
Self-assessment Oracles for Anticipatory Testing

TECHNICAL REPORT: TR-Precrime-2019-06

Antonia Bertolinoa, Guglielmo De Angelisb, Breno Mirandac, Paolo Tonellad
aCNR–ISTI, bCNR–IASI, cFederal University of Pernambuco, dUSI
Run Java Applications and Test Them In-Vivo Meantime

Project no.: 787703
Funding scheme: ERC-2017-ADG
Start date of the project: January 1, 2019
Duration: 60 months

Technical report num.: TR-Precrime-2019-06
Date: September 2019
Organization: Università della Svizzera italiana

Authors:
Antonia Bertolinoa, Guglielmo De Angelisb, Breno Mirandac,
Paolo Tonellad
aCNR–ISTI, bCNR–IASI, cFederal University of Pernambuco, dUSI

Dissemination level: Public
Revision: 1.0

Disclaimer:
This Technical Report is a pre-print of the following publication:
Antonia Bertolino, Guglielmo De Angelis, Breno Miranda, Paolo Tonella: Run Java Applications and Test
Them In-Vivo Meantime. Proceedings of the 13th IEEE International Conference on Software Testing, Veri-
fication and Validation, Tool Track (ICST-Tool), Porto, Portugal, March 23–27, 2020

Please, refer to the published version when citing this work.

TR-Precrime-2019-06 — Java Test In-Vivo

Università della Svizzera Italiana (USI)

Principal investigator: Prof. Paolo Tonella
E-mail: paolo.tonella@usi.ch
Address: Via Buffi, 13 – 6900 Lugano – Switzerland
Tel: +41 58 666 4848
Project website: https://www.pre-crime.eu/

TECHNICAL REPORT ii

mailto:paolo.tonella@usi.ch
https://www.pre-crime.eu/

TR-Precrime-2019-06 — Java Test In-Vivo

Abstract

The outcome of test case execution depends on the state of the object under test. While testers can care-
fully choose meaningful and representative object states for test execution, it is unaffordable to cover the
combinatorial space of possible object states exhaustively. An appealing option is to delegate part of the
testing activities to the runtime and to execute test cases in the field whenever a new or uncommon state is
observed. We have designed and developed Groucho, a framework for in-vivo testing of Java applications.
Among the challenges that we faced, the most important ones are isolation of the test session from the user
session and minimal performance overhead. Experimental results show that if the activation probability
is kept reasonably small (e.g., 10−4), the impact of the framework is imperceptible (i.e., either statistically
insignificant or with a negligible effect size).

TECHNICAL REPORT iii

TR-Precrime-2019-06 — Java Test In-Vivo

Contents

1 Introduction 1

2 An In-vivo Testing Framework 1
2.1 Scenario: Roles and Responsibilities . 2
2.2 Annotations . 3
2.3 Isolation . 4

3 Validation Methodology 4

4 Empirical Results 5
4.1 Answering RQ1 . 5
4.2 Answering RQ2 . 6
4.3 Summary . 8

5 Conclusions and Future Work 8

TECHNICAL REPORT iv

TR-Precrime-2019-06 — Java Test In-Vivo

1 Introduction

The effectiveness of in-lab, pre-release testing is intrinsically limited when the number of possible states of
the applications under test is very large. Actually, this is often the case in object-oriented programming,
since the space of the object states is given by the (recursive) combination of all possible attribute values
– a combinatorial number. Testers select representative object states, trying to cover all their equivalence
classes, under the assumption that a fault is either exposed by any member of a state equivalence class or
is not there at all. However, defining such equivalence classes is a difficult task and correspondingly faults
may escape in-lab testing and manifest themselves in production, giving raise to field failures. Gazzola et
al. [5] have performed a wide empirical investigation of field failures. In their study, they observed a sub-
stantial number of faults that are reported only by end users, who experienced them in the field. According
to the authors’ analysis, the dominant cause for field failures is combinatorial explosion, i.e., the combina-
torial growth of the states to be tested in-house, which inevitably brings to sampling just a (hopefully)
representative subset.
In-vivo testing consists of test case execution in the production environment. The term “in-vivo” is borrowed
from biological studies, where it refers to tests conducted on a living organism, as opposed to “in-vitro”
tests conducted in the laboratory. Introduced in the late 2000s [3, 4], the idea behind adopting in-vivo testing
for software applications is that to tackle the combinatorial explosion problem we can take advantage of
the enormous number of executions and object states that occur in the field. While a time-limited, in-
lab testing session cannot go very far in covering all many possible execution states, a distributed testing
session where every user becomes potentially a tester provides a unique opportunity to cover the various
use cases at large and to test the relevant object states (i.e., those occurring in production and not observed
before [8]).
However, from a technical point of view, implementation of in-vivo testing is challenging for various rea-
sons, among which: (1) isolation and (2) overhead. By isolation we mean the need to sandbox the execution
of test cases, such that the end user session is not corrupted due to test execution. In other words, the testing
session should produce no side effect on the user session. This is particularly challenging because we also
want to exploit information from the user session, so to run the test cases on states that are possibly differ-
ent from the ones considered during in-lab testing. The other major challenge is limiting the performance
overhead introduced by any framework for in-vivo testing. In fact, normal executions must be monitored
and in some cases even suspended when new or uncommon object states are observed, but this has to be
achieved with minimum impact on the end user’s activities.
In this paper, we introduce Groucho, a framework for in-vivo testing of Java applications. To ensure iso-
lation, Groucho adopts a checkpoint/rollback strategy [2], and supports selective threads suspension and
resuming.
We have measured the performance overhead introduced by Groucho under various configurations, differ-
ing by number of threads executed in parallel and by probability of activating an in-vivo testing session.
Results show that the overhead grows linearly with the number of threads, but it is possible to make it im-
perceptible (i.e., either statistically insignificant or with a negligible effect size) by reducing the activation
probability of in-vivo testing. When the user base is large, even adopting a very low activation probability
(10−4 or lower) still allows for performing several in-vivo testing sessions that complement in-lab testing,
but without interfering with the response time of the application under test.
The paper is organized as follows: Section 2 briefly describes the framework Groucho; Sections 3 and 4
present the experimental methodology and the results collected while measuring the performance impact
of the framework; while Section 5 concludes the paper.

2 An In-vivo Testing Framework

The current section presents Groucho, a Java-based framework enabling the activation of a testing session
in-vivo, i.e., while a Java application is running in its operational environment. By combining Aspect-
Oriented Paradigm (AOP) with lightweight isolation approaches Groucho allows a tester to easily inject
tests that, if needed, can be safely executed at run-time.
The high-level architecture of the framework is depicted in Figure 1. Specifically the core part of Groucho
is structured around four main building blocks. The Annotation part defines the meta-information that
can enable or regulate the in-vivo testing activities. Instrumentation exploits AOP principles and
technology that are leveraged to inject the testing aspects within the production environment. Each injected
testing aspect refers to a dedicated layer (i.e., Callback) that is responsible for both the orchestration of the

TECHNICAL REPORT 1

TR-Precrime-2019-06 — Java Test In-Vivo

Figure 1: Groucho: High Level Architecture

isolation policies, and the execution of the test cases actually codified as test programs. Groucho structures
the common API for the isolation mechanisms within Isolation. Specifically, this part also includes
the default behaviours foreseen for suspending and resuming threads, while the implementation of the
checkpoint/rollback strategy is provided by the module Groucho-Crochet.
Groucho is developed and distributed as an open-source project at: http://saks.iasi.cnr.it/tools/
groucho.
In the rest of this paper the term “test case” refers to a a Java test method that can be activated at run-time.

2.1 Scenario: Roles and Responsibilities

A typical reference scenario for in-vivo testing is depicted in Figure 2. Basically this scenario can be par-
titioned in two main subsets of activities: one subset (shown in the left thread of Figure 2) includes the
activities that take place off-line and are performed by the Test Engineers; the other subset (in the right
thread) concerns those activities performed at run-time by the execution environment (i.e., the Java Virtual
Machine – JVM).
Allowing for in-vivo testing clearly requires that some assumptions are met in both threads. However,
aiming at a broad applicability, Groucho has been designed to keep such assumptions as limited as possible.
Concerning the execution environment, even though the presented framework relies on standard off-the-
shelf JVMs (e.g., Oracle HotSpot and OpenJDK), it is important to clarify that the solution relies on the Java
Agents technology. Agents in Java are implemented by means of the JVM Tool Interface [11] (JVM-TI) as
part of the Java Platform Debugger Architecture [9] (JPDA). As a consequence, the system under test (SUT)
has to be deployed and launched on a JVM with such instrumentation capabilities enabled.
On their side, the Test Engineers are responsible for the selection of the portions of the SUT that could be
subject to in-vivo testing. In addition, they are also requested to properly customise the activation policies
for the test cases that will be enabled at run-time. Similarly to [7], the granularity for both the test cases
selection, and their activation policies are defined at method level. In this sense Groucho foresees that the
Test Engineers are knowledgeable about the responsibilities of the main classes in the SUT and possibly
about some details on their implementation. In other words, Test Engineers are partially aware of some
internal workings of the SUT.
The first task for the Test Engineers is to annotate the source code of the SUT (1 in Figure 2). The objective
is to specify which methods will be subject to in-vivo testing and precisely to which test case they are
bound. As detailed in Section 2.2, the Groucho framework provides them with a declarative support for
such activity. As introduced above, the so annotated version of the SUT must be built (i.e., 2) and launched
(i.e., 3) on a JVM properly configured with the Groucho agents.
Without loss of generality, the above scenario assumes that the Test Engineers can access and modify the
source code of SUT. For closed-source applications it is still possible to add the Groucho statements (which
would correspond to the manual annotations) by directly processing the bytecode before its execution.
Such a solution can be achieved by means of off-the-shelf injection technologies [6] and it usually requires
a minimal effort in the implementation.
According to the Java Agents technology, each time the JVM loads a new class, it processes on-the-fly the
bytecode of the class. The Groucho agents dynamically instrument all the methods previously marked for
in-vivo testing (i.e., 4). The instrumentation is responsible for the injection of code that dynamically links
the SUT with the Groucho instance running on the JVM.
At run-time, when the JVM fetches any method that is subject to in-vivo testing and just before its execution,
Groucho checks whether an in-vivo testing session should be activated (i.e., 5 , and 6). Groucho can bind

TECHNICAL REPORT 2

http://saks.iasi.cnr.it/tools/groucho
http://saks.iasi.cnr.it/tools/groucho

TR-Precrime-2019-06 — Java Test In-Vivo

Figure 2: In-vivo Testing Scenario

to different kind of strategies governing the activation conditions. A strategy is implemented by means of
a dedicated manager. The framework enables any manager implementation to refer the specific execution
state reached by the SUT. Test Engineers are responsible for selecting or implementing the most suitable
strategy fitting with the considered context. In case of a positive evaluation, Groucho retrieves the right
test case (i.e., 7) and enforces a set of isolation policies before the actual invocation (i.e., 8). The objective of
such last step is to avoid that in-vivo testing activities will impact on the results of the other computations
not involved in the testing sessions. Section 2.3 discusses the isolation strategies adopted by Groucho.
Once the JVM environment has been isolated, the actual test case can be launched starting from the op-
erational context available at run-time: this consists of the whole pool of Java objects in memory in their
current state and with their actual cross-references (i.e., 9).
After testing is completed, Groucho reverts the JVM environment to the status available before the valida-
tion activities run in-vivo (i.e., 10), and reports the resulting verdicts to the Test Engineers (e.g., on some
log system). Only at the end of these steps Groucho lets the JVM execute the fetched method (i.e., 11). The
run-time steps in the scenario at Figure 2 keeps looping for all the time the SUT is active on the JVM.

2.2 Annotations

As described, Test Engineers are responsible to establish the relations between the methods of the classes
in the SUT that are subject to in-vivo testing and the test cases that should be executed. Groucho supports
such an activity by means of Java Annotations.

1 @TestableInVivo(invivoTestClass = "foo.test.TestClass", invivoTest = "testMethod")
2 private void methodSubjectToInVivoSession() {
3 ...
4 }

Listing 1: Enabling in-vivo Testing with Groucho

In general, annotations in Java are a mechanism enabling the definition of meta-information within a Java
class. How such meta-information is applied depends on the elements of the Java language that the an-
notation targets (e.g., methods, fields, whole classes, etc.); their availability depends on the annotation
scope that actually defines when meta-information can be accessed and exploited (i.e., at build time by the
compiler, at run-time by the JVM, etc.).
Within Groucho, the annotations target methods. Specifically, any method that has to be considered for the
in-vivo testing activities (e.g., methodSubjectToInVivoSession) has to be marked with an annotation

TECHNICAL REPORT 3

TR-Precrime-2019-06 — Java Test In-Vivo

like the one reported in Listing 1. Specifically, the meta-information required includes the name of the
test case to be executed in-vivo (i.e., invivoTest) codified as (public) method of a given Java class (i.e.,
invivoTestClass).

2.3 Isolation

The execution of in-vivo testing activities in production environment imposes to carefully avoid the cor-
ruption of any user session. This goal is achieved by adopting suitable isolation approaches enforcing the
execution of the in-vivo test cases in a sandbox environment. More specifically, it is possible to distin-
guish them in two major categories: isolation approaches that preserve the state of the users’ sessions; and
isolation approaches that preserve the consistency of the execution flows in the sessions.
Groucho addresses the former category by adopting a checkpoint/rollback approach [2], which represents
a substantial improvement over existing isolation frameworks, such as Invite [7]. In fact, Invite deals with
isolation by forking a new, separate process where the testing session is activated. While the memory image
of the forked process is a copy of the original memory with no possibility of interference, the operation of
process forking is quite expensive, both in terms of the computational resources required to perform it and
of the memory it requires. On the contrary, the checkpointing solution in Groucho performs a lazy deep
copy of the objects involved in the testing session, leaving all other objects unaffected. The copy follows a
lazy strategy as it is postponed until the first new access to an instance that have been previously subject
to checkpoint (either directly, or because referred by another checkpointed instance). A similar approach is
adopted when restoring of the state of the instances: attributes are reset to the value before the checkpoint
at the first new access to the objects after the rollback.
The checkpoint/rollback strategy only ensures that a set of (in-memory) states are safely saved before the
execution of an in-vivo test case, and then restored when the test is over. However, in multi-thread applica-
tions and while a thread is hosting the in-vivo testing session, the others concurrent threads must not rely
on the state of those objects that have been copied at a checkpoint and that will be going to be restored.
In fact, the checkpoint/rollback strategy does not force the execution of an application to backtrack, and
it may lead concurrent applications to take inconsistent decisions. For this reason, Groucho includes an
isolation layer that targets to ensure data consistency in multi-thread applications. Specifically it supports
the definition of policies that can enforce the selective suspension and resuming of runnable threads.
Preserving data consistency by acting on the status of the threads is usually a non trivial task. Furthermore,
as from its earliest releases, the Java concurrency model deprecated those platform primitives enabling the
possibility to force thread suspension and resuming. The reason is that in the general case such possibility
lead programmers to adopt inherently deadlock-prone solutions. Currently multi-threading in Java has
been designed on top of a simplified concurrency model. In this sense, the recommended approach [10] in-
vites software engineers to design reliable solutions that are explicitly tailored for each considered scenario.
Among the others, the objects signalling API is the most minimal harness provided by the Java platform
in order to architect synchronisation among threads. The consequence for robust solutions is that suspend-
ing a thread is not an atomic activity, and in some cases it is not always possible (e.g., in order to prevent
scenarios leading to deadlock).
Groucho considers the selective suspension and resuming of threads a specific aspect to be injected in
the SUT. As a consequence, during the code instrumentation phase (see 4 in Figure 2) each class of the
application is equipped with dedicated features enabling the threads signalling mechanism that is exploited
during the execution of the in-vivo testing sessions.

3 Validation Methodology

An important concern about Groucho is acceptability for both the engineering team and the final users
of the SUT. Any platform that enables in-vivo testing, as Groucho, should impact in-field execution as
little as possible, in terms of introduced overhead. In a real, operative scenario, the impact of Groucho
originates from two sources: (1) the overhead introduced by the platform, and (2) the cost associated with
the execution of each in-vivo test case. Evaluation of the latter impact is application-specific and remains
among the responsibilities of the test engineers, who should design in-vivo test cases that have minimum
execution costs (e.g. comparable to small unit test execution time) . In general, it is test engineers who
are in charge of properly mitigating all the risks of an in-vivo testing campaign. Hence, in our empirical
validation of Groucho we have focused on the first concern and we have answered the following research
questions (RQs):

TECHNICAL REPORT 4

TR-Precrime-2019-06 — Java Test In-Vivo

Figure 3: Variable Number of Threads and Fixed Activation Probability

RQ1: What amount of overhead does Groucho introduce, when varying the frequency of in-vivo test exe-
cution and the number of parallel threads involved?
RQ1: What are the configurations of Groucho under which its overhead can be considered small or negli-
gible?
For the validation, we have identified a benchmark application to be exercised under the following condi-
tions: first as a plain application running on a JVM, and then as a SUT instrumented for Groucho, so that
it can be potentially subjected to in-vivo testing activities. Specifically, in the former setup no Java Agents
were attached to the JVM, while in the latter the same JVM has been enabled with instrumentation capabil-
ities. The objective is to measure and compare the execution time of the benchmark in both scenarios: with
and without Groucho.
In this study, we defined a custom Java application to be used as benchmark. We have decided to create
a custom application rather than reusing an existing one to have full control on the threads it creates. In
fact, multi-threading is a major issue for Groucho and the degree of multi-threading is known to be a major
source of overhead.
Specifically, the benchmark application has been designed to instantiate multiple threads, each configured
randomly, but all configured with the possibility to perform both CPU-intensive tasks and time-consuming
activities (e.g., simulating the hang out for IO or remote interactions).1.
Given the design of the benchmark application, the two independent variables in our empirical validation
are: number of active threads and activation probability of an in-vivo testing session.
We planned for two experiments. In the first experiment we fixed the activation probability and varied
the number of active threads in the benchmark application. In the second experiment the role of the inde-
pendent variables has been exchanged: the number of active threads in the benchmark was fixed and the
activation probability of an in-vivo session was gradually changed. As the benchmark application imple-
ments a randomised behaviour, the estimated execution time for a given assignment of both independent
variables has been measured as the average over multiple runs in the same setting.

4 Empirical Results

In this section, we analyse the results collected in the experiments and answer the RQs.

4.1 Answering RQ1

Figure 3 reports a comparison of the measured running time when Groucho is either activated (in-vivo)
or not (no in-vivo) within the JVM hosting the execution of the benchmark. The x-axis displays the

1The benchmark is distributed with the source-code repository of Groucho.

TECHNICAL REPORT 5

TR-Precrime-2019-06 — Java Test In-Vivo

number of concurrent threads under execution, while the y-axis reports the running time in seconds. The
square-marked lines (blue) depict the benchmark performance when in-vivo testing is enabled, whereas
the diamond-marked lines (red) refer to the scenario where in-vivo testing is disabled. Each mark (square
or diamond) in the solid lines is the average running time after 100 executions of the benchmark. For the
scenario with in-vivo testing enabled, the activation probability was fixed to 1%, which means that the
annotated method is expected to trigger Groucho only once in 100 invocations. For the scenario with in-
vivo testing disabled the benchmark was running as a plain application on a JVM (this is our baseline for
comparison). To observe the impact associated with different degrees of parallelism, we varied the number
of concurrent threads from 5 to 100 (x-axis). In order to compare the trends of running time when varying
the number of thread activated, the linear regression for both scenarios is also displayed in the plot in the
form of dashed lines.
In the no in-vivo scenario the running time does not seem to be strongly influenced by the number of
concurrent threads. This result is in line with our expectation since we did not expect the JVM to present a
degradation in performance under the investigated conditions. In the in-vivo scenario, on the other hand,
the regression analysis revealed a linear relation between the number of threads used and the execution
time of the benchmark (the coefficient of determination is quite high: RQ = 0.79899891 for Lin. Reg. in
Figure 3). This means that the lower bound overhead introduced by in-vivo testing with Groucho is linear
with respect to the number of active threads in the JVM. This result is in line with our expectations. In fact,
the isolation policy on threads, adopted in the experiment, imposes that Groucho pauses all the running
threads except the one that is undergoing the in-vivo session. Such a policy is the worst case scenario in
terms of added overhead. In fact, a real application may not need to pause all running threads, since only
some of them may be possibly interfering with the one subjected to in-vivo testing.
Figure 4 reports a comparison of the running time measured on the benchmark when the number of con-
current threads is fixed to 30 and the activation probability is variable. The various activation probabilities
explored (from 0.1% to slightly less than 10%) are displayed in the x-axis; all the other elements in the plot
are analogous to those of Figure 3. Also in this case, a regression analysis was performed on the execution
time over the frequency of in-vivo testing. As expected, the no in-vivo case results in a flat trend. In the
in-vivo case, on the other hand, there is a linear relation between the activation probability and the exe-
cution time (with high coefficient of determination RQ = 0.78963026 for Lin. Reg. in Figure 4). Linearity of
the relation between in-vivo testing probability and overhead provides test engineers a powerful and fine
grained mechanism to fine tune the expected overhead such that it is acceptable for the end users. In fact,
test engineers can reduce the activation probability of in-vivo testing until the associated overhead becomes
negligible. The corresponding number of in-vivo test executions in a given time window T will also vary
linearly, being roughly equal to N × p × E(T), where N is the number of users running the application
in parallel; p is the in-vivo activation probability; E(T) is the average number of executions of the method
under test in a time window of duration T .

4.2 Answering RQ2

To further investigate the linearity of the overhead with respect to both number of threads and in-vivo
activation probability, we conducted additional experiments under the assumption that the user base is
large (large N in the formula N × p × E(T)), such that the activation probability (p in the same formula)
can be kept extremely small. Specifically, we want to understand: (i) the impact of the number of active
threads in the benchmark (from 5 to 100) when the activation probability for an in-vivo testing session is
rare (i.e. 10−4); (ii) the impact of variations of low activation probabilities (i.e. from 10−5 to 10−4) when the
maximum numbers of threads is fixed to 30. Both for (i) and (ii), the results in each configuration have been
computed as the average over 200 executions of the benchmark.
A summary of the empirical results collected for both (i) and (ii) is reported in Table 1 and Table 2, respec-
tively. The p-value of the Wilcoxon test comparing the two distributions of execution times is always large
(above the commonly adopted threshold α = 0.05). This suggests that the impact of Groucho is statistically
insignificant when the in-vivo activation probability is 10−4 or lower. Since we cannot rule out the possibil-
ity of a Type II error (accepting a wrong null hypothesis), we also measured the Vargha-Delaney effect size
(A12 measure) [1], which is always small (S) or negligible (N). This means that even if our analysis were
subject to a Type II error, the corresponding effect size would be anyway small or negligible, indicating a
practically small/negligible impact of the framework.

TECHNICAL REPORT 6

TR-Precrime-2019-06 — Java Test In-Vivo

Figure 4: Fixed Number of Threads and Variable Activation Probability

Max Secs Secs Diff Diff (%) A12

Threads (In-vivo) (No In-vivo) (Secs)
5 16,52 15,93 0,59 3,74 S
10 17,15 14,60 2,55 17,50 N
15 16,31 15,79 0,52 3,32 N
20 16,14 15,79 0,34 2,21 N
25 15,39 16,67 -1,27 -7,62 S
30 15,29 16,63 -1,34 -8,06 S
35 15,44 15,16 0,27 1,84 N
40 17,39 16,56 0,82 5,00 N
45 15,51 14,67 0,83 5,71 S
50 14,58 16,07 -1,49 -9,28 S
55 15,66 15,09 0,56 3,73 N
60 16,58 15,30 1,27 8,32 N
65 16,83 15,76 1,07 6,81 N
70 16,39 16,42 -0,03 -0,22 N
75 15,54 15,97 -0,43 -2,70 S
80 15,83 16,08 -0,24 -1,53 N
85 16,39 17,62 -1,22 -6,93 S
90 15,56 17,27 -1,70 -9,85 S
95 15,45 15,13 0,31 2,11 N
100 15,48 16,39 -0,91 -5,56 N

Average 15,97 15,95 0,02 0,43

Table 1: Impact of the Number of Activated Threads – In-vivo Activation Probability: 10−4

Max Secs Secs Diff Diff (%) A12

Threads (In-vivo) (No In-vivo) (Secs)
1E-05 16,00 16,28 -0,28 -1,73 S
6E-05 14,78 16,00 -1,22 -7,66 S
0,00011 14,74 15,44 -0,70 -4,54 S
0,00016 14,43 15,86 -1,43 -9,05 S
0,00021 15,89 16,74 -0,84 -5,06 S
0,00026 16,49 15,62 0,87 5,59 N
0,00031 15,58 16,70 -1,12 -6,71 S
0,00036 15,33 17,33 -2,00 -11,57 S
0,00041 16,44 15,34 1,09 7,16 N
0,00046 16,61 14,711 1,90 12,94 N
0,00051 16,33 15,72 0,60 3,87 N
0,00056 16,42 15,34 1,08 7,07 N
0,00061 15,39 15,06 0,33 2,22 N
0,00066 16,18 15,55 0,63 4,08 N
0,00071 17,32 16,95 0,37 2,20 S
0,00076 16,92 17,65 -0,72 -4,11 S
0,00081 16,61 15,37 1,24 8,08 N
0,00086 16,17 16,70 -0,52 -3,17 S
0,00091 15,54 17,37 -1,82 -10,51 S
0,00096 16,11 16,14 -0,03 -0,19 S

Average 15,96 16,09 -0,13 -0,57

Table 2: Impact of In-vivo Activation Probability (10−5 . . . 10−4) – Max Numbers of Threads: 30

TECHNICAL REPORT 7

TR-Precrime-2019-06 — Java Test In-Vivo

4.3 Summary

We answer as follows to the RQs that motivated the study: RQ1: The overhead introduced by Groucho
grows linearly with the number of threads and with the probability of in-vivo test case execution; RQ2:
When the probability of in-vivo activation is 10−4 or lower, even with 30 threads executing in parallel, the
overhead of Groucho is statistically insignificant and practically negligible or small.
The first answer supports fine tuning of the framework’s impact by test engineers, who can reduce the
in-vivo activation probability until an acceptable overhead is achieved. The second answer indicates that
applications with a large user base can correspondingly adopt a very low activation probability, making
the impact of the framework imperceptible.

5 Conclusions and Future Work

In-vivo testing is an appealing approach to software testing that consists of launching testing sessions in
the production environment during end-user sessions. Within the context of object-oriented applications,
it represents an opportunity for tackling the combinatorial explosion of the cases to be tested by leveraging
the enormous number of executions and the actual object states that occur in the field. Such a possibility
could be very effective in order to reveal unknown corner cases, or bugs that are very unlike to manifest
themselves in the lab testing sessions. However, the application of in-vivo testing approaches comes with
challenging obstacles from a technical point of view, such as isolation and overhead.
This work presents Groucho, an open-source framework that enables in-vivo testing for Java application.
Specifically, the paper introduces the high-level architecture of Groucho; it describes the roles foreseen in
the in-vivo testing scenario with their responsibilities; and it discusses the main technical features provided
by the framework.
A first empirical validation of Groucho has been planned and performed. The objectives of the study
were to understand the overhead that test engineers have to consider when enabling in-vivo testing with
Groucho and under which conditions such overhead can be considered irrelevant. The collected results
show that Groucho supports a fine, linear overhead tuning. In addition, if the activation probability is kept
reasonably small (e.g., 10−4), the impact of the framework is imperceptible.
The current version of Groucho targets in-vivo testing of an in-memory collection of object states. Also
the current isolation policies avoid suspending a thread if it is performing some blocking activities. Future
work will investigate how to extend the checkpoint/rollback strategy so as to cover broader scenarios that
are not limited to activities within a single JVM. Also, as future work we would like to support smarter
isolation policies that would allow for full recovering of a thread even if it is interrupted during a blocking
operation.

References

[1] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assessing randomized
algorithms in software engineering. Software Testing, Verification and Reliability, 24(3):219–250, 2014.

[2] Jonathan Bell and Luis Pina. Crochet: Checkpoint and rollback via lightweight heap traversal on stock
JVMs. In Proc. of the ECOOP, 2018.

[3] Antonia Bertolino and Andrea Polini. The audition framework for testing web services interoperabil-
ity. In Proc. of SEAA, pages 134–142. IEEE, 2005.

[4] Matt Chu, Christian Murphy, and Gail Kaiser. Distributed in vivo testing of software applications. In
Proc. of ICST, pages 509–512. IEEE, 2008.

[5] Luca Gazzola, Leonardo Mariani, Fabrizio Pastore, and Mauro Pezzè. An exploratory study of field
failures. In Proc. of the 28th ISSRE, pages 67–77, 2017.

[6] Anjana Gosain and Ganga Sharma. A survey of dynamic program analysis techniques and tools. In
Proc of the 3rd FICTA, International Conference, pages 113–122, Cham, 2015. Springer.

[7] Christian Murphy, Gail E. Kaiser, Ian Vo, and Matt Chu. Quality assurance of software applications
using the in vivo testing approach. In Proc. of 2nd ICST, pages 111–120. IEEE-CS, April 2009.

TECHNICAL REPORT 8

TR-Precrime-2019-06 — Java Test In-Vivo

[8] Christian Murphy, Moses Vaughan, Waseem Ilahi, and Gail Kaiser. Automatic detection of previously-
unseen application states for deployment environment testing and analysis. In Proc. of the 5th AST
Workshop, pages 16–23. ACM, 2010.

[9] Oracle. Java Platform Debugger Architecture (JPDA). https://docs.oracle.com/javase/8/
docs/technotes/guides/jpda accessed on 2019-07.

[10] Oracle. Java Thread Primitive Deprecation. https://docs.oracle.com/javase/8/docs/
technotes/guides/concurrency/threadPrimitiveDeprecation.html accessed on 2019-
07.

[11] Oracle. Java Virtual Machine Tool Interface (JVM-TI). https://docs.oracle.com/javase/8/
docs/technotes/guides/jvmti accessed on 2019-07.

TECHNICAL REPORT 9

https://docs.oracle.com/javase/8/docs/technotes/guides/jpda
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti

	Introduction
	An In-vivo Testing Framework
	Scenario: Roles and Responsibilities
	Annotations
	Isolation

	Validation Methodology
	Empirical Results
	Answering RQ1
	Answering RQ2
	Summary

	Conclusions and Future Work

