
8282 |  Phys. Chem. Chem. Phys., 2021, 23, 8282–8291 This journal is © the Owner Societies 2021

Cite this: Phys. Chem. Chem. Phys.,

2021, 23, 8282

Aggregates of polar dyes: beyond the exciton
model†

Mattia Anzola and Anna Painelli *

The physics of aggregates of polar and polarizable donor–acceptor dyes is discussed, extending a previous

model to account for the coupling of electronic and vibrational degrees of freedom. Fully exploiting transla-

tional symmetry, exact absorption and fluorescence spectra are calculated for aggregates with up to 6 mole-

cules. A two-step procedure is presented: in the first step, a mean-field solution of the problem is proposed

to define the excitonic basis via a rotation of the electronic basis. The rotation is also accompanied by a

Lang–Firsov transformation of the vibrational basis. In the second step, the aggregate Hamiltonian, written on

the exciton basis, is diagonalized towards exact results. The procedure leads to a reduction of the dimension

of the problem, since, at least for weak coupling, only states with up to 3 excitons are needed to obtain reliable

results. More interestingly, the mean-field solution represents the proper reference state to discuss excitonic

and ultraexcitonic effects. The emerging picture demonstrates that the exciton model offers a reliable

description of aggregates of polar and polarizable dyes in the weak coupling regime, while ultraexcitonic effects

are important in the medium-strong coupling regimes, and particularly so for J-aggregates where

ultraexcitonic effects show up most clearly with multistability and multiexciton generation.

1 Introduction

Electrostatic intermolecular interactions are comparatively
weak forces in supramolecular systems, but they are responsible
for energy transfer, an incoherent process where energy is trans-
ferred between different chromophores,1–4 as well as for the
coherent process of energy delocalization that governs the spectral
properties of molecular crystals and aggregates.5–7 Typically,
energy transfer processes are investigated in loosely bound systems
with intermolecular distances larger than B10 Å,8,9 whereas in
molecular crystals and aggregates fairly compact structures are of
interest with intermolecular distances comprised roughly in the
3.5–7 Å range. In some systems, including molecular crystals as
well as aggregates, intermolecular charge transfer (CT) interactions
are important,10–13 but here we will only discuss systems where CT
interactions can be safely neglected, or, in other words, aggregates
where electrons are localized in each molecular unit.5,6,14,15

The exciton model, widely adopted to describe the optical
spectra of molecular crystals and aggregates, dates back to the
1960s5,14–16 and has found several successful applications, as
recently extensively reviewed by Spano.7,17 In the simplest version,
it accounts for a single excitation on each molecule and, neglecting

electrostatic interactions among non-degenerate states, reduces
the problem to that of a single particle, the exciton, moving on the
molecular lattice. The corresponding problem is easily solved even
on fairly large aggregates and, for symmetric (crystalline-like)
systems, exact solutions in the thermodynamic limit are also
available. Davydov splittings in crystals15 and J and H-bands in
aggregates14 emerge quite naturally from this picture that can also
be extended to discuss the chirooptical properties of chiral
aggregates.18–20

Molecules are flexible objects and their geometry usually
responds to electronic excitations, as demonstrated by the
prominent Frank–Condon structures often observed in molecular
spectra. Extending the exciton model to account for molecular
vibrations is non-trivial, mainly because the adiabatic (or Born–
Oppenheimer) approximation cannot be applied. Indeed there are
two easy limits: the vibrational frequency is either (a) much smaller
or (b) much higher than the hopping frequency of the exciton.
Case (a) corresponds to the adiabatic limit: the molecule has no
time to relax its geometry following the exciton motion and
vibrational coupling does not affect the optical spectra. Case (b)
corresponds to the antiadiabatic limit:21 the exciton is trapped in
the molecular site and the optical spectra show the same vibronic
structure as the isolated molecule. Between these two limits the
problem becomes non-adiabatic and special techniques must be
adopted for its solution.17,22 Quite interestingly, interpolating
between the two limits, the vibronic structure observed in the
aggregate can lead to a reliable estimate of the exciton delocaliza-
tion, as first proposed by Spano.23
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Neglecting the interactions between non-degenerate states,
the exciton model does not account for the effect of the local
environment on the molecular properties, including e.g. the
charge distribution in the ground or excited states, the transi-
tion energy and dipole moment etc. Typically, the parameters
entering the exciton model, i.e. the reference transition fre-
quency and the transition dipole moment, are obtained from
the analysis of experimental data on isolated (solvated) molecules,
thus implicitly accounting for environmental corrections. Indeed
the environmental polarity has marginal effects in non-polar dyes,
whereas the medium polarizability can be considered roughly
constant for organic media.24 Extracting the same quantities from
quantum chemical calculations in the gas phase is trickier. Most
often, reference transition frequencies are empirically adjusted.15,16

Deviations from the exciton model are mainly recognized in the
intensity of optical transitions as well as of CD spectra.25 However,
in aggregates of non-polar dyes with a large quadrupolar character,
large deviations from the exciton model are observed:26–30 in these
systems, the dense excitation spectrum at the molecular level, and
the large molecular polarizability, make the approximations of the
exciton model critical, with impressive effects on linear and non-
linear optical spectra.

Even more intriguing is the situation in aggregates of polar
dyes.31,32 Indeed, as long as the molecular polarizability stays
small, the exciton model, possibly with marginal corrections,
still applies. However, in clusters of polar and polarizable dyes,
typically push–pull dyes with large conjugation and hence
strongly polarizable structures,33 large deviations from the easy
predictions of the exciton model are expected. Push–pull chro-
mophores are p-conjugated molecules with an electron donor (D)
and an acceptor (A) unit, whose low-energy physics is dominated
by the charge resonance between a neutral DA (N) and a zwitter-
ionic (Z) D+A� structure.34–36 The resulting two-state model
accounts for both the molecular polarity and polarizability and
very interesting physics emerges when clusters of dyes are con-
sidered, interacting via electrostatic intermolecular interactions.
The model for interacting polar and polarizable dyes was intro-
duced more than 40 years ago by Soos, as a toy model to describe
the neutral-ionic phase transition in mixed stack CT crystals.37

Multistability was recognized and has been discussed since then
in different systems,38–40 and spectroscopic effects in clusters of
polar and polarizable molecules were also addressed.31,32,41–43

The number of basis states needed to describe aggregates of
polar and polarizable dyes, increases as 2N, N being the number
of molecules. The relevant Hamiltonian can be diagonalized on
fairly large systems.31 Accounting for vibrational coupling
however is challenging and so far exact solutions are only
available for dimers,41 whereas for larger systems, dramatic
approximations have been introduced.42 In a recent paper,
Spano analyzed in detail the absorption spectra of dimers of
push–pull dyes fully accounting for vibrational coupling.43 An
interesting discussion of spectral bandshapes emerges together
with the demonstration of dramatic deviation from the Kasha
behavior. In this paper we face the same problem, adopting the
exciton transformation described in ref. 31, and a Lang–Firsov
transformation for the vibrational coupling.21 An optimized

basis set with reduced dimension can then be defined, and,
fully accounting for symmetry, we can handle comparatively
large systems with up to 6 molecules. On a different perspec-
tive, the exciton transformation helps us to disentangle mean-
field effects from excitonic and ultraexcitonic effects in these
systems. Indeed, for weakly interacting aggregates, the Kasha
model works well, provided the proper mean-field reference
state is selected. On the other hand, in the case of attractive
interactions and strong coupling, multistability is expected and
wild spectroscopic effects are observed, definitely beyond any
exciton-like description.

2 The model

Each DA dye is described by two electronic diabatic states,
corresponding to the two limiting neutral and zwitterion struc-
tures, |Ni and |Zi, respectively (Fig. 1). The two electronic states
are separated by an energy gap 2z0 and are mixed by a matrix
element �t. To account for the different geometry of the
molecule in the two diabatic states, a single harmonic vibration
with – frequency ov is considered on each molecular unit,
leading to a linear dependence of the energy gap between the
basis states on the coordinate, as shown by the diabatic potential
energy curves in Fig. 1c.34

The Hamiltonian for an aggregate of N equivalent dyes, only
interacting via electrostatic interactions, reads:

H ¼
X
i

2z0 � g â
y
i þ âi

� �h i
r̂i � tsi þ �hov â

y
i âi þ

1

2

� �� �

þ
X
i4 j

Vij r̂ir̂j

(1)

where i and j run on the molecular sites. The terms in the curly
bracket define the molecular Hamiltonian and r̂i = |ZiihZ|i

Fig. 1 The isolated (gas-phase) dye. Top: The two resonating structures.
(a) The r(z0/t) curves calculated for ev = 0 and 0.4t. (b) The transition
energy O and the transition dipole moment as a function of r. (c) The
potential energy surfaces for a system with t = 1, ev = 0.4 and z0 = 0.7.
(d) The adiabatic PES calculated for the same system as in panel (c).
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measures the weight of the zwitterionic state in the i-th
molecule, ŝi = |ZiihN|i + |NiihZ|i, and âi is the distruc-
tion operator for a vibrational quantum on the i-th molecule,
so that the vibrational coordinate and its conjugated momen-
tum are:

Qi ¼

ffiffiffiffiffiffiffiffi
�h

2ov

s
â
y
i þ âi

� �

Pi ¼ i

ffiffiffiffiffiffiffiffi
�hov

2

r
â
y
i � âi

� � (2)

Finally, g is the electron-vibration coupling constant, related to
the vibrational relaxation energy as ev = g2/(h�ov), as shown in
Fig. 1c. Specifically ev measures the energy gained by the
molecule due to its geometrical rearrangement when its state
changes from N to Z. The last term in eqn (1) accounts for
intermolecular electrostatic interactions with Vij measuring the
interaction between molecules on site i and j when both
molecules are in a zwitterionic state. In the following, we will
only account for nearest neighbor interactions, even if extend-
ing the calculation to more general forms of the electrostatic
potential is trivial. Moreover, we will impose periodic boundary
conditions and will consider systems with just one molecule
per unit cell. Finally, for the sake of simplicity, we will consider
aligned molecules, so that only two limiting structures are of
interest, as shown in Fig. 2. Since intermolecular interactions
are attractive and repulsive in the two structures we dub them
as J and H-structures, respectively.

Essential state models are traditionally parametrized from a
detailed analysis of optical spectra (typically absorption and
fluorescence) collected in solvents of different polarity, as to
disentangle the effect of environmental polarity, but fully
accounting for the environmental polarizability.35,36,42,44 Under
the assumption that the environmental polarizability (as measured

e.g. by the medium refractive index) is similar in all organic media,
the resulting effective model should properly account for the core
polarizability of the surrounding molecules in the aggregate, i.e. of
the polarizability due to the electronic degrees of freedom not
explicitly included in the molecular essential state model.
Extracting the same information from quantum chemical calcu-
lations is possible, but gas-phase results must be properly
corrected to account for the environmental polarizability.45

2.1 Rotating the basis

The Hamiltonian in eqn (1) can be written on the basis obtained
as the direct product of the 2N electronic basis states multiplied
by the states (at least the first few states) of each molecular
harmonic oscillator. Even accounting for just 5 vibrational states
on each oscillator, the basis, growing as 10N, explodes very fast
with N. The adopted diabatic basis leads to a very simple
expression for the Hamiltonian describing the aggregate, but it
is not the most clever basis. Indeed we need to account for all
electronic states and for a large number of vibrational states
simply to be able to recover a reliable description of the
molecular ground state in terms of charge distribution and
equilibrium geometry.

As discussed in ref. 31 the molecular electronic basis can be
rotated from the diabatic to the exciton basis |gi, |ei via the
transformation:

jgi ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
jNi þ ffiffiffi

r
p jZi

jei ¼ ffiffiffi
r
p jNi �

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
jZi

(3)

where the parameter r, between 0 and 1, measures the weight
of the zwitterionic state into the |gi state, a measure of the
molecular polarity. A clever choice sets r to the mean-field (mf)
result: when inserted in the aggregate, each dye feels the electro-
static potential generated by the surrounding molecules, and
readjusts its ground state ionicity in response to this potential.
The potential in turn depends on the ionicity of the molecules,
leading to a self-consistent problem, which has been solved and
discussed many times.11,31,37

However, the mean field ionicity is also affected by the
vibrational coupling. For each molecule, the Hellman–Feynman
theorem sets the equilibrium coordinate proportional to r as
follows (see ESI† for explicit expressions):38

�Qi ¼
ffiffiffiffiffiffiffiffi
2ov

�h

r
g

ov
2
r (4)

It is convenient to move the origin of the vibrational coordinate
to the equilibrium position, via a Lang–Firsov transformation of
the vibrational operators:21

~̂Qi ¼ Q̂i � �Q ¼

ffiffiffiffiffiffiffiffi
�h

2ov

s
~̂a
y
i þ ~̂ai

� �

~̂Pi ¼ P̂i ¼ i

ffiffiffiffiffiffiffiffi
�hov

2

r
~̂a
y
i � ~̂ai

� � (5)

Applying the exciton rotation to the electronic basis and the
Lang–Firsov transformation to the molecular oscillators, the

Fig. 2 The mf solution. Panels (a) and (b) show the H and J geometries,
respectively. (c) The diabatic PES for the isolated dye and for a dye in an H-
aggregate. (d) The diabatic PES for the isolated dye and for a dye in a J-
aggregate. (e) The r(z0/t) curves calculated for an H aggregate with M = 0
(isolated dye) and M = 1. (f) The r(z0/t) curves calculated for a J aggregate
with M = 0 (isolated dye) and M = �1, �1.4 and �2.0. All results refer to
systems with ev = 0.4t.
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Hamiltonian in eqn (1) reads (the derivation can be found in
ESI†):

H ¼ �hO
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(6)

The Paulion operator b̂†
i creates and exciton at site i, bringing

the relevant molecule from the |gi state (the vacuum state) to
the excited |ei state. The number operator n̂i = b̂†

i b̂i counts the
number of excitons on site i (0 for g, 1 for e states).

The above Hamiltonian is exactly equivalent to the Hamiltonian
in eqn (1), provided r is fixed to the mean field value:31

r ¼ 1

2
� zðrÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðrÞ2 þ t2

p (7)

where z(r) measures half the energy gap between the two diabatic
states that self-consistently depends on r:

z(r) = z0 + (M � ev)r (8)

where M defines the Madelung energy

M ¼ 1

N

X
i4 j

Vij (9)

that reduces to M = V when only the nearest neighbor interac-
tions are considered.

To understand the physical picture that emerges from the
aggregate Hamiltonian on the rotated basis (eqn (6)), we first
address the mf solution for the aggregate. To start with, for an
isolated molecule in the gas phase and neglecting the vibronic
coupling (ev = 0), the solution of the two-dimensional electronic
problem is trivial and leads to the |gi and |ei states in eqn (3)
with r fixed by eqn (7) but with z = z0. The |gi- |ei transition
energy and transition dipole moment are expressed as a func-
tion of r as follows:34

�hO ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞ

p
mge ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞ

p (10)

where m0 is the dipole moment associated with the zwitterionic
state, proportional to the intramolecular D–A distance. The
r(z0) curves and the r-dependence of the transition energy and
dipole moments of the isolated dye are shown in Fig. 1a and b.

When accounting for vibronic coupling, the energies of the
diabatic states acquire a Q-dependence, as shown for typical
model parameters in Fig. 1c. In the adiabatic approximation,
the two-dimensional electronic Hamiltonian is diagonalized for
each Q to get the adiabatic potential energy curves for the |gi
and |ei states, shown in Fig. 1d. If we are only interested in
adiabatic results for the equilibrium Q = %Q, we may exploit eqn (4)
and solve the self-consistent two-dimensional adiabatic Hamilto-
nian for a system where the energy difference between the diabatic
states self-consistently depends on r as 2z = 2z0 � 2evr.38,40 While
the equilibrium r is affected by the vibrational coupling, the
r-dependence of the transition frequency and dipole moment
is always defined by eqn (10), so that the curves in Fig. 1b apply
irrespective of the ev value.

When the dye is inserted in the aggregate its ionicity will
readjust in response to the surrounding charges. In an H-type
(repulsive) geometry (Fig. 2a), the ionicity of the dye in the
aggregate will be lower than for the isolated dye, whereas in a
J-type (attractive) geometry it will be higher. The calculation is
easy in the mf approximation: each molecule feels the electro-
static potential generated by the surrounding molecules, each
one bearing a fractional charge�r at the D/A site. The energy of
the zwitterionic state is then moved with respect to the isolated
molecule by a quantity 2Mr, positive and negative for H and J
aggregates, respectively (see Fig. 2c and d). The mf solution of
the problem is then obtained self-consistently, setting the
ionicity of the surrounding molecules equal to the ionicity of
the test molecule, then regaining eqn (7). The r(z0) curves in
Fig. 2(e) and (f) are calculated accordingly. Of particular interest
is the case of J-aggregates, where not only does the molecular
ionicity increase with M, as expected, but, at large enough M
values, a discontinuous behavior emerges,31,38,39 with sizable
bistability regions. Once again, the molecular ionicity is affected
by the interactions, but the r-dependence of the transition
dipole moment and frequency are fixed as in eqn (10).

Having described the mf solution, we are now in a position
to discuss the rotated Hamiltonian in eqn (6). The first line
assigns energy h�O to each exciton and adds the vibrational
energy h�ov to each vibrational excitation. The second and third
lines account for the vibrational coupling. As expected, it is an
on-site term. The first term in these lines is the standard
Condon term, with the vibrational coupling renormalized from
g to g(1 � 2r) to account for the relative position of the equili-
brium geometries for the ground and excited state potential
energy surfaces (PES).46 The second term (third line) is instead
an ultraexcitonic term mixing states with the number of
excitons differing by one unit. This ultraexciton term has a
vibronic origin: the creation/destruction of the exciton on site i
is always accompanied by the creation or destruction of a
vibrational quantum in the same site. The terms in the two
last lines of eqn (6) all come from intermolecular electrostatic
interactions. The term in the fourth line is proportional to the
squared transition dipole moment of the mf dye (see eqn (10))
and contains both the exciton hopping term, as well as the two-
exciton terms that are usually neglected in the exciton model.25

In the last line the first term is an exciton–exciton interaction
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term (proportional to the squared mesomeric moment): it
conserves the exciton mumber and it may enter the exciton
model, but is of course relevant only to aggregates of polar
dyes.31 The very last term is again an ultraexcitonic term mixing
states whose exciton number changes by one unit.

A special situation occurs in the so-called cyanine limit,
when the mean field r reaches a value of 0.5. This occurs
whenever z(r = 0.5) = 0 in eqn (8), or 2z0� ev = M (or 2z0 � ev = V,
for nearest neighbor interactions), fully in line with the analo-
gous result for a dimeric aggregate in ref. 43. In the cyanine
limit, the leading Condon term for vibronic coupling vanishes,
and the vibronic structure in aggregate spectra is washed out,43

with marginal vibronic effects only expected for strong cou-
pling, when the ultraexcitonic term enters into play. Moreover,
all excitonic and ultraexcitonic terms proportional to (1 � 2r)
(i.e. to the mesomeric dipole moment) vanish when r = 0.5 so
that only terms proportional to the squared transition dipole
moment survive. In the cyanine limit then the electronic part of
the Hamiltonian in eqn (6) reduces to the Hamiltonian for
aggregates of non-polar dyes.25

2.2 Computational strategy

The dimension of the non-adiabatic basis increases fast with
the aggregate dimension. On each molecular unit the basis
includes 2 electronic states to be multiplied by the number of
vibrational states as needed for convergence, nph. The basis for
an aggregate of N molecules then has the dimension (2nph)N,
quickly leading to intractable problems. To overcome this
limitation, we make use of symmetry: the adopted periodic
boundary conditions in fact not only help to minimize finite
size effects, but also enforce translational symmetry in the
system. The wavevector k is then a good quantum number for
the aggregate, with optical transitions obeying a strict selection
rule imposing that only states with the same wavevector can be
reached. The ground state is a zero-wavevector state, so that
only the k = 0 subspace is of interest for absorption processes.
In J-aggregates the lowest excited state also has k = 0, so that,
again, only the k = 0 subspace is of interest. In H-aggregates
instead the lowest excited state belongs to the k = p subspace, so
that, to address fluorescence in H-aggregates, we must also
diagonalize the model Hamiltonian in the k = p subspace.

To further reduce the dimension of the problem we work in
the exciton basis that, while leading to a fairly cumbersome
Hamiltonian, allows, for intermolecular interactions that are
not too large, to limit the basis dimension discarding all states
with a number of excitations larger than Me with Me r N.
Moreover, we truncate the vibrational basis so as to discard all
states with a total number of vibrational quanta larger than Mv.
Of course, large enough Me and Mv must be considered to
ensure convergence on relevant results.

In the bit-representation, we store each basis state in the
computer memory as an integer number whose binary code is
composed of 4 bits for each molecule in the aggregate, where
the first bit represents the electronic state (0 � |gi, 1 � |ei) and
the following 3 bits store the integer number that counts the
vibrational quanta (from a minimum of 000 � |0i to a

maximum of 111 � |7i). The basis set is created scrolling
through all integer numbers from 0 to 16N�1 and selecting only
the states that comply with the required values of Me and Mv.
Translational symmetry operations are then applied to the
basis states to finally obtain symmetry-adapted linear combina-
tions in the k = 0 space, as needed to calculate spectra of J and
H-aggregates, and in the k = p subspace for H-aggregates to
address their fluorescence spectra. Since the basis is very large,
we only store a single representative state for each symmetry-
adapted linear combination, together with the information
concerning its multiplicity. The Hamiltonian in eqn (6) is
finally written on the symmetrized basis and diagonalized in
the relevant subspaces. Depending on the number of excitons
and vibrational states needed to reach convergence, we are able
to address systems with up to N = 6 sites (of course only
aggregates with an even N can be considered in the k = p
subspace).

3 Results

In the following we set t = 1 as the energy unit (typical values for
CT dyes are of the order of 1 eV, even if for dyes of interest for
thermally activated delayed fluorescence47 t can be up to an
order of magnitude smaller), and fix ev = 0.4 and ov = 0.17.
Results will be shown for different z0 so as to decribe the
properties of dyes with different ionicities. All results were
obtained setting Nv = 6.

3.1 Weak coupling

We start our analysis with H-aggregates, setting a moderate
value for the electrostatic interaction, V = 1. Fig. 3 shows results
for a largely neutral dye, a dye with intermediate ionicity and a
zwitterionic dye. Results are shown for the biggest achievable
aggregate N = 6, but finite size effects are negligible in this case.
Convergence is obtained already for Ne = 3, as the Ne= 3 and 4
results are superimposed in the scale of the figure. In all cases,
in line with the H-nature of the aggregate, as determined by
repulsive intermolecular interactions, the fluorescence inten-
sity is largely suppressed as a result of aggregation, and a huge
Stokes shift is observed for the aggregate. Understanding the
position of absorption bands is however tricky. With reference
to the isolated (gas phase) dye, the absorption band blueshifts
for the dyes with low and intermediate polarity (left and central
panels), but red-shifts in the case of a largerly polar dye (right
panel). These apparently crazy results, possibly suggesting the
failure of the exciton picture, are indeed related to a bad choice
of the reference state. A large part of the shift in fact is not
excitonic in origin, but is related to the effects that surrounding
charges have on the energy of the states. This is easily calcu-
lated in the mf approximation. Repulsive intermolecular inter-
actions reduce the polarity of each dye in the aggregate (see
Fig. 2e), hence affecting the frequency of the absorption band.
The proper reference for the exciton model is indeed repre-
sented by the mf absorption frequency. Specifically, for the dye
in the left panels of Fig. 3, the ionicity decreases from 0.19 in
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the gas phase to an mf value of 0.17. Accordingly, the maximum
of the absorption blueshifts, slightly reducing the exciton shift.
Similar considerations apply to the dye in the middle panels,
whose ionicity is reduced from 0.64 in the gas phase to 0.5 in
the mf approach. For r = 0.5 (the cyanine limit) the Condon
vibrational coupling (proportional to the squared mesomeric
dipole moment) vanishes, leading to the disappearance of the
vibronic structure in the absorption and fluorescence bands.
More inspiring is the case of the zwitterionic dye in the right
column of Fig. 3. Here the decrease of the ionicity from 0.76 in
the gas phase to 0.61 in the mf approximation is responsible for
a large red-sfift of the absorption band. Taking as proper
reference the mf frequency, a blue-shift of the absorption band
is observed for the aggregate, fully in line with its H character,
as due to repulsive (V 4 0) intermolecular interactions.

Fluorescence in H-aggregates comes from electronic states
at the border of the Brillouin zone and are therefore only
allowed due to the coupling to vibrational modes. As a result,
very weak and largely red-shifted bands are observed, but what
we notice here is that, since the dominating (Condon) term
accounting for vibronic coupling vanishes in the cyanine limit,
the fluorescence intensity is vanishingly small in this limit.

A similar analysis applies to the aggregates in Fig. 4, corres-
ponding to the case of weak attractive intermolecular interac-
tions (V = �1). Intense emission bands and vanishing Stokes
shifts in the aggregate are fully in line with J-aggregate beha-
vior. The redshift of absorption (and emission) bands observed
for the dyes in the left and middle panels of Fig. 4 is again in
line with J-aggregate behavior. The most striking result however
is recognized again for the most polar molecule (r = 0.36 in the
gas phase) in the right panels of Fig. 4: here in fact the exciton
band moves to the blue with respect to the gas-phase molecule.

But again this anomalous behavior is simply related to the
choice of a wrong reference. In the aggregate, the mf solution of
the problem drives the molecule deep in the ionic regime with
r = 0.82. This implies a large blue shift of the absorption and
fluorescence bands, so that, when taking as a reference the gas
phase molecule, an apparent blue-shift of the exciton band is
observed, that actually corresponds to a red-shift when the
proper mf reference is considered, in line with the attractive
nature of the interactions. We also notice that for the zwitter-
ionic system, when the wrong reference state is considered, the
intensity of the transitions (both absorption and fluorescence)
decreases and the vibronic structure becomes more prominent,
in striking contrast with the J-nature of the aggregate. This
inconsistency is however quite naturally solved if the proper mf
reference is considered: in all cases the spectral intensity
increases when going from the mf dye to the aggregate, while
the vibronic structure becomes less and less prominent. Quite
interestingly, results in the central panel of Fig. 4 refer to a dye
with ionicity r = 0.16 in the gas phase that is driven to the
cyanine limit, r = 0.50, when embedded in the aggregate. Once
again, in the cyanine limit the vibronic structure of the absorp-
tion and fluorescence bands disappears.

3.2 Medium and strong coupling

We will now address the cases of medium and strong coupling.
Fig. 5 shows the absorption spectra calculated for H-aggregates
in the medium (V = 1.6) and strong-coupling (V = 2.0) regimes.
It turns out that Ne = 4 is the minimum number of exciton
states to be introduced to obtain convergence. Indeed, Ne = 3
results are in general untenable, with the only exception of the
system in the central panel of Fig. 5 with mf ionicity r = 0.5. In
this case in fact all terms in eqn (6) proportional to 1 � 2r
vanish. Accordingly, the vibronic structure disappears, as

Fig. 3 H aggregate, V = 1, ev = 0.4, ov = 0.17: top and bottom panels show
the calculated absorption and fluorescence spectra, respectively. Inten-
sities per molecule are reported in arbitrary units. The weak florescence
spectra of the aggregate are multiplied by a factor, as shown in the figure.
Left panels refer to a system with z0 = 0.8, corresponding to an ionicity for
the isolated dye r = 0.21 that deacreses in the mf approximation to
r = 0.17. Middle panels: z0 = �0.3, gas phase r = 0.76, mf r = 0.5. Right
panels: z0 = �0.6, gas phase r = 0.84, mf r = 0.61.

Fig. 4 J aggregate, V =�1, ev = 0.4, ov = 0.17: top and bottom panels show
the calculated absorption and fluorescence spectra, respectively. Intensities
per molecule are reported in arbitrary units. Left panels refer to a system
with z0 = 1.0, corresponding to an ionicity for the isolated dye r = 0.15 that
increases in the mf approximation to r = 0.21. Middle panels: z0 = 0.7, gas
phase r = 0.21, mf r = 0.50. Right panels: z0 = 0.3, gas phase r = 0.36, mf
r = 0.82.

Paper PCCP



8288 |  Phys. Chem. Chem. Phys., 2021, 23, 8282–8291 This journal is © the Owner Societies 2021

discussed above, but also all terms related to the mesomeric
dipole moment (the difference between the permanent dipole
moments in the excited and ground states) vanish. For the
electronic part, the Hamiltonian in the r = 0.5 limit reduces to
that relevant to a non-polar aggregate and most of the anom-
alous effects associated with aggregates of polar and polariz-
able dyes are washed out.43 Once convergence is reached, finite
size effects are marginal for largely neutral dyes, as well as for
dyes in the cyanine limit, but become relevant for zwitterionic
dyes.

More interesting is the case of J-aggregates, where electro-
static intermolecular interactions lead to intriguing pheno-
mena.31,32 Fig. 6 shows absorption and fluorescence spectra
calculated for a system with V = �1.6, corresponding to the

curve in Fig. 2f that marks the boundary between the normal
(weak coupling) and the bistable (strong coupling) regimes.
Much as in the weak coupling case, the apparently anomalous
behavior observed when comparing aggregate spectra with
spectra calculated for the isolated dye is relieved if the pro-
per reference system is considered, corresponding to the
mf solution. In all cases in fact the aggregate spectrum is
red-shifted with respect to the relevant mf spectrum. The most
important difference with respect to the weak coupling is
the appearance of finite size effects, with N = 6 results
differering from N = 4, pointing to largely delocalized excitons.
Moreover, to obtain convergence for N = 6, at least Ne = 4 is
needed (see Fig. S1, ESI†), in sharp contrast with the weak
coupling case. Quite interestingly, finite size effects are
marginal for the system described in middle column of
Fig. 6 where the mf ionicity is 0.5. As discussed above, in this
limit, the vanishing of terms proportional to 1 � 2r not only
kills the main vibronic coupling term, but also reduces the
electronic part of the Hamiltonian to that of aggregates of
non-polar dyes.

This is even more evident in the strong coupling limit in
Fig. 7, showing spectra calculated for V = �2.0. Similar con-
siderations apply as in the medium-coupling regime, but in this
case N = 6 results do not converge until the maximum number
of excitons Ne = 6 is accounted for in the calculation, or in other
terms, until the complete electronic basis is considered (see
Fig. S2, ESI†). This immediately tells us that the exciton–exciton
interaction term (the first term in the last line of eqn (6)) lowers
the energy of multiexciton states that get mixed with the lowest
excited states giving a sizable multiexcitonic character to the
state, as extensively discussed in ref. 31 and 32. Again, this term
vanishes for a system with an mf ionicity r = 0.5, so that for this
system (the middle panels of Fig. 7) the N = 6 results already
converge at Ne = 3.

Fig. 5 H aggregate absorption spectra. All results refer to a system with
ev = 0.4 and ov = 0.17. Top panels show results for V = 1.6, from left to
right: z0 = 0.8, gas phase r = 0.21, mf r = 0.15; z0 = �0.6, gas phase
r = 0.84, mf r = 0.5; z0 = �1.0, gas phase r = 0.9, mf r = 0.62. Bottom
panels show results for V = 2.0, from left to right: z0 = 0.8, gas phase
r = 0.21, mf r = 0.14; z0 = �0.8, gas phase r = 0.88, mf r = 0.5; z0 = �1.2,
gas phase r = 0.92, mf r = 0.61.

Fig. 6 J aggregate, V = �1.6, ev = 0.4, ov = 0.17: top and bottom panels
show the calculated absorption and fluorescence spectra. Intensities per
molecule are reported in arbitrary units. Left panels refer to a system with
z0 = 1.5, corresponding to an ionicity for the isolated dye r = 0.09 that
increases in the mf approximation to r = 0.10. Middle panels: z0 = 1.0, gas
phase r = 0.16, mf r = 0.50. Right panels: z0 = 0.5, gas phase r = 0.33, mf
r = 0.90.

Fig. 7 J aggregate, V = �2.0, ev = 0.4, ov = 0.17: top and bottom panels
show the calculated absorption and fluorescence spectra. Intensities per
molecule are reported in arbitrary units. Left panels refer to a system with
z0 = 1.5, corresponding to an ionicity for the isolated dye r = 0.09 that
increases in the mf approximation to r = 0.11. Middle panels: z0 = 1.2, gas
phase r = 0.12, mf r = 0.50. Right panels: z0 = 1.0, gas phase r = 0.16, mf
r = 0.87.
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4 Discussion

Extending previous work31 to account for molecular vibrations,
as needed to properly address spectral bandshapes, here we
propose a two-step approach for the description of optical
spectra of aggregates of polar and polarizable molecules. The
first step is the definition of the proper reference state as the mf
solution of the problem. Basically, the ground state polarity of
each dye is self-consistently defined by the polarity of the
surrounding dyes, leading to increased polarity for attractive
intermolecular interactions and reduced polarity for repulsive
interactions. Of course all molecular properties (including
transition frequencies and dipole moments) are affected by
this variation. The mf state defines the proper reference state
for the exciton model. The molecular geometry is also affected
by the molecular polarity and the correct reference state for the
vibrational problem is defined via a Lang–Firsov transforma-
tion that translates the origin of the vibrational coordinates to
the equilibrium position relevant to the charge distribution of
the molecule inside the aggregate. Since molecular vibrations
in turn affect the molecular polarity, vibronic coupling leads to
another self-consistent interaction. While this may look like a
difficult problem, it boils down to a simple self-consistent
diagonalization of a two by two Hamiltonian.39,42

The essential state model adopted here has been extensively
validated against experiment and describes in a very effective
way the low-energy spectral properties of push–pull dyes
accounting for the environmental effects in solution,34–36

aggregates,33,42 films44 and crystals.39,48 In the context of this
work, we underline that the model relies on similar approxima-
tions as the standard exciton model, accounting for a single
electronic excitation and a single vibrational mode per mole-
cule. At variance with the standard exciton model, however, the
proposed model fully accounts for the molecular polarizability
and for the dependence of the ground and excited state
molecular geometry on the molecular polarity.

Once the proper reference state is defined, several inter-
action terms are recognized in the Hamiltonian that can be
classified as excitonic, when conserving the exciton number,
and ultraexcitonic when mixing states with a different number
of excitons.31 The vibrational coupling leads to an excitonic
term that corresponds to the Condon coupling in the exciton
model. This term is proportional to 1 � 2r, and vanishes in
systems whose mf ionicity is close to 0.5: in these systems the
vibronic bandshape is washed out. The ultraexcitonic term
exchanges vibrational quanta and excitons and has marginal
spectroscopic effects in the weak coupling limit as shown in
Fig. 8 and 9 that compare the exact results obtained in the weak
and strong coupling regimes for H and J aggregates with those
obtained suppressing the non-Condon vibronic coupling in the
Hamiltonian in eqn (6). Non-Condon corrections give rise to
sizable effects in the strong regime.

As for excitonic terms originating from electrostatic interac-
tions, we recognize terms p r(1 � r), i.e. proportional to the
squared transition dipole moment of the mf molecules: these
terms are responsible for the exciton hopping. Other terms

appear proportional to the mesomeric dipole moment (1 � 2r)
that account for exciton–exciton interactions. These last terms
vanish when the mf molecular ionicity is close to 0.5, and the
system reduces to an aggregate of non-polar dyes. The exciton
approximation works reasonably well for weak coupling, but
fails in the strong coupling regimes (see Fig. 8 and 9).

Indeed, with increasing coupling, ultraexciton terms enter
into play with particularly impressive effects in J-aggregates,
where bistability regions are observed in the mf solution.31,32

Finite size effects become important in these conditions and
the exciton basis cannot be broken down to account for just the

Fig. 8 H-aggregates with N = 6. Top panels show weak-coupling results,
V = 1 for the same values of model parameters as in Fig. 3; bottom panels
show results for strong coupling, V = 2, for the same parameters as in the
bottom panels of Fig. 5. In all panels blue lines show converged results for
the total Hamiltonian, dashed black curves show results obtained neglecting
the non-Condon electron-vibration coupling term, and continuous black
lines show results for the exciton model, i.e. suppressing all ultraexcitonic
terms in the Hamiltonian.

Fig. 9 J-aggregates with N = 6. Top panels show weak-coupling results,
V =�1 for the same values of model parameters as in Fig. 4; bottom panels
show results for strong coupling, V = �2, for the same parameters as in
Fig. 7. In all panels blue lines show converged results for the total
Hamiltonian, dashed black curves show results obtained neglecting the
non-Condon electron-vibration coupling term, and continuous black lines
show results for the exciton model, i.e. suppressing all ultraexcitonic terms
in the Hamiltonian.
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first few exciton states (up to 3 excitons are enough to obtain
converged results in the weak coupling limit). Indeed, the
lowest excited state in these conditions cannot be described,
not even approximately, as a state with a single exciton; instead
it corresponds to a state where several excited molecules cluster
together in a multiexciton state.31,32

In this work we only consider perfectly ordered 1D aggregates.
Accordingly, translational symmetry is exploited to successfully
address the fairly complex problem of coupled electronic and
vibrational motions in fairly large systems. Modest disorder
effects are expected in crystalline systems, but they are important
for aggregates in solution. Molecular dynamics and more generally
multiscale approaches are powerful tools for addressing disorder
that occurs in aggregates in solution49,50 as related to the confor-
mational motion of the aggregate itself, as well as to the
fluctuating electric field associated with polar solvation. How-
ever, treating electronic and vibrational degrees of freedom
using a truly non-adiabatic approach is challenging for large
disordered systems, and requires the development of new
approximation techniques. In this respect, the proposed two-step
approach to aggregates of polar dyes may offer a good starting
point towards the development of few-particle approaches, that are
successfully exploited for aggregates of non-polar dyes.7,17,22,25

5 Conclusions

The spectroscopic effects of intermolecular interactions have
attracted the interest of scientists for almost a century. The
exciton model, neglecting intermolecular interactions among
non-degenerate states, offers a simple and effective approach
for understanding the spectral properties of molecular crystals
and aggregates.7,14,15 However, it must be recognized that the
model fully neglects the molecular polarizability,31 in the
assumption that the nature of the ground state is not altered
by intermolecular interactions. This approximation works fairly
well in aggregates of non-polar molecules, where the molecular
polarizability shows up mainly as a variation of the spectral
intensities,25 an effect that is difficult to assess experimentally.
In aggregates of polar molecules, however, the large electric
fields generated by the nearby polar molecules affect the state
of polarizable dyes considerably, leading to two major effects.
In the first place, when a polar and polarizable molecule is
surrounded other similar molecules, it will readjust its polarity
in response to the electrical potential generated by the charges in
the surrounding molecules. Accordingly, the nature of the mole-
cules will change, with the ground state polarity at equilibrium
being reduced in H-aggregates with respect to the isolated mole-
cule and increased in J-aggregates. Of course, the equilibrium
geometry of the molecule will readjust accordingly. To properly
rationalize aggregation effects it is important to take into account
this mean-field effect, building the model for interacting dyes
starting from the proper reference. This allows the singling out of
excitonic and ultraexcitonic effects for properly addressing vibra-
tional coupling and hence vibronic band-shapes. Specifically, the
anomalous red/blue shifts observed in H/J aggregates when the

reference state is taken to correspond to the isolated molecule,
turn out to be normal blue/red shifts when the proper reference is
taken as the molecule in its environment. Similar anomalous
effects on band-shapes are also easily sorted out, at least in the
weak-coupling regime. Apart from a better understanding of the
physics of these intriguing systems, the proper choice of the
reference state gives an enormous computational advantage:
for not too large couplings in fact it is possible to truncate the
electronic basis only accounting for states with a limited number
of excitons. This is particularly important because the non-
adiabatic basis, needed to properly address the aggregate,
increases very fast with the number of states. Our approach,
that also accounts for the translational symmetry in aggregates
with periodic boundary conditions, allowed us to diagonalize
exactly non-adiabatic Hamiltonian for systems with up to 6
molecules. Reaching large aggregates is important for singling
out the finite size effects that are particularly interesting for J
aggregates in the medium-large coupling regime, where the low-
lying excitations acquire a multiexciton character, corresponding
to a droplet of excited states bound together by attractive
intermolecular interactions. In this paper we only considered
linear absorption and fluorescence spectra, but our approach
can easily address non-linear optical spectra, where important
aggregation effects are expected.
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