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ABSTRACT 

Purpose: The aim of this study was to evaluate the supportive role of molecular and structural 

biomarkers (CSF, FDG-PET and MRI) to the early differential diagnosis of dementia in a large 

sample of neurodegenerative dementia cases, and to the risk of disease progression in mild 

cognitive impairment (MCI). Methods: We evaluated the supportive role of CSF Aβ42, t-Tau, p-

Tau, conventional brain MRI and visual assessment of FDG-PET SPM t-map to early dementia 

diagnosis and MCI progression evaluation. Results: Diagnosis based on molecular biomarkers 

showed the better fit with the final diagnosis at a long follow-up.  FDG-PET SPM t-maps had the 

highest diagnostic accuracy in AD and in the differential diagnosis of non-AD dementias. The p-

tau/Aβ42 ratio was the only CSF biomarker providing a significant classification rate for AD.  An 

AD positive metabolic pattern as shown by FDG-PET SPM was the best predictor for conversion 

to AD in the MCI group.  Conclusions: In this clinical setting, FDG-PET SPM t-maps and p-

tau/Aβ42 ratio improved the clinical diagnostic accuracy, supporting the importance of these 

biomarkers in the emerging diagnostic criteria for AD dementia. Noteworthy, FDG-PET using 

SPM t-maps had the highest predictive value by identifying hypometabolic patterns for different 

neurodegenerative dementias and normal brain metabolism in MCI, confirming also its crucial 

exclusionary role.   
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Alzheimer’s Disease, Mild Cognitive Impairment, Biomarkers, Dementia diagnosis, clinical 
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Abbreviations  
 
AD=Alzheimer’s disease 
DLB=Dementia with Lewy bodies 
FTLD=Frontotemporal Lobar Dementia 
MCI=Mild Cognitive Impairment 
CSF= Cerebrospinal Fluid 
FDG-PET= Fluorodeoxyglucose- Positron Emission Tomography 
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MRI=Magnetic Resonance Imaging 
AUC=Area Under the Curve 
LR=Likelihood Ratio 
Sens=Sensitivity 
Spec=Specificity 
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1. INTRODUCTION 

 
The World Alzheimer Report (2011) underlined that only 20 to 50% of dementia cases are 

early recognized [1]. The so called “treatment gap” between the early stages of pathology and a 

correct diagnosis leads an increase in the public costs and may be related to poor efficacy of 

treatments [2]. Moreover, different studies found that between 12% and 23% of diagnoses of 

Alzheimer’s disease (AD) are not confirmed at autopsy (“misdiagnosed”) [3]. These 

misdiagnoses may be due to the fact that different pathological conditions mimic symptoms of 

AD. Although diagnostic criteria of dementia are constantly improving (e.g., [4–10]), several 

challenges in terms of differential and early diagnosis of dementias remain in a clinical setting. 

Thus, the validation of dementia biomarkers supporting a more certain early and differential 

diagnosis has become urgent [11].  

In the case of AD, there is evidence of distinctive topographical and pathological markers for 

symptomatic, prodromal and also preclinical AD condition [12–19]. Both the National Institute 

on Aging-Alzheimer’s Association workgroup (NIA-AA) and the International Working Group 

(IWG) proposed a significant revision of guidelines for preclinical/asymptomatic, prodromal 

(mild cognitive impairment (MCI) due to AD), and symptomatic AD conditions [4,5,10,20], 

centring the diagnosis on the supportive use of biomarkers.  

Cerebrospinal fluid (CSF) levels of Aβ42, total tau (t-Tau) and phosphorylated tau (p-Tau) 

proteins have been extensively investigated as potential in vivo markers of AD pathology, in the 

typical and atypical AD conditions [21,22], as well as in prodromal AD [15]. Low CSF Aβ42 

levels in combination with high t-Tau/p-Tau showed high sensitivity and specificity in AD and 

high predictive value for progression of MCI to AD [23]. Since variations in the procedures may 

account for different accuracy [24], worldwide standard operating procedures have been 

suggested [24].  

Structural MRI has been recognized as a useful measure of cerebral atrophy of either whole 

brain or, more specifically, of perirhinal and entorhinal cortices in AD [16]. Medial temporal 
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lobe atrophy however, is not specific for AD condition, since it may also be present both in other 

neurological conditions [25–27] and in advancing age [28]. For this reasons, it has a limited 

value in differential diagnosis of AD condition [16].  

FDG-PET provides in vivo information about the distribution of synaptic dysfunction in 

dementia and represents the most proximal biomarker associated with the neuronal dysfunction 

of AD, closely related to its clinical presentation [29,30]. In the last twenty years, FDG-PET 

imaging earned increasing supportive role in the diagnostic algorithm of AD [31]. In addition, 

research studies on a memory clinic setting showed that FDG-PET has added value over the 

standard diagnostic work-up, influencing the final diagnosis [32,33]. This is especially true when 

prior diagnostic confidence is low [34]. Since neurodegenerative dementias present selective 

neuronal vulnerabilities, according to which specific neuronal population dies and others are 

resistant to neurodegeneration, specific topographical patterns of cerebral hypometabolism may 

be detected also at a single-subject level [14,33,35]. 

The simple use of biomarkers in the diagnostic algorithm is not sufficient alone to guarantee a 

greater accuracy. Their accuracy depends on the type (e.g., amyloid PET imaging, FDG-PET or 

MRI) as well as on the measurement method [36]. Semi-quantitative or quantitative assessment 

and standard operating procedures are strongly suggested by scientific societies as key to a well-

advised use of biomarkers in research, clinical settings and trials[37]. In addition, the combined 

use of different biomarkers and the standardized procedures are expected to facilitate the 

diagnostic process at the single-subject level [38–40].  

Previous studies have provided evidence for the role of biomarkers in dementia diagnosis and 

in risk progression to dementia in MCI using the direct comparison of the three biomarkers (i.e., 

CSF, MRI and FDG-PET) [41–46]. These studies reported some discrepancies in their effective 

role that might depend on different aspects, such as the included population and possible clinical 

misdiagnoses, the differential role of biomarkers during the disease course, and, crucially, on the 

biomarker measurement methods [47]. Accuracy of imaging biomarkers can be indeed very 
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different whether based on parametric approaches or on visual inspection that greatly depends on 

the observer’s experience and lacks of a clear cut-off between normal and pathological findings 

[36].  

In this study, we aimed at evaluating the role of CSF measures, MRI and FDG-PET 

biomarkers as available in a routine clinical setting for the early differential diagnosis of AD and 

for prediction of progression to dementia in MCI subjects. In particular, we evaluated the role of 

CSF Aβ42, t-Tau and p-Tau proteins levels, of atrophy on visual assessment of conventional 

MRI, and of visual assessment of FDG-PET Statistical Parametrical Mapping (SPM) t-maps 

[33,48] in a large sample of subjects attending a memory clinic. We assessed the power of each 

biomarker and their combined use for the early differential diagnosis of dementia and their 

predictive value in the progression to dementia in MCI subjects. Given the previous evidence of 

a very high diagnostic accuracy of our new validated procedure for the routine assessment of 

FDG-PET imaging in clinical setting [33,48], we predicted that this biomarker would provide 

superior performance compared to the other biomarkers.  

 

2. MATERIAL AND METHODS  

 
2.1 Subjects 

 
We retrospectively collected information about 86 early dementia (i.e., AD, frontotemporal 

lobar degeneration-FTLD and dementia with Lewy bodies-DLB) patients and 35 MCI subjects. 

All individuals were referred to the memory clinics of the San Raffaele Hospital (Milan, Italy) 

with memory or other cognitive impairments during the period between 2009 and 2012. At 

referral, they were evaluated by experienced behavioral neurologists and neuropsychologists. 

Clinical evaluation included a structured clinical interview, a full neurological examination, and 

a standard neuropsychological evaluation. See Perani et al. [33] for details on the 

neuropsychological battery used in our clinical setting. All patients underwent also lumbar 
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puncture and CSF analysis of Aβ42, t-Tau and p-Tau levels as well as a FDG-PET scan. 

Additionally, a conventional MRI scan was considered for visual analysis of atrophy in 60 

individuals (i.e. 19 AD, 8 FTLD, 8 DLB, and 19 MCI).  

All biomarker data were collected within 3 months from the baseline clinical visit. Each 

patient underwent a clinical and neuropsychological follow-up (27.48±10.43 months), that 

confirmed the diagnosis in dementia cases and in the MCI subjects who converted. Accordingly, 

MCI subjects were sub-grouped into converters and non-converters to AD.   

 

2.2 Study Design 

 

Firstly, two neurologists expert in dementia and blind to the previous clinical diagnosis 

reviewed all the included cases in order to formulate a possible diagnosis exclusively based on 

clinical information (i.e., case history, neurological examination and neuropsychological data), 

namely a “clinically-based classification”. Sixteen patients out of 121 were excluded from the 

initial sample (i.e., cases without a complete diagnostic agreement between the two experts 

and/or not fulfilling clinical criteria for neurodegenerative dementia or for MCI condition [7–

10,20,49]. Thus, the final cohort included 75 dementia patients (45 men and 30 women; mean 

age=66.71±7.22 years; Mini Mental State Examination (MMSE)=18.41±5.26; disease 

duration=3.25±1.85) either affected by AD, FTLD or DLB, and 30 MCI subjects (15 men and 15 

women; mean age=68.24±6.8 years; MMSE=25.96±2.25). See Table 1 for details. Dementia was 

defined according to the clinical criteria of each main neurodegenerative dementia subtype [6–

10,20]. MCI was defined as the presence of objective impairments at the neuropsychological 

evaluation in memory and/or other cognitive domains in the absence of functional impairment 

and dementia condition [49]. In addition, CSF Aβ42, t-Tau and p-Tau levels as well as MRI and 

FDG-PET scans were evaluated according to the procedures reported below. In particular, CSF 

protein levels were considered as abnormal on the basis of established cut-off values [50]. Two 
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expert neuroradiologists and two nuclear physician experts evaluated MRI and FDG-PET scans 

respectively, blind to clinical-neuropsychological information, in order to provide a final 

classification of the biomarker results (see following sections). 

In a second step, in order to evaluate the additional value of the biomarkers, the same 

neurologists formulated a new diagnosis adding to the clinical data the information obtained by 

all the available biomarkers (i.e., CSF plus FDG-PET, and MRI), thus providing a 

“clinically/biomarker-based classification”. The two diagnostic classifications (i.e., clinically-

based and clinically/biomarker-based) were then compared to the clinical diagnosis obtained 

with a follow-up of more than 2 years (follow-up diagnosis).  

All subjects, or their informants/caregivers, gave informed consent, following detailed 

explanation, to the each experimental procedure, previously approved by the local Ethical 

Committee. 

 

2.3 CSF acquisition and analysis 

 

All patients underwent lumbar puncture in the L3-L4 or L4-L5 interspace after giving written 

informed consent, and following detailed explanation of the procedure. The procedure was 

always performed early in the morning. No serious adverse events were reported. CSF (8-10 ml) 

was collected in sterile polypropylene tubes. Routine chemical parameters were determined; the 

remaining CSF was used to measure CSF Aβ42, t-Tau and p-Tau values. After centrifugation, 

CSF samples were stored at -80°C until the analysis. Then, measurements of Aβ42, t-Tau and p-

Tau levels were performed in the local laboratory (LABORAF, San Raffaele Hospital, Milan, 

Italy) by technicians blinded to the clinical diagnosis, using a commercially available ELISA kits 

(Innogenetics®, Gent, Belgium), according to the manufacturer’s instructions. Cut-off values for 

AD reported in the literature [50] were adopted, i.e.  Aβ42 ≥ 500 ng/L; t-Tau ≤ 350 ng/L; p-Tau ≤ 

61 ng/L.  
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2.4 MRI acquisition and analysis 

 

 Brain MRI scans were acquired using a 3-Tesla Philips Achieva scanner (Philips Medical 

Systems, Best, NL) with an 8-channel head coil in a subgroup of 60 patients. Scanning session 

included T1-weighted volumetric MR scan (220 slices, TR/TE=600/20 ms, voxel size 

0.9x0.9x0.8 mm3).  

 Each scan was evaluated and independently classified by two expert raters. Brain atrophy 

were considered according to the validated MRI patterns of the three main neurodegenerative 

dementia conditions (i.e., AD, DLB, and FTLD) [6–8,10,51]. Each scan received a label 

indicating whether it did not satisfy criteria for brain atrophy (i.e., Negative scan) or it was 

compatible with AD (AD-like pattern scan) or non-AD (non AD-like pattern scan) dementia 

condition.   

 

2.5 FDG-PET acquisition and analysis 

 
FDG-PET acquisitions were performed at the Nuclear Medicine Unit, San Raffaele Hospital 

(Milan, Italy), following standardized procedures [13]. All images were acquired with a 

Discovery STE (GE Medical Systems, Milwaukee, WI) multi-ring PET tomography (PET-CT) 

system (time interval between injection and scan start=45 minutes; scan duration 15 minutes). 

Images were reconstructed using an ordered subset expectation maximization (OSEM) 

algorithm. Each PET phase was corrected for attenuation with CT data of the corresponding 

phase. For each PET scan has been acquired either 35 or 47 (depending to the different scanner 

characteristics) transaxial tomographic slices of 4.25 mm, re-oriented into the coronal and the 

sagittal planes. The emission images were then reconstructed using a filtered back-projection, 

using the software provided by the manufacturers.  
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Image pre-processing and statistical analysis were performed according to the new procedure 

developed in our laboratory [33,48]. Each patient scan was then tested for relative 

“hypometabolism” by comparison with a large sample of FDG-PET scans from a database of 

normal controls on a voxel-by-voxel basis [33]. Proportional scaling was used to remove inter-

subject global variation in PET intensities. Additionally, voxel-wise comparisons were made 

using a within-brain comparison-specific explicit FDG mask in order to remove emission counts 

outside of the brain and to restrict subsequent analyses to within-brain voxels. The threshold was 

set at p=0.05, FWE-corrected for multiple comparisons at the voxel level. Only clusters 

containing more than 100 voxels were deemed to be significant. 

The FDG-PET hypometabolic patterns were classified by two nuclear physicians, blind to 

clinical-neuropsychological details, CSF and MRI results. Raters were asked to classify the 

SPM-t map as normal or abnormal. Namely, a normal SPM-t map should not reveal any 

significant hypometabolic pattern at a FWE-corrected threshold, either at the voxel or the cluster 

level. In case of abnormal findings, raters had to decide whether the hypometabolic pattern was 

suggestive of a specific neurodegenerative dementia subtype, according to a well-established 

literature [6–8,12,33,35,52]. So, each SPM-t map was classified as Negative, AD-like, DLB-like 

and FTLD-like following the criteria reported elsewhere [14]. 

 

2.6 Statistical analysis 

 
Data were analyzed using the Statistical Package for Social Sciences software (SPSS V. 

19.0). Socio-demographical differences between groups were assessed with Chi-square statistic 

for the dichotomous variables or Kruskal Wallis One-way analysis of variance by ranks for the 

continuous variables.  
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First, we compared the clinically-based to the clinically/biomarker-based classification, in 

order to establish whether they presented discordances with respect to the reference follow-up 

diagnosis (Cohen’s k analysis). 

Cohen’s k coefficient was also used to evaluate the inter-rater agreement between the experts’ 

classifications for MRI and the FDG-PET imaging, resulting in an “almost perfect agreement” (k 

> 0.85) in both cases. Thus, we selected a single set of classifications (i.e., the best one) for the 

subsequent analyses. 

Then, we performed separate logistic regression analyses to evaluate the accuracy of each 

biomarker to correctly differentiate dementia subtypes. In particular, AD vs. non-AD 

(DLB+FTLD); FTLD vs. non-FTLD (DLB+AD) and DLB vs. non-DLB (FTLD+AD) 

comparisons were performed. This was crucial to establish the role of biomarkers in 

differentiating non-AD conditions. MRI was excluded from the latter two analyses (FTLD vs. 

non-FTLD and DLB vs. non-DLB) because of no specific DLB or FTLD classification was 

available for MRI scan.  

In a further step, the significant regressors derived from the logistic regression analyses were 

joined in a logistic regression multivariate model. The regressors resulting from the multivariate 

analysis were considered as the most informative for the specific type of dementia diagnosis. 

Age and gender variables were inserted as covariates both for separate and multivariate logistic 

regression analyses, in order to verify whether their contribution to the model. 

MCI who progressed to AD within the follow-up period (27.48±10.43 months) were 

compared to those who did not progress to AD and who remained stable, using Cox proportional 

hazard regression analysis. CSF, MRI and FDG-PET biomarkers were included in the 

multivariate analysis, in order to find those biomarkers significantly associated with progression 

to AD. Each variable was entered in a stepwise forward manner. Thus, the final model was 

composed only by variables significantly predicting AD at the time of follow-up."Age and gender 

were inserted as covariates and follow-up time used as temporal variable of the model. Area 
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under the curve (AUC), sensitivity (Sens), specificity (Spec), and positive and negative 

likelihood ratios (LR+ and LR-) were calculated for each biomarker. All statistical results were 

considered as significant with threshold p≤0.05. 

 

3. RESULTS  

 

3.1 Descriptive statistics 

 
No significant age difference was found among groups, except for DLB patients who were 

significantly older (72.36±6.02 years; p<0.001) than all the other groups (Table 1). At the 

clinical follow-up, 10 out of 30 MCI subjects converted to dementia. In particular, 8 MCI 

converted to AD, 2 MCI converted to non-AD dementias (i.e., 1 FTLD and 1 DLB). MCI 

converter and non-converter groups did not show any significant demographic difference (Table 

1). 

 

 
3.2 Comparison between clinically-based and clinically plus biomarker-based 

classifications 

 
Cohen’s Kappa analysis demonstrated a significant but not perfect agreement between the 

clinically-based and clinically/biomarker-based classifications (Cohen’s K = 0.75 p<0.001), with 

a mismatch of 24% between them. Considering the follow-up diagnosis, the 

clinically/biomarker-based classification performed better than the clinically-based one. 
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3.3 Statistical analyses in dementia  

 

3.3.1 AD vs. non-AD comparison 

Among the CSF measures, the best performer for AD/non-AD classification was the ratio of 

p-Tau/Aβ42 (Expβ=8.001; CI= [2.55 - 25.15]; p<0.001; AUC=0.81; Sens=83%; Spec=64%; 

LR+=2.3; LR-=0.26). Although Aβ42 showed a good sensitivity (85%), its specificity was poor 

(46%). Since AD-related pathology may be present also in DLB patients, particularly in those 

with more severe cognitive impairment, we then excluded DLB cases from the non-AD dementia 

group. Thus, performing this new comparison analysis on AD vs. FTLD group, we found that, 

among the CSF biomarkers, Aβ42 significant influenced the final regression model (Expβ=14.28; 

CI= [3.49 – 58.54]; p<0.001; AUC=0.78; Sens=85%; Spec=71%). Compared to t-Tau, p-Tau 

showed a better performance even if poorer than p-Tau/Aβ42 ratio (AUC=0.67; Sens=70%; 

Spec=64%).  

Considering the two neuroimaging biomarkers, FDG-PET was the most accurate (Expβ=88; 

CI= [18.17 - 426.13]; p<0.001; AUC=0.90; Sens=94%; Spec=86%; LR+=6.71; LR-=0.07) 

whereas MRI showed both low sensitivity (46%) and specificity (50%) See Table 2. 

Notwithstanding the good performance of both FDG-PET and p-Tau/Aβ42 ratio, when entered 

together in a multivariate logistic regression model, only FDG-PET survived the statistical 

significance threshold.  

Age and gender did not influence the results of the regression model. 

 

3.3.2 FTLD vs. non-FTLD and DLB vs. non-DLB comparisons 

The binomial logistic regression showed that FDG-PET was the most accurate biomarker to 

discriminate both FTLD from non-FTLD (Expβ=251.33; CI= [24.17 – 2613-65]; p<0.001; 
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AUC=0.94; Sens=93%; Spec=95%; LR+=18.6; LR-=0.07) and DLB from non-DLB patients 

(Expβ=150; CI= [15.17–1483.15]; p<0.001; AUC=0.94; Sens=71%; Spec=98%; LR+=35.5; LR-

=0.3). This result was confirmed also after entering age in the regression model as nuisance 

variable (Expβ=187.013; CI= [12.30 – 2845.60]; p<0.000).  

Among CSF biomarkers, the Aβ42 value showed a good accuracy in distinguishing FTLD 

from non-FTLD patients (Expβ=0.07; CI= [0.018 – 0.27]; p<0.001). Notably, FDG-PET and 

Aβ42 differently contributed to the correct discrimination of FTLD vs. non-FTLD patients 

(Figure 2). In particular, while a positive FDG-PET pattern for FTLD increased the likelihood to 

correctly classify FTLD cases, at the opposite, the positivity of Aβ42 was in good agreement with 

the non-FTLD (AD or DLB) classification.   

 

 
3.4 Statistical analyses in MCI   

 

All biomarkers were considered in the multivariate Cox proportional hazards analysis 

comparing MCI converters and non converters to AD. FDG-PET was the only predictor of 

conversion in the final step-wise model (Expβ=8.62; CI= [1.02 – 72.74]; p<0.05) (Figure 3). The 

small number of patients prevented further analyses on MCI converters to other dementias 

(FTLD or DLB).  

In the ROC analysis, both t-Tau/Aβ42 and p-Tau/Aβ42 ratios were informative in the 

prediction of conversion to AD. Though the p-Tau/Aβ42 ratio showed a higher specificity 

compared to FDG-PET (96% vs. 90%), FDG-PET had a higher sensitivity (86% vs. 57%). The 

lower FDG-PET specificity is due to the number of MCI with AD-like FDG-PET pattern who 

did not convert in the follow-up time, and thus considered by the ROC analysis as false 

positives.  
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4. DISCUSSION 

 

In this study, we evaluated the supportive role of CSF Aβ42, t-Tau, p-Tau, conventional brain 

MRI and visual assessment of FDG-PET SPM t-map to early dementia diagnosis and MCI 

progression evaluation. In particular, we investigated the biomarkers’ accuracy to recognize AD 

and non-AD dementias (DLB and FTLD), and to predict progression to dementia in MCI 

subjects.  

The first key result of this study was a significant, but not perfect, agreement between the 

clinically-based and clinically/biomarker-based classifications. More specifically, only the 

clinically/biomarker-based classification resulted in a consistent diagnosis with reference to the 

follow-up diagnosis. This result indicates the significant supportive role of biomarkers in clinical 

settings, in order to improve clinicians’ confidence for a correct diagnosis. Diagnostic errors 

have a number of undesirable implications. Both patient and caregivers may experience 

significant emotional stress and psychological damage related to a misdiagnosis of an incurable 

neurodegenerative condition. In addition, a wrong AD diagnosis may imply the administration of 

long-term pharmacological treatments (e.g., cholinesterase inhibitors) useless for non-AD 

conditions. It may also result in the misidentification of possible reversible conditions such as 

vitamin deficiency and depression.  

As proved by the statistical analyses, the better performance of the clinically/biomarker-based 

classification is mainly due to the supportive role of the visual assessment of FDG-PET SPM t-

maps. The semi-quantitative method here used provided indeed very high sensitivity (94%) and 

specificity (86%) in AD vs. non-AD recognition. FDG-PET was the best biomarker among those 

investigated, being able also to identify non-AD dementias (i.e., FTLD vs. non-FTLD: 

Sens=93% and Spec=95%; DLB vs. non-DLB: Sens=71% and Spec=98%). This was a crucial 

part of our analyses. While the majority of FDG-PET imaging studies in dementia investigated 
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AD [12,39,44], only a few explored AD vs. non-AD [33,53]. Nevertheless, FDG-PET has been 

included in the research diagnostic criteria of AD as well as non-AD dementia conditions [4–

7,20,54] .  

Here we showed that the application of an optimized voxel-based method for FDG-PET scan 

evaluation was crucial to achieve a very high diagnostic accuracy. As previously validated by 

our group [33,48], this tool had high sensitivity (96%) and specificity (84%) to recognize 

dementias, as well as to predict progression to dementia  or reversion to normal cognition in 

MCI [14]. Its use guarantees not only higher diagnostic accuracy compared to the visual 

assessment of FDG-uptake, but also a higher level of confidence even for moderate-skilled FDG-

PET experts [33].  

Among the CSF biomarkers, the p-Tau/Aβ42 ratio showed a good accuracy in distinguishing 

AD from non-AD as well as in predicting MCI conversion to AD. These results agree with a 

recent meta-review [15] that reported p-Tau/Aβ42 ratio as the most accurate CSF measure for 

differentiating AD from controls and other dementias, and also for predicting MCI conversion to 

AD. In our study, the p-Tau/Aβ42 ratio, however, did not reach significance in the Cox regression 

analysis, indicating that CSF measures are less effective predictors of MCI conversion than 

imaging biomarkers [55,56]. Moreover, the p-Tau/Aβ42 ratio has limited value for the differential 

diagnosis of dementia, and it owns a low specificity possibly related to presence of patients with 

AD-related pathology in the non-AD group (i.e., DLB patients). The CSF profile of DLB, 

characterized by very low Aβ42, with normal Aβ40/42 ratio and moderate increase of t-Tau and p-

Tau levels, is in fact comparable to the AD CSF profile [57].  

Qualitative evaluation of atrophy on MRI was the less informative biomarker both to support 

dementia classification and to predict MCI conversion to AD. Its low accuracy is probably 

related to different factors. Above all, the assessment of brain focal atrophy on MRI that is a 

fully operator-dependent procedure could be possibly biased with respect to semi-quantitative or 

quantitative procedures.  Semi-quantitative or quantitative MRI approaches, however, are still 
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unavailable as measurement at the single-subject level in the clinical setting, lacking of validated 

cut-off values.  In addition, the diagnostic utility of medial temporal lobe atrophy recognition on 

MRI is very limited, as it is a common neuroradiological finding in other neurodegenerative 

neurological conditions, including frontotemporal dementia  [16,25,26,58] as well as in normal 

aging [28].  

Statistical analyses in MCI confirmed that FDG-PET imaging is the most useful biomarker to 

predict further progression to dementia [14]. Noteworthy, FDG-PET SPM t-maps was able to 

identify, at the single-subject level, dysfunctional brain metabolic patterns typical of different 

dementia conditions. The high accuracy in identifying heterogeneous hypometabolic patterns, 

predictors of conversion to AD as well as to non-AD dementia, as also shown in a recent study 

[14], in this clinical context, confirms its high diagnostic value and suggests its role in avoiding 

multiple examinations in MCI subjects over months and years, which may lead to unnecessary 

delay in proper clinical management.  

 

5. CONCLUSIONS 

 

Considering the great overlap in clinical presentation among neurodegenerative disorders, 

diagnosis of dementia may be a difficult task in clinical practice, particularly in the early phase. 

Clinical and neuropsychological information alone may lead to a significant number of 

diagnostic errors and uncertainties, thus to unnecessary or inappropriate treatments. In this 

context, supportive findings from effective biomarkers have a great value in order to reach a 

more accurate early differential diagnosis. Here, in the routine clinical setting of our memory 

clinics, we have shown that the use of a validated and standardized method for semi-quantitative 

assessment of FDG-PET scan offers a solid support for diagnosis at the individual level with 

high accuracy and confidence.  
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Future multi-centric studies, accounting for larger samples of dementia patients and MCI 

subjects, will increase the power of generalization of the present findings. The establishment of 

evidence-based standardized operation procedures is necessary for the correct use of biomarkers 

in clinical practice. 
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LEGEND: 

 
Figure 1. Best models for each dementia subgroup obtained performing ROC curve and Logistic 

regression analyses for A) AD vs. non-AD comparison; B) FTLD vs. non-FTLD comparison and 

C) DLB vs- non-DLB comparison. In the horizontal axis, the specificity values and in the 

vertical axis the sensitivity values. Ref = Reference line; FDG-PET = fluorodeoxyglucose 

positron emission tomography; p-Tau/Aβ42 = phosphorylated Tau / Aβ42 ratio. 

 

 

Figure 2. Positive and negative likelihood ratio (LR+ and LR-) for correct classification between 

patients with Alzheimer’s disease (AD), frontotemporal lobar degeneration (FTLD) and 

dementia with Lewy body (DLB). A positive LR greater than 5 indicates that the biomarker 

positive classification is more probably associated with the disease occurrence. A negative LR 

below 0.2 indicates a relevant association between negative biomarker classification and the 

absence of dementia condition. p-Tau/Aβ42=phosphorylated Tau / Aβ42 ratio; t-Tau/Aβ42=total 

Tau/Aβ42 ratio; p-Tau=phosphorylated Tau; t-Tau = total Tau; MRI = magnetic resonance 

imaging; FDG-PET = fluorodeoxyglucose positron emission tomography. 

 

Figure 3. Survival curves of MCI converters vs. MCI not converters within the follow-up time 

according to the FDG-PET pattern at the baseline. None of the MCI subjects with negative FDG-

PET pattern (n=8) converted to AD (blue line); one of the MCI subjects with FDG-PET AD 

positive pattern converted to non-AD dementia (grey line); six MCI subjects classified as AD 

positive with FDG-PET converted to AD (green line) showing the higher risk (lower level of 

survival). 
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Table 1. Demographical and clinical characteristics of the sample. Values are mean (standard deviation). * = significant difference between DLB and 
all other groups; # = significant differences between MCI-converter and MCI-non converter and the other groups. AD = Alzheimer’s Disease; DLB = 
Dementia with Lewy Bodies; FTLD = Frontotemporal Lobar Degeneration; MCI = Mild Cognitive Impairment; MMSE = Mini Mental State 
Examination.  
 
 

 
 AD (n=47) FTLD (n=14) DLB (n=14) MCI-converter (n=10) MCI-non converter (n=20) P value 

Age 66(6.8) 65(7.3) 72(6) 69(5.5) 68(7.6) <0.05 * 

Gender (m/f) 26/21 8/6 11/3 7/4 8/11 N.S. 

Disease Duration 39(24) 32(19) 42(22) 28(10.9) 46.8(38) N.S. 

MMSE 18(4.5) 20(7.1) 16(5.2) 26(1.8) 26(2.5) <0.05 # 
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Table 2. ROC analyses including sensitivity and specificity of each biomarker. In bold AD = Alzheimer’s disease; FTLD = frontotemporal lobar 
degeneration; DLB = dementia with Lewy body; AUC = area under the curve; Sens = sensitivity; Spec = specificity; t=Tau = total Tau; p-Tau = 
phosphorylated Tau; MRI = magnetic resonance imaging; FDG-PET = fluorodeoxyglucose positron emission tomography. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 

 

 
 
AD vs. non-AD Comparison 

 
FTLD vs. non-FTLD Comparison 
 

 
DLB vs. non-DLB Comparison 

 ROC AUC Sens % Spec % ROC AUC Sens % Spec % ROC AUC Sens % Spec % 
Aβ42 0.64 85% 43% 0.22 29% 15% 0.57 86% 72% 
t-Tau 0.62 38% 86% 0.45 21% 69% 0.36 7.1% 34% 
p-Tau 0.67 70% 64% 0.37 36% 38% 0.37 36% 62% 
t-Tau/Aβ42 0.80 79% 68% 0.20 36% 23% 0.31 43% 77% 
p-Tau/Aβ42 0.81 83% 64% 0.23 43% 16% 0.32 57% 84% 
MRI 0.52 46% 50% - - - - - - 
FDG-PET 0.90 94% 86% 0.94 93% 95% 0.94 71% 98% 








