Dataset Open Access

An EEG dataset for cross-session mental workload estimation: Passive BCI competition of the Neuroergonomics Conference 2021

Hinss, Marcel F.; Darmet, Ludovic; Somon, Bertille; Jahanpour, Emilie; Lotte, Fabien; Ladouce, Simon; Roy, Raphaëlle N.


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>The dataset is part of a new open EEG database designed to answer a need for more publicly available EEG-based dataset to design and benchmark passive brain-computer interface pipelines (as detailed in [Hinss2021]). This database is currently being created and will be fully released before the end of the year. It will include data acquired over 30 participant, 4 tasks and 3 sessions. For this competition, hosted by the Neuroergonomics Conference 2021, only one task and half the participants will be analyzed. Hence, this competition focuses on a renowned task that elicits various levels of mental/cognitive workload: the Multi-Atribute Task Battery-II (MATB-II) developed by NASA (https://matb.larc.nasa.gov/). It is composed of 4 sub-tasks: system monitoring, tracking, resource management and communications. By varying the number and complexity of the sub-tasks, 3 levels of workload were elicited (verified through statistical analyzes of both subjective and objective -behavioral and cardiac- data). Each difficulty level was performed by 15 subjects (6 female; 9 average 25 y.o.) during 5 minutes per session, in a pseudo-randomized order. Each session was separated by 7 days. We used a 62 actiChamp EEG channels device (BrainProducts; electrode placement 10-20 system).</p>\n\n<p>&nbsp;</p>\n\n<p><strong>For the competition, your goal is to predict the mental workload for a given subject (intra-subject estimation) using the EEG data from another session (inter-session adaptation). More information on the conference website and in the documentation file.</strong></p>", 
  "license": "https://creativecommons.org/licenses/by-sa/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "Univ. Maastricht, NL", 
      "@type": "Person", 
      "name": "Hinss, Marcel F."
    }, 
    {
      "affiliation": "ISAE-SUPAERO, Univ. Toulouse, France", 
      "@type": "Person", 
      "name": "Darmet, Ludovic"
    }, 
    {
      "affiliation": "ISAE-SUPAERO, Univ. Toulouse, France", 
      "@type": "Person", 
      "name": "Somon, Bertille"
    }, 
    {
      "affiliation": "ISAE-SUPAERO, Univ. Toulouse, France", 
      "@type": "Person", 
      "name": "Jahanpour, Emilie"
    }, 
    {
      "affiliation": "Inria Bordeaux Sud-Ouest, Talence, France", 
      "@type": "Person", 
      "name": "Lotte, Fabien"
    }, 
    {
      "affiliation": "ISAE-SUPAERO, Univ. Toulouse, France", 
      "@type": "Person", 
      "name": "Ladouce, Simon"
    }, 
    {
      "affiliation": "ISAE-SUPAERO, Univ. Toulouse, France", 
      "@id": "https://orcid.org/0000-0002-4258-8397", 
      "@type": "Person", 
      "name": "Roy, Rapha\u00eblle N."
    }
  ], 
  "url": "https://zenodo.org/record/5055046", 
  "datePublished": "2021-07-01", 
  "version": "2", 
  "@type": "Dataset", 
  "keywords": [
    "EEG", 
    "Workload", 
    "MATB", 
    "Passive BCI", 
    "Classification", 
    "Physiological computing"
  ], 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/chan_locs_standard", 
      "encodingFormat": "", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/documentation_pBCI_hackathon.pdf", 
      "encodingFormat": "pdf", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/estimation_results_session3.csv", 
      "encodingFormat": "csv", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/Example_matlab.pdf", 
      "encodingFormat": "pdf", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/Example_python.pdf", 
      "encodingFormat": "pdf", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P01.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P02.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P03.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P04.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P05.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P06.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P07.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P08.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P09.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P10.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P11.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P12.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P13.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P14.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5f5a553f-425b-497c-a017-cfaf565092f8/P15.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.5055046", 
  "@id": "https://doi.org/10.5281/zenodo.5055046", 
  "workFeatured": {
    "url": "https://www.neuroergonomicsconference.um.ifi.lmu.de/hackathons/", 
    "location": "Munich, Germany", 
    "@type": "Event", 
    "name": "Neuroergonomics Conference"
  }, 
  "name": "An EEG dataset for cross-session mental workload estimation: Passive BCI competition of the Neuroergonomics Conference 2021"
}
965
2,040
views
downloads
All versions This version
Views 965432
Downloads 2,0401,130
Data volume 148.5 GB99.3 GB
Unique views 800380
Unique downloads 768454

Share

Cite as