Report Open Access
Michael Weiss; Paolo Tonella
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5055751</identifier> <creators> <creator> <creatorName>Michael Weiss</creatorName> <affiliation>Università della Svizzera italiana</affiliation> </creator> <creator> <creatorName>Paolo Tonella</creatorName> <affiliation>Università della Svizzera italiana</affiliation> </creator> </creators> <titles> <title>Uncertainty-Wizard: Fast and User-Friendly Neural Network Uncertainty Quantification</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-06-01</date> </dates> <resourceType resourceTypeGeneral="Report"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5055751</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsObsoletedBy">10.1109/ICST49551.2021.00056</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5055750</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Uncertainty and confidence have been shown to be useful metrics in a wide variety of techniques proposed for deep learning testing, including test data selection and system supervision.&nbsp;We present Uncertainty-Wizard, a tool that allows to quantify such uncertainty and confidence in&nbsp; artificial neural networks.&nbsp;It is built on top of the industry-leading tf.keras deep learning API and it provides a near-transparent and&nbsp; easy to understand interface.&nbsp;At the same time, it includes major performance optimizations that we benchmarked on two different machines and different configurations.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/787703/">787703</awardNumber> <awardTitle>Self-assessment Oracles for Anticipatory Testing</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 47 | 47 |
Downloads | 32 | 32 |
Data volume | 21.1 MB | 21.1 MB |
Unique views | 41 | 41 |
Unique downloads | 30 | 30 |