balsby, T.J.S., Carstensen, J., Krause-Jensen, D., 2013. Sources of uncertainty in estimation of eelgrass depth 

limits. Hydrobiologia 704, 311-323. doi: 10.1007/s10750-012-1374-8 

Borja, A., Elliott, M.,  Carstensen, J., Heiskanen, A.S. van de Bund, W. 2010. Marine management – Towards 

an integrated implementation of the European Marine Strategy Framework and the Water Framework 

Directives. Mar. Poll. Bull. 60, 2175–2186 

Carstensen, J., 2007. Statistical principles for ecological status classification of Water Framework Directive 

monitoring data. Mar. Pollut. Bull. 55, 3-15. doi: 10.1016/j.marpolbul.2006.08.016 

Carvalho, L., Poikane, S., Solheim, A.L., Phillips, G., Borics, G., Catalan, J., de Hoyos, C., Drakare, S., Dudley, 

B.J., Järvinen, M., Laplace-Treyture, C., Maileht, K.,  McDonald, C., Mischke, U., Moe, J., Morabito, G., 

Nõges, P., Nõges, T., Ott, I., Pasztaleniec, A., Skjelbred, B., Thackeray, S.J., 2013. Strength and uncertainty of 

phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 704, 127-140. doi: 

10.1007/s10750-012-1344-1 

Chapra, S.C., Dove, A., Warren, G.J., 2012. Long-term trends of Great Lakes major ion chemistry. J. Great 

Lakes Res. 38, 550-560. doi:10.1016/j.jglr.2012.06.010 

Clarke, R.T., 2013. Estimating confidence of European WFD ecological status class and WISER 

Bioassessment Uncertainty Guidance Software (WISERBUGS). Hydrobiologia 704, 39-56. doi: 

10.1007/s10750-012-1245-3 

Clarke, R.T., Hering, D., 2006. Errors and uncertainty in bioassessment methods – major results and 

conclusions from the STAR project and their application using STARBUGS. Hydrobiologia 566, 433-440. doi: 

10.1007/s10750-006-0079-2 

Cochran, W.G., 1977. Sampling techniques, Wiley, New York. 

Davey, A., Garrow, D. 2009. Variability components for macrophytes communities in rivers: summary 

report. Environment Agency, Bristol, UK. Available at 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291734/scho1109brhq-

e-e.pdf 

Downes, B.J., Lake, P.S., Schreiber, E.S. 1993. Spatial variation in the distribution of stream invertebrates: 

implications of patchiness for models of community organization. Freshw. Biol. 30(1), 119–132 

Dromph, K.M., Agusti, S., Basset, A., Franco, J., Henriksen, P., Icely, J., Lehtinen, S., Moncheva, S., Revilla, 

M., Roselli, L., Sørensen, K., 2013. Sources of uncertainty in assessment of marine phytoplankton 

communities. Hydrobiologia 704, 253-264. doi: 10.1007/s10750-012-1353-0 

Dudley, B., Dunbar, M., Penning, E., Kolada, A., Hellsten, S., Oggioni, A., Bertrin, V., Ecke, F., Søndergaard, 

M., 2013. Measurements of uncertainty in macrophyte metrics used to assess European lake water quality. 

Hydrobiologia 704, 179-191. doi: 10.1007/s10750-012-1338-z 



22 
 

European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 

October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Union 

L327, 1–72. 

European Commission, 2008. Directive 2008/56/EC of the European Parliament and of the Council 

establishing a framework for community action in the field of marine environmental policy (Marine 

Strategy Framework Directive). Off. J. Eur. Union L164, 19–40. 

Greening, H., Janicki, A., Sherwood, E.T., Pribble, R., Johansson, J.O.R., 2014. Ecosystem responses to long-

term nutrient management in an urban estuary: Tampa Bay, Florida, USA. Estuar. Coast. Shelf Sci. 151, A1-

A16. doi: 10.1016/j.ecss.2014.10.003 

Haase, P., Murray-Bligh, J., Lohse, S., Pauls, S., Sundermann, A., Gunn, R.,Clarke, R., 2006. Assessing the 

impact of errors in sorting and identifying macroinvertebrate samples. Hydrobiologia 566, 505-521. doi: 

10.1007/s10750-006-0075-6 

Hagy, J.D., Boynton, W.R., Keefe, C.W., Wood, K.V., 2004. Hypoxia in Chesapeake Bay, 1950–2001: Long-

term change in relation to nutrient loading and river flow. Estuaries 27, 634-658. 

Hering D., Borja A., Carstensen J., Carvalho L., Elliott M., Feld C.K., Heiskanen A.S., Johnson R.K., Moe J., 

Pont D., Solheim A.L., van de Bund W. (2010) The European Water Framework Directive at the age of 10: a 

critical review of the achievements with recommendations for the future. Sci. Tot. Env., 408: 4007–4019. 

Jakobsen, H., Carstensen, J., Harrisson, P.J., Zingone, A., in press. Estimating time series phytoplankton 

carbon biomass: Inter-lab comparison of species identification and comparison of volume-to-carbon scaling 

ratios. Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2015.05.006 

Krause-Jensen, D., Middelboe, A.L., Carstensen, J., Dahl, K., 2007. Spatial patterns of macroalgal abundance 

in relation to eutrophication. Mar. Biol. 152, 25-36. doi: 10.1007/s00227-007-0676-2 

Levin, S.A. 1992. The problem of pattern and scale in ecology. Ecology 73, 1943-1967 

Morrisey, D.J., Howitt, L., Underwood, A.J., Stark, J.S., 1992. Spatial variation in soft-sediment benthos. 

Mar. Ecol. Prog. Ser. 81, 197-204 

Norén K., Lindegarth M., 2005. Spatial, temporal and interactive variability of infauna in Swedish coastal 

sediments. J. Exp. Mar. Biol. Ecol. 317, 53-68 

Pinel-Alloul, B., Downing, J.A., Perusse, M., Codin-Blumer G., 1988. Spatial Heterogeneity in Freshwater 

Zooplankton: Variation with Body Size, Depth, and Scale. Ecology. 69(5), 1393-1400 

Searle, S. R., Casella, G., McCulloch, C. E., 1992. Variance Components, New York: John Wiley & Sons. 

Sharp, J.H., 2010. Estuarine oxygen dynamics: What can we learn about hypoxia from long-time records in 

the Delaware Estuary? Limnol. Oceanogr. 55, 535-548. 

Svensson, J. R., Jonsson, L., Lindegarth, M. 2013. Excessive spatial resolution decreases performance of 

quantitative models, contrary to expectations from error analyses. Mar. Ecol. Prog. Ser., 485: 57-73. 



23 
 

Thackeray, S.J, Nõges, P., Dunbar, M.J., Dudley, B.J., Skjelbrede, B., Morabito, G., Carvalho, L., Phillips, G., 

Mischke, U., Catalan, J., de Hoyos, C., Laplace, C., Austoni, M., Padedda, B.M.,Maileht, K., Pasztaleniec, A., 

Järvinen, M., Solheim, A.L., Clarke, R.T., 2013. Quantifying uncertainties in biologically-based water quality 

assessment: A pan-European analysis of lake phytoplankton community metrics. Ecol. Ind. 29, 34-47. doi: 

10.1016/j.ecolind.2012.12.010  



24 
 

Table 1: Sources of variation in aquatic monitoring data. The table only includes the most relevant 

variations affecting traditional environmental/ecological monitoring data. Fixed effects are shown in small 

letters and random effects are shown in capital letters. 

Type  Notation Description 

Spatial gr Fixed large-scale gradient within a waterbody that can be explained by other 
spatial co-variables. 

GR Unexplained random large-scale gradient, i.e. variations unaccounted for by gr. 
pa Fixed small-scale variation explained using co-variables such as depth and 

substrate. 
PA(GR) Random variation between samples taken at different locations within a small 

area. 

Temporal yr Fixed interannual variation that can be explained by explanatory temporal 
factors. 

YR Unexplained random interannual variation, i.e. variations unaccounted for by yr. 
se Fixed seasonal variation common to all years. 

SE×YR Random seasonal deviations between years from the common pattern (s). 
di Fixed diurnal variation common to all days within the assessment period. 

di×se Fixed season-specific variation common to all days within the given seasons of 
the assessment period. 

DI×SE×YR Random fluctuations in the diurnal pattern unaccounted for by d and d×s. 
IR Random irregular fluctuations between samples taken within a time interval 

shorter than other temporal variations used to describe observations. 

Spatial-
temporal 

GR×YR Random large-scale variations in the spatial gradient between years. 
GR×SE Random large-scale variations in the spatial gradient between seasons. 

Methodo-
logical 

sd Fixed variation between sampling devices used. 
ai Fixed variation between analytical instruments used. 
AN Random variation between analysts performing the measurement. 
RE Variations between replicated measurements of the same sample.  
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Table 2: Variance components estimated from Eq. (8). All variance component could not be 
estimated for each site, as indicated with a ‘-‘, due to lack of replication for these components. 

Waterbody V[GR] V[YR(ap)] V[GR×Y(ap)] V[AN] V[PA(GR)] 

Laholm Bay coastal water - - - - 0.0512 

Northern Sound coastal water 0.7587 0.0120 0.0055 0.0076 0.1101 

Central Sound coastal water 0.1418 0.0291 - 0.0577 0.0660 

Lomma Bay 0.0020 0.0314 0.0205 0.0787 0.1014 

Southern Sound coastal water 0.0121 0.0103 0.0451 0.0110 0.0850 

Southern Sound offshore water - 0.0541 0.0125 - 0.0376 

Höllviken embayment 0.2340 - - - 0.0367 

W South coast coastal water  - 0.0794 0.0042 - 0.0805 
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Table 3: Significance of fixed and random effects for eelgrass shoot density in Eq. (9). F-tests for fixed 

effects were calculated by imposing constraints on the fixed effect parameters. Wald’s Z-tests for random 

effects were calculated using asymptotic standard errors for the variance estimates. 

Fixed effects Num DF Den DF F P (F>0) 
wb 7 30 17.73 <0.0001 
ap 2 56 2.71 0.0755 
wp×ap 9 56 0.91 0.5213 
gr(z) 1 1736 2349.21 <0.0001 
se 3 1736 1.51 0.2098 

Random effects Var. estimate SE of estimate Z P (Z>0) 
GR(wb) 0.01241 0.00758 1.64 0.0508 
YR(wb×ap) 0.01529 0.00605 2.53 0.0057 
GR×YR(wb×ap) 0.02761 0.00671 4.11 <0.0001 
AN 0.06551 0.04045 1.62 0.0527 
PA(GR(wb)) 0.09394 0.00319 29.41 <0.0001 
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Table 4: The variance contribution of the different random effects to the average log(esd) in Lomma Bay for 

the three assessment periods calculated using Eq. (7). The variance estimate in the second column is from 

Table 3 and used for comparison. 

Random effect Variance 
estimate 

1996-2000 2001-2006 2007-2012 

k= Var. contribution k = Var. contribution k = Var. contribution 
GR(wb) 0.01241 4 0.00323 14% 10 0.00145 3% 4 0.00543 7% 
YR(wb×ap) 0.01529 6 0.00000 0% 6 0.00000 0% 5 0.00062 1% 
GR×YR(wb×ap) 0.02761 19 0.00158 7% 25 0.00124 3% 11 0.00280 4% 
AN 0.06551 4 0.01820 78% 2 0.04094 93% 1 0.06551 87% 
PA(GR(wb)) 0.09394 288 0.00033 1% 192 0.00049 1% 96 0.00098 1% 

Total 0.21477  0.02334 100%  0.04413 100%  0.07534 100% 
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Table 5: Estimates and significance of random effects for chlorophyll a in Eq. (10). Wald’s Z-tests for random 

effects were calculated using asymptotic standard errors for the variance estimates. 

Random effects Var. estimate SE of estimate Z P (Z>0) 
GR(wb) 0.06716 0.01946 3.45 0.0003 
YR(wb×ap) 0.01386 0.00369 3.76 <0.0001 
SE×YR(wb×ap) 0.16154 0.00523 30.88 <0.0001 
GR×YR(wb×ap) 0.02999 0.00354 8.47 <0.0001 
SE×GR(wb×ap) 0.02238 0.00289 7.73 <0.0001 
IR 0.35203 0.00386 91.09 <0.0001 
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Fig. 1: Monitoring locations for eelgrass shoot density along the Swedish part of the Sound. WFD 

waterbodies are delineated with gray lines and eelgrass monitoring locations within a waterbody have 

same color. The monitoring locations around Landskrona represent a combination of three waterbodies in 

the central part of the Sound. 
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Fig. 2: Danish and Swedish water quality monitoring stations located within the WFD type NEA8b. WFD 

waterbodies are delineated with gray lines. The number of stations within each waterbody can be found in 

Table S2. 
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Fig. 3: Estimated mean chlorophyll a levels (Jan-Dec) for 6-year assessment periods (left panel) and the 

estimated fixed seasonal variation (right panel) for three different coastal waterbodies, ranging from open 

coastal, embayment and estuary. The dashed lines (left) and the error bars (right) show the 95% confidence 

interval for the means of the assessment period and the fixed seasonal pattern, respectively. The number 

of observations used to compute the means of the assessment period is listed above the mean. 
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Fig. 4: The relative variance contributions (using Eq. 7) to the chlorophyll a indicator mean for the five 

assessment periods in A) Central Sound coastal water, B) Hevring Bay, and C) Skive Fjord.  
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Fig. 5: Variance estimates for chlorophyll a random factors in the entire dataset and split between estuaries 

and coastal waterbodies. Error bars are the 95% confidence limits for the variance estimates.  
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SUPPLEMENTARY INFORMATION 

Table S1: Distribution of eelgrass shoot samples (n=1913) between stations, years and 
divers for the nine waterbodies. The total number of divers was 6, and one diver 
conducted almost half of the samples. Waterbodies are listed from north to south (see 
Fig. 1). 

Waterbody # stations # years # divers # observations 
Laholm Bay coastal water 1 2 2 12 
Northern Sound coastal water 5 12 2 138 
Central Sound coastal water 6 17 4 288 
Lomma Bay 20 17 5 576 
Southern Sound coastal water 10 17 4 654 
Southern Sound offshore water 2 11 2 167 
Höllviken embayment 2 1 1 12 
W South coast coastal water  4 10 3 66 
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Table S2: Distribution of chlorophyll a samples (n=25633) between years and stations for the 39 

waterbodies belonging to the WFD type NEA 8b. Data include both Danish and Swedish monitoring stations 

(Fig. 2). 

Waterbody Period # years # stations # observations 
Århus Bugt inner 1985-2014 30 4 1733 
Århus Bugt outer 1986-1997 10 2 165 
Central Sound coastal water 1987-2014 28 1 315 
Dana Fjord 1986-2014 29 1 355 
Endelave coastal water 1985-2014 30 2 1349 
Gothenburg archipelago 1989-1992 4 1 13 
Hesselø coastal water 1988-2014 27 1 152 
Hevring Bay 1985-2010 22 1 452 
Horsens Fjord inner 1985-2014 29 3 1471 
Isefjord 1989-2014 26 3 1225 
Kalundborg Fjord 1989-2010 21 2 676 
Kattegat  2002-2014 13 1 241 
Kertinge Nor 1987-2013 20 2 873 
Kungsbackafjorden inner 1993-2014 22 1 233 
Kungsbackafjorden outer 1993-2014 22 1 243 
Laholms Bay 1993-2014 22 5 483 
Limfjorden 1985-2014 30 7 3167 
Lomma Bay 1985-2014 22 4 344 
Lundåkra Bay 1985-2012 23 2 274 
Mariager Fjord inner 2002-2014 13 1 294 
NE Sealand coastal water 1989-2006 16 1 124 
Northern Belt Sea 1985-2014 30 1 849 
Northern Hallands coastal water 1993-2014 22 2 497 
Northern Roskilde Fjord 1989-2009 21 3 1113 
Northern Sound coastal water 1997-2012 16 1 209 
Northern Sound Denmark 1988-2004 17 4 707 
NW Sealand coastal water 1989-2005 12 1 92 
Odense Fjord inner 1985-2009 25 1 732 
Odense Fjord outer 1985-2014 30 1 1355 
Onsala coastal water 1986-2014 29 1 329 
Randers Fjord inner 1991-2014 23 1 500 
Randers Fjord outer 1989-2009 19 1 403 
Sejerø Bay 1989-2010 21 2 418 
Skälderviken 1994-2014 21 6 399 
Skive Fjord 1985-2014 30 3 1963 
Southern Roskilde Fjord 1985-2014 30 1 836 
Southern Sound coastal water 1992-1998 6 2 61 
Vejle Fjord inner 1985-2014 29 2 751 
Vejle Fjord outer 1985-2000 11 2 237 
 


