
Self-assessment Oracles for Anticipatory Testing

TECHNICAL REPORT: TR-Precrime-2019-04

Gunel Jahangirovaa, David Clarkb, Mark Harmanc and Paolo Tonellaa
aUniversità della Svizzera italiana; bUniversity College London; cFacebook and University College London
An Empirical Validation of Oracle Improvement

Project no.: 787703
Funding scheme: ERC-2017-ADG
Start date of the project: January 1, 2019
Duration: 60 months

Technical report num.: TR-Precrime-2019-04
Date: January 2019
Organization: Università della Svizzera italiana

Authors:

Gunel Jahangirovaa, David Clarkb, Mark Harmanc and Paolo
Tonellaa
aUniversità della Svizzera italiana; bUniversity College London;
cFacebook and University College London

Dissemination level: Public
Revision: 1.0

Disclaimer:
This Technical Report is a pre-print of the following publication:
Gunel Jahangirova, David Clark, Mark Harman and Paolo Tonella: An Empirical Validation of Oracle Im-
provement. IEEE Transactions on Software Engineering (TSE), August 2019 (early access)

Please, refer to the published version when citing this work.

TR-Precrime-2019-04 — Oracle Improvement

Università della Svizzera Italiana (USI)

Principal investigator: Prof. Paolo Tonella
E-mail: paolo.tonella@usi.ch
Address: Via Buffi, 13 – 6900 Lugano – Switzerland
Tel: +41 58 666 4848
Project website: https://www.pre-crime.eu/

TECHNICAL REPORT ii

mailto:paolo.tonella@usi.ch
https://www.pre-crime.eu/

TR-Precrime-2019-04 — Oracle Improvement

Abstract

We propose a human-in-the-loop approach for oracle improvement and analyse whether the proposed ora-
cle improvement process is helping developers to create better oracles. For this, we conducted two human
studies with 68 participants overall: an oracle assessment study and an oracle improvement study. Our
results show that developers exhibit poor performance (29% accuracy) when manually assessing whether
an assertion oracle contains a false positive, a false negative or none of the two. This shows that auto-
mated detection of these oracle deficiencies is beneficial for the users. Our tool OASIs (Oracle ASsessment
and Improvement) helps developers produce assertions with higher quality. Participants who used OASIs
in the improvement study were able to achieve 33% of full and 67% of partial correctness as opposed to
participants without the tool who achieved only 21% of full and 43% of partial correctness.

TECHNICAL REPORT iii

TR-Precrime-2019-04 — Oracle Improvement

Contents

1 Introduction 1

2 Background 1
2.1 Quality of Assertions . 1
2.2 Approach & Implementation . 3

2.2.1 False Positive Detection . 3
2.2.2 False Negative Detection . 3
2.2.3 Iterative Improvement Process . 4

2.3 Preliminary Validation . 5

3 Human Study 6
3.1 Oracle Assessment Study . 6

3.1.1 Object Selection . 6
3.1.2 Participants . 7
3.1.3 Experimental Procedure . 7
3.1.4 Results . 8

3.2 Oracle Improvement Study . 12
3.2.1 Participants . 13
3.2.2 Experimental Procedure . 13
3.2.3 Oracle Improvement Process: Possible Cases . 15
3.2.4 Results . 16

3.3 Threats to Validity . 20

4 Related work 21
4.1 Automated Oracle Generation . 22

4.1.1 Test Case Assertions . 22
4.1.2 Specification Mining . 22

4.2 Human Studies . 23
4.3 Tool Output Improvement . 24

5 Conclusion 24

TECHNICAL REPORT iv

TR-Precrime-2019-04 — Oracle Improvement

1 Introduction

Recent advances in test input generation have left the Oracle Problem as a key remaining bottleneck in
the improvement of the overall effectiveness and efficiency of the software testing process. Indeed, the
effectiveness of testing depends both on the quality of the test cases and on the quality of the oracle [2,
40, 44]. There are many techniques for assessing and improving the adequacy of test cases, e.g., their code
coverage, and many hundreds of studies about search-based [16, 28] and symbolic execution [5] techniques
alone. In comparison, there is relatively little work to help the software tester with the Oracle Problem,
i.e., the problem of defining accurate oracles, capable of detecting all and only faulty behaviours exercised
during testing [12, 18, 25, 36, 37, 38]. Without a (good) oracle to determine whether the test output is correct,
test inputs that satisfy the strictest adequacy criteria remain useless and testing is ineffective.
The oracle’s performance depends on two properties: Completeness: All correct program states should
be accepted by the oracle, which should raise an alarm only on faulty states, with no false alarms (no false
positives). Soundness: All faulty program states should be rejected by the oracle, so that there are no missed
faults (no false negatives). Oracle assessment must thus identify and report false positives or false negatives
(or both), so as to support the developer in improving the oracle soundness and completeness.
In our previous work [19] we introduced an approach that is based on search based test case generation
[10, 15, 28] to identify false positives and mutation testing [21, 22] to identify false negatives. Our tool OA-
SIs (Oracle ASsessment and Improvement) [20] generates counterexamples as test cases that demonstrate
incompleteness and unsoundness. The tester uses them to iteratively improve the oracle. The process
continues until OASIs is unable to generate new counterexamples and finishes with an improved (more
complete and sound) oracle.
Our approach necessarily places the human tester in the loop, because modifications made to the oracle
to solve reported false positives and false negatives depend on the intended program behaviour (vs. the
implemented behaviour), which we assume is known to developers through informal knowledge, require-
ment documents and other sources of documentation.
In the initial evaluation of our approach the human in the iterative oracle improvement process was rep-
resented by the first author. She had no familiarity with the subjects, no previous experience in writing
specifications but, of course, knew very well how to interpret the output of OASIs.
In this paper we aim to analyse further whether our approach is helpful for testers to create better oracles.
For this purpose we conducted two different human studies with 68 participants overall. 39 participants
were involved in our Oracle Assessment Study, where we assessed the ability of humans to detect false
positives and false negatives manually, without any tool support. The results of this study are indicative
of how helpful the automated detection of oracle deficiencies could be for developers. Then, 29 different
participants were involved in our Oracle Improvement Study, where they were assigned to two different
groups (control and treatment). Participants from the first group were given initial assertion oracles (for
which the oracle deficiency type was indicated) to be improved manually. Participants from the second
group performed an iterative improvement process on the same initial oracles with the support of our tool,
playing the role of the human in the loop. The comparison of the quality achieved in the final oracles
validates empirically the effectiveness of the proposed approach.
This work extends our previous paper [19] with the following novel contributions:

• A novel human study on oracle assessment;

• A novel human study on oracle improvement.

The paper is organised as follows. Section 2 summarises our previous work [19] and its preliminary evalu-
ation. Section 3 reports new experimental results of the oracle assessment and oracle improvement studies,
and enumerates the threats to validity. We discuss the related work in Section 4. Finally, Section 5 concludes
the paper.

2 Background

2.1 Quality of Assertions

Let us consider a program point, pp, in a program under test, P . Let Σ be the set of all states that can occur
in P and I ⊆ Σ be the set of start states. We are interested in the set of states that reach pp via execution of

TECHNICAL REPORT 1

TR-Precrime-2019-04 — Oracle Improvement

P on I .
Rpp = {s | ∃i ∈ I ∧ [[P]]pp i = s}

where [[P]]pp i indicates the state reached at pp by executing P on i ∈ I .
We place an assertion, 〈assert〉, at pp with the intention of using this assertion as an oracle. Let us define:

App = {s ∈ Rpp | 〈assert〉s = T}

to be the set of reachable states for P at pp on which the assertion is true.
Let us consider the states that occur at pp and are correct (the perfect oracle). We call this set Epp, and we
can think of Epp as the intersection between the set of correct states at pp for a correct “ghost program” [1],
G (an error free version of the program), and Rpp, the reachable states of the program under test.

Epp = {s ∈ Rpp | ∃i ∈ I ∧ [[G]]pp i = s}

Subsequently we will drop the subscript pp from R, E and A where the program point is clear from context.

Figure 1: Assertion improvement process: the intersection between states where 〈assert〉 is true (A) and
expected states (E), restricted to the subset of reachable states (R), is increased.

The overall aim of the testing process is to expose and fix faults via a cycle of testing and revision of P so
that Epp is as large as possible at every program point in P , making P closer to G. Oracle improvement
occurs within a given cycle, i.e., for a fixed P , during the testing phase. By oracle improvement we mean a
process aimed at refining 〈assert〉 so as to obtain a new assertion, 〈assert〉′ for whichA′ has a larger overlap
with the current E. Eventually, we would like to obtain a new assertion such that A′ ∩ E = A′ = E so that
the states at pp on which the new assertion is true are exactly the “correct” states of the ghost program. The
starting point of this process is represented in Figure 1, left.
Here, the region (A− E) is the set of states of P which are not “correct” but on which 〈assert〉 is True, that
is the set of reachable False Negatives, while (E − A) is the set of “correct” states on which the assertion is
False, that is the set of reachable False Positives.

Definition 1 (False Negatives) A false negative is a reachable program state where the given assertion is True,
although such state does not belong to the set of expected states according to the intended program behaviour.

Definition 2 (False Positives) A false positive is a reachable program state where the given assertion is False,
although such state does belong to the set of expected states according to the intended program behaviour.

The notions of False Positives and False Negatives are tightly connected with the notions of oracle sound-
ness and completeness. An assertion 〈assert〉 is Complete iff the “correct” reachable states are a subset of
the states accepted by the assertion, i.e. E ⊆ A. An assertion 〈assert〉 is Sound iff the accepted states are a
subset of the “correct” reachable states, i.e. A ⊆ E. Completeness implies that the number of False Positives
is zero; soundness implies that the number of False Negatives is zero.
After testing for False Positives and False Negatives we can strengthen 〈assert〉 to reduce the number of
False Negatives and simultaneously weaken it to reduce the number of False Positives, producing a new
assertion, 〈assert〉′ in the process illustrated in Figure 1, right. By reducing the number of False Positives
and False Negatives, the proposed oracle assessment and improvement process will make the oracle more
complete and sound.

TECHNICAL REPORT 2

TR-Precrime-2019-04 — Oracle Improvement

2.2 Approach & Implementation

2.2.1 False Positive Detection

Given a program assertion, we detect its false positives by generating execution scenarios where the as-
sertion fails while it should hold because the behaviour of the program is deemed correct. In such a case,
failure of the assertion points to a bug in the assertion, not in the program.

1 publ ic i n t value (i n t x , i n t y) {
2 i n t r e s u l t = x − y ;
3 a s s e r t (r e s u l t != x) ;
4 re turn r e s u l t ; }

1 publ ic i n t value (i n t x , i n t y) {
2 i n t r e s u l t = x − y ;
3 i f (! (r e s u l t != x)) {} ; // t a r g e t
4 re turn r e s u l t ; }

1 @Test (timeout = 4000)
2 publ ic void t e s t 0 () throws Throwable {
3 S ubt rac t s u b t r a c t 0 = new Sub tra c t () ;
4 i n t i n t 0 = s u b t r a c t 0 . value (1 0 5 7 , 0) ; }

Figure 2: Example of False Positive Detection

First, we perform a testability transformation [14] that transforms the assertion in the code into a new
branch. Let us consider a program under test P containing n assertions a1 . . . an:

ai = assert(ci), i ∈ [1 . . . n]

where ci is the boolean expression used in the assertion ai. For each assertion ai, i ∈ [1 . . . n] in P the
proposed testability transformation takes ci, negates it and replaces the assertion ai with a new branch
containing the negated condition:

if (!(ci)){}

Figure 2 shows an example of such a transformation. The condition of the assert statement at Line 4
‘(result != x)’ in Figure 2 (top), is negated to ‘(!(result != x))’ and then the assertion is replaced
with the branch: ‘if (!(result != x)) {}’ in Figure 2 (middle). After this transformation, the crite-
rion for false positive detection turns into the standard branch coverage criterion. We developed a test case
generator to cover the newly created branches as an extension of EvoSuite’s branch coverage generator
[9, 10]. Let P be the original program and B the set of branches in P . Let P ′ be the transformed version of
P and B′ the set of branches in P ′. The standard version of EvoSuite will aim to cover all the branches in
P ′. However, we are interested in covering only branches BA = B′ − B, i.e., the set of branches that are
created as a result of the transformation of assertions in P into branches. We altered the fitness function of
EvoSuite so that it aims to cover only the ‘then’ parts of the ‘if’ statements at branches in BA. In Figure 2,
the bottom part shows an example of a test case generated as evidence of a False Positive for the assertion at
line 4 in the top part. Indeed, if we execute the reported test case this assertion will fail, as result is actually
equal to x.

2.2.2 False Negative Detection

An assertion has no false negatives if it exposes all faults. Therefore, if we deliberately insert a fault into the
source code of program P , a sound oracle ought to always report the presence of this fault. Hence, to find
evidence of false negatives we use mutation testing to insert a (known) fault into program P that corrupts
the program state so that the corrupted state reaches the given assertion and the assertion statement does
not fail.
First, we instrument the source code of the class so that we can monitor (1) the values of all variables
visible at the program point where the assertion is located and (2) the outcome of the assertion, i.e. whether
it passes or fails. After the instrumentation, we use EvoSuite’s strong mutation killing criterion. Let us
consider the implementation under test P and its mutationsM1, . . . ,Mk. Program P and each of its mutants
have n assertions a1, . . . , an:

ai = assert(ci), i ∈ [1 . . . n]

TECHNICAL REPORT 3

TR-Precrime-2019-04 — Oracle Improvement

1 publ ic i n t getMax (i n t a , i n t b) {
2 i n t max ;
3 i f (a >= b) {
4 max = a ; //max = −a ;
5 } e l s e {
6 max = b ;
7 }
8 a s s e r t (max >= a && max >= b) ;
9 re turn max ; }}

1 // 1 . getMax , Line 5 InsertUnaryOp Negation (max:−1 ,1)
2 @Test (timeout = 4000)
3 publ ic void t e s t 0 () throws Throwable {
4 FastMath fastMath0 = new FastMath () ;
5 i n t i n t 0 = fastMath0 . getMax ((−1) , (−110)) ;}

Figure 3: Example of False Negative Detection

Let us consider the variables (v1, . . . , vmi
) in scope at the assertion point ppi. Their values after running a

test case on P are (vP1 , . . . , v
P
mi

), while they are (v
Mj

1 , . . . , v
Mj
mi) after running the same test case on mutant

Mj .
In EvoSuite, a mutant is strongly killed if EvoSuite can create a test case assertion (not to be confused with
the program assertions that are assessed for false negatives) that evaluates to false if the test is executed on
the mutant and to true if it is executed on the original class. To detect false negatives, we further restricted
the notion of mutation killing by adding two additional conditions to be satisfied: (1) the conditions in the
program assertions do not change their values:

∀i ∈ [1 . . . n] : c
Mj

i = cPi

(2) at least, one of the variables visible at ppi has different values in P and Mj :

∃i ∈ [1 . . . n] : v
Mj

1 6= vP1 ∨ . . . ∨ vMj
mi
6= vPmi

Condition (2) ensures that we exclude equivalent mutants from our analysis, as if the mutant is equivalent
it could not lead to a change of value in any of the variables at the assertion point.
In Figure 3 (top) we provide an example of a method with a weak assertion (at line 9). OASIs reports a
False Negative for this assertion, as in Figure 3 (bottom). The report contains a test case and a description
of the mutation in the comments above the test case. As follows from the description, the mutation applies
a unary negation operator to variable a at line 5, changing the value of variable max from -1 to 1. However,
the assertion in the method does not react to this change, as in the mutated version max is equal to 1,
which is still greater than the value of a == -1 and b == -110. This False Negative can be eliminated by
replacing the assertion in Figure 3 (top) with assert (max >= a && max >= b && (max == a ||
max == b)).

2.2.3 Iterative Improvement Process

We propose a process for iterative oracle assessment and improvement based on the outcomes of false
positive/negative detection as reported by OASIs. OASIs is implemented as a command-line tool which
takes five parameters as input: the source code location of the Java class, the name of the class, the name of
the method where the initial assertions are located, the search budget for FP detection and the search budget
for FN detection. The last two parameters are optional and, if omitted, OASIs uses the default budgets of
60 seconds for FP and of 120 seconds for FN detection. OASIs starts the oracle assessment process by first
looking for a False Positive. If no False Positive is detected, the search for False Negatives is initiated. The
output of the tool consists of a message which comprises the exact kind, in case oracle deficiency is detected,
or just indicates that no deficiency was found. For each detected oracle deficiency, the evidence (in the form
of a test suite) is provided.
However, the output of OASIs on its own is not sufficient for the improvement process. Therefore, the
human is an integral part of this semi-automated process, as a source of knowledge about the intended
behaviour of the program. The human in the loop is tasked with manually improving the oracle when a
false negative or a false positive is reported.
The starting point for iterative oracle assessment and improvement is an initial oracle. This oracle can be the
one defined manually by developers, or can be produced automatically by tools for invariant inference, like

TECHNICAL REPORT 4

TR-Precrime-2019-04 — Oracle Improvement

Daikon [7], or can even be the empty (implicit) oracle, which catches only program crashes or exception-
s/errors. Oracle deficiencies (i.e. false negatives or false positives) are detected and reported automatically
by OASIs.
The developer fixes the assertions in the program, based on the reported oracle deficiencies. Some care
must be taken in this step, in order to recognise the following corner cases: (1) A reported false positive
might point to a bug in the program, not in the assertion; (2) A test case killing a mutant and triggering
an assertion violation in the mutant might be associated with consistent bugs in both implementation and
assertion; (3) A mutant might accidentally fix a fault in the program, causing a reported false negative to
point to a bug in the program, not in the assertion.
The first case is important, since the improved oracle is immediately used for fault detection when this
case occurs. Incorrectly changing the oracle when, in fact, it is the program at fault will render the oracle
unable to detect fault actually present in the code. The other two are expected to be extremely rare cases
(no occurrence of the latter two cases was observed in our experiments).
Once assertions have been improved by the developer, the iterative process restarts and the new asser-
tions are assessed for the presence of further oracle deficiencies. The process continues until no further
counterexamples can be generated and finishes with an improved (more complete and sound) oracle.

2.3 Preliminary Validation

In this section we summarize our preliminary evaluation, during which the human in the iterative oracle
improvement process was represented by the first author. She had no familiarity with the subjects, no
previous experience in writing specifications but, of course, knew very well how to interpret the output of
OASIs.
We have assessed the applicability of our approach for three types of initial oracles: (1) implicit oracle
where no assertion is present, hence fault detection relies entirely on program crashing or raising excep-
tions; (2) inferred properties, where we use invariants generated by Daikon as initial assertions; (3) manual
oracle, where initial oracles are already provided with the code in the form of JML specifications, which we
transformed into standard Java assertions.

Table 1: Average mutation score by subject for initial/test case (µs) and improved (µ′s) oracle

Oracle Subj µs µ′s ∆ Â12 p-value

Implicit CM 16% 97.6% 81.6pp 1.0 1.4 · 10−5

CC. 8.3% 98.4% 90.1pp 0.98 2.2 · 10−5

Inferred CL 60.5% 98.8% 38.3pp 0.9 9.0 · 10−3

CM 50.2% 95.8% 45.6pp 0.91 4.7 · 10−4

Manual FE 78.8% 100% 21.2pp 0.9 6.3 · 10−7

LG 81.5% 100% 18.5pp 0.89 1.7 · 10−2

All All 50.1% 98.4% 48.3pp 0.92 < 2.2−16

Randoop All 45% 98.4% 53.4pp 0.93 5.3 · 10−7

EvoSuite All 46.9% 98.4% 51.5pp 0.95 3.8 · 10−6

The effectiveness of the improved oracle was assessed in terms of increased fault detection with respect
to the initial and test case oracle. We analysed the mutation score for test case assertions and for program
assertions before and after the improvement process. Table 1 shows results for each type of initial oracle
and each subject (CM: Commons Math, CC: Commons Collections, CL: Commons Lang, FE: JavaFE, LG:
Logging). The improvement in mutation score is 85.9pp (pp means percentage points) for implicit, 42.0pp
for inferred and 19.9pp for manual assertions. The improved program assertions achieve 51.8pp and 53.4pp
higher mutation score than the test case assertions generated by EvoSuite and Randoop respectively. In all
cases, the observed mutation score increase is statistically significant (p ≤ 0.05). The Vargha-Delaney effect
size Â12 is always large (in our study, Â12 ≥ 0.89).
During our experiments we detected 4 real bugs in the Apache Commons Math project (MATH-1256,
MATH-1258, MATH-1259, MATH-1414), which have been reported to (and then fixed by) the develop-
ers. Overall, results show that our approach is effective in improving all three types of initial oracles. The
process typically involved from one to three iterations to converge to an oracle for which no deficiency is
reported.

TECHNICAL REPORT 5

TR-Precrime-2019-04 — Oracle Improvement

3 Human Study

We assessed (1) whether the proposed approach is beneficial for developers to detect oracle deficiencies
by conducting an Oracle Assessment Study, and (2) whether the output of the tool helps developers remove
oracle deficiencies and create better oracles by conducting an Oracle Improvement Study. Both of our stud-
ies were approved by UCL’s Research Ethics Committee (REC 12857/001 and REC 12005/001). All the
experimental data collected is available at the link: https://github.com/guneljahan/OASIs/humanstudy.

3.1 Oracle Assessment Study

To improve an oracle one should first be aware of its current deficiencies and then take actions to get rid of
them. Our approach automatically detects false positives and false negatives in the assertions and reports
them to the user. To check whether the first task, oracle assessment, is difficult for humans, which would
indicate that the information provided by our tool is potentially useful, we conducted a study to analyse
how successful developers are at assessing oracles manually, with no tool support. With this overall goal in mind,
we explored the following research questions:
RQ1: How effective are developers in determining whether the oracle has a deficiency and, if it has one,
what the deficiency type is?
RQ2: What are the common misclassifications developers make when assessing oracle deficiencies?

3.1.1 Object Selection

The starting point of our experimental design was the previous study by Staats et al.[39]. In this previous
work Staats et al. analysed the user’s ability to classify dynamically generated invariants by Daikon as
correct or incorrect. An invariant is considered incorrect if there is a test input capable of violating the
invariant, which is in line with our definition of a False Positive. Three Java classes were used as subject
programs in this previous study: StackAr, Matrix and PolyFunction. StackAr is a stack class originally used
in user studies about Daikon [29]. Matrix is a class representing a matrix, found in the JAMA linear algebra
package, developed by The MathWorks and the National Institute of Standard and Technology (NIST) [17].
PolyFunction is a class representing a polynomial function, and is part of the Math4J package [27]. The users
involved in the previous study analysed 336 invariants generated by Daikon for these classes during the
experiments. Moreover, at the end of the task each participant was asked to manually write 5 invariants for
each class.
We reused the subject programs of this study, and used the dynamically generated and manually written
invariants as our initial oracles. However, the aim of our study was not limited to the analysis of the
developers’ ability to detect False Positives, but to also include the same analysis for False Negatives. Given
this wider task, we decided to give subjects more time for oracle assessment than in the previous study. In
our study, we provided participants with 10 assertions from two different classes to be evaluated in 30
minutes. By contrast, in the study by Staats et al.[39] subjects were asked to analyse 112 invariants on
average in 60 minutes or 86 invariants on average in 35 minutes, depending on the session.
We selected 15 assertions (5 from each class) among 336 properties inferred by Daikon and 37 human-
written assertions. The majority of assertions in this pool check general properties of the class or basic
properties of the method (such as the immutability of some variables). Our selection process favoured
assertions that were checking the functionality specific to the method under test rather than the general
properties. For each assertion we run our tool to detect whether it has a false positive, a false negative or
no oracle deficiencies. In case no oracle deficiency was found, we also analysed the assertion manually
to ensure that the output of the tool is correct. We selected the final assertions so as to achieve a balance
between the numbers of Daikon-generated and human-written assertions, as well as between the numbers
of assertions with false positives, false negatives and no oracle deficiencies at all.
Before executing the empirical study, we conducted a pilot study with 2 volunteers (who were not included
later in the experiment itself). The results of the questionnaire and the discussion after the pilot study
showed that participants think that the time provided was insufficient to analyse 10 assertions in total.
Therefore, we reduced the number of assertions to 6 for the main experiment (3 for each class). We also
slightly reduced the source code of all three case examples to make the task more feasible.
Table 2 lists the classes from the work of Staats et al.[39] that we reused in our experiments and the number
of lines of code, methods and assertions in them. Rows Assertion 1, Assertion 2 and Assertion 3 indicate

TECHNICAL REPORT 6

TR-Precrime-2019-04 — Oracle Improvement

whether each assertion has a false positive (FP), a false negative (FN) or no false positives and no false
negatives (None) and whether it is human-written (H) or Daikon-generated (D).

Table 2: Assessment Study: Subject Programs

StackAr Matrix PolyFunction
SLOC 94 142 152
of Methods 11 17 12
of Assertions 3 3 3
Assertion 1 FN, D FP, D FN, H
Assertion 2 None, H FN, D FP, H
Assertion 3 FP, D None, H FN, D

3.1.2 Participants

To answer our research questions we conducted three separate experimental sessions. The first and third
session were conducted with master degree students of the Security Testing course at the University of Trento.
The second session was conducted with professional developers who work at Fondazione Bruno Kessler. The
analysis of user feedback for the first two sessions showed that participants thought that they did not have
enough time to perform the task. Therefore, in the third session we changed the duration of the task from
30 minutes to 45 minutes.

Table 3: Assessment Study: Experimental Sessions

Type of Part. # of Part. Duration
Session 1 MSc Students 20 75 min
Session 2 Prof. Developers 6 75 min
Session 3 MSc Students 13 90 min

Table 3 lists all the sessions conducted during the study, the type and number of participants in each of
them along with the whole duration of the session. Overall, 33 master degree students and 6 professional
developers participated in our experiments.

3.1.3 Experimental Procedure

At the beginning of each session we provided an identical 30 minute training to the participants: (1) explain-
ing what the oracle problem is; (2) explaining what a false positive and a false negative is; (3) overviewing
Java assertions; (4) showing multiple examples of false positives and false negatives in Java assertions; (5)
introducing utility classes and constructs used to write assertions (e.g., the boolean implication operator
and the way to refer to old values of variables). In the training, the motivation for the assertions in the
program was explained to be regression testing, as in regression testing users can assume that the pro-
gram behaves correctly as is. Correspondingly, the user’s task is to determine whether assertions match the
program’s current behaviour. Indeed, asking participants to judge whether invariants match the intended
program behaviour would have made the task overly difficult, since participants are not the developers of
the classes under study. We also recommended participants to start their analysis of the assertions from
the search for false positives. In fact, only after making sure that there is no false positive (the assertion is
correct), it makes sense to check whether the assertion has false negatives (the assertion is strong enough to
expose arbitrary faults).
After the training session, each subject received an experiment package, consisting of the randomly as-
signed group id, a statement of consent and instructions on how to proceed with the task. Participants
were divided into groups in order to have a balanced number of responses for each subject class. Instruc-
tions directed the participants to the website where the source code of Java classes for their group could be
downloaded and to the online questionnaire.
During the task, each participant was assigned two Java classes with three assertions each. The objective
was to indicate for each assertion whether (1) it has a false positive (2) it has a false negative (3) it has no

TECHNICAL REPORT 7

TR-Precrime-2019-04 — Oracle Improvement

Table 4: Results: Students (SS1 - 1st session, 20 students; SS3 - 3rd session, 13 students)

Assertion Deficiency All Correct Incorrect Don’t Know
SS1 SS3 SS1 SS3 SS1 SS3 SS1 SS3

M1 FP 13 8 2 (15%) 1 (13%) 10 (77%) 7 (88%) 1 (8%) 0 (0%)
M2 FN 13 8 7 (54%) 5 (63%) 3 (23%) 1 (13%) 3 (23%) 2 (25%)
M3 None 13 8 6 (46%) 3 (38%) 5 (38%) 1 (13%) 2 (15%) 4 (50%)
P1 FN 13 9 1 (8%) 2 (22%) 9 (69%) 5 (56%) 3 (23%) 2 (22%)
P2 FP 13 9 2 (15%) 1 (11%) 5 (38%) 4 (44%) 6 (46%) 4 (44%)
P3 FN 13 9 1 (8%) 1 (11%) 8 (61%) 5 (56%) 4 (31%) 3 (33%)
S1 FN 14 9 3 (21%) 1 (11%) 8 (57%) 8 (89%) 3 (21%) 0 (0%)
S2 None 14 9 5 (36%) 3 (33%) 9 (64%) 5 (56%) 0 (0%) 1 (11%)
S3 FP 14 9 3(21%) 3 (33%) 8 (57%) 5 (56%) 3 (21%) 1 (11%)

120 78 30 (25%) 20 (26%) 65 (54%) 41 (52%) 25 (21%) 17 (22%)
198 50 (25%) 106 (53%) 42 (21%)

false positives and no false negatives. In case the subject did not know the answer the option “I don’t know”
was provided as well. Once the 30 minute (45 minute for the third session) period assigned to the task was
complete, the participants proceeded to the questionnaire to answer questions about their background and
to provide feedback about the session.

3.1.4 Results

RQ1: User Effectiveness
To answer RQ1 we calculated the correct/incorrect classification ratios for each participant group, investi-
gated the parameters that affect users’ performance and measured the agreement rate between participants.

Table 5: Top: Professional Developers (2nd session, 6 developers); Bottom: Overall (39 participants)

Assertion All Correct Incorrect Don’t Know
M1 4 1 (25%) 3 (75%) 0 (0%)
M2 4 2 (50%) 1 (25%) 1 (25%)
M3 4 4 (100%) 0 (0%) 0 (0%)
P1 5 3 (60%) 1 (20%) 1 (20%)
P2 5 1 (20%) 0 (0%) 4 (80%)
P3 5 2 (40%) 2 (40%) 1 (20%)
S1 3 0 (0%) 2 (67%) 1 (33%)
S2 3 2 (67%) 0 (0%) 1 (33%)
S3 3 2 (67%) 0 (0%) 1 (33%)

36 17 (48%) 9 (25%) 10 (27%)
Assertion All Correct Incorrect Don’t Know
M1 25 4 (16%) 20 (80%) 1 (4%)
M2 25 14 (56%) 5 (20%) 6 (24%)
M3 25 13 (52%) 6 (24%) 6 (24%)
P1 27 6 (22%) 15 (56%) 6 (22%)
P2 27 4 (15%) 9 (33%) 14 (52%)
P3 27 4 (15%) 15 (56%) 8 (30%)
S1 26 4 (15%) 18 (69%) 4 (15%)
S2 26 10 (38%) 14 (54%) 2 (8%)
S3 26 8 (31%) 13 (50%) 5 (19%)

234 67 (29%) 115 (49%) 52 (22%)

Classification Results. Table 4 presents the results for the two sessions (Session 1 - SS1, Session 3 - SS3)
conducted with students. Column All shows the overall number of classifications obtained for each asser-
tion. Columns Correct and Incorrect show the number of correct and incorrect classifications respectively.
Column Don’t Know reports the number of cases when the option “I don’t know” was picked for the asser-
tion. While the duration of these sessions was different (30 min vs. 45 min), the results for them are quite
similar with the 25% and 26% correct classification rates.

TECHNICAL REPORT 8

TR-Precrime-2019-04 — Oracle Improvement

Table 5 (top) shows the results for the 6 professional developers. With 48% correct classification rate they
exhibited almost twice better performance than students. For 4 out of 9 assertions, professional developers
had no incorrect classifications at all, either always correctly classifying an assertion (M3) or selecting the
answer ”I don’t know” rather than giving an incorrect answer (P2, S2, S3).
Figure 4 provides more insight into the participants’ performance by showing the number of participants
giving the same number of correct answers (which range from 0 to 6). As it can be seen, 10 out of 33 students
were not able to correctly classify a single assertion. This was not the case for professional developers, as
each of them was able to correctly assess from at least 1 to up to 4 assertions. The highest performance of 5
and 6 correct answers was exhibited by just one student.

N
um

be
r o

f P
ar

tic
ip

an
ts

0

1

2

3

4

5

6

7

8

9

10

Number of Correct Answers
0 1 2 3 4 5 6

Students Professional Developers

Figure 4: Number of Participants grouped by Number of Correct Answers

Overall, for 39 participants the average correct classification ratio is only 29%, see Table 5 (bottom). There
are no assertions that were incorrectly or correctly classified by all participants. In 22% of cases the option
“I don’t know” was picked and in 49% the provided classification was wrong.
We tested the statistical significance of our results. According to the Pearson-Klopper method for calcu-
lating binomial confidence intervals (at 95% confidence level), for students the correct classification rate is
in the range [0.1936:0.2190] with mean 0.2525; for professional developers in the range [0.3040:0.6451] with
mean 0.472; and for all participants in the range [0.2293:0.3488] with mean 0.2863. The difference between
students’ and professional developers’ performance is statistically significant according to Fisher’s exact
test (two-sided) with p = 0.01488 at 95% confidence level. We conclude that there is inferential statistical
evidence that the professional developers were significantly better at oracle assessment than students.

Table 6: Results for different parameter values

All Correct Incorrect Don’t Know Conf. Int. Pearson Correlation Co-Factor Analysis
Coeff. p-value Coeff. p-value

Progr. Exp. (37)

0.0728 0.6642 2.2370 0.9220<1 year (7) 42 8(19%) 30(71%) 4(10%) [0.09:0.34]
1 - 3 years (13) 78 27(35%) 31(40%) 20(26%) [0.24:0.46]
>3 years (17) 102 26(25%) 49(48%) 27(26%) [0.17:0.35]

Java Exp. (37)

-0.0310 0.8649 -3.830 0.6860None (3) 18 5(28%) 9(50%) 4(22%) [0.10:0.53]
<1 year (12) 72 23(32%) 35(49%) 14(19%) [0.21:0.44]

1-3 years (16) 96 22(23%) 48(50%) 26(27%) [0.15:0.33]
>3 years (6) 36 11(31%) 18(50%) 7(19%) [0.16:0.48]

Industry Exp.(36)

0.4126 0.0112 10.4270 0.0190None (19) 114 18(16%) 62(54%) 34(30%)) [0.10:0.24]
<1 year (9) 54 20(37%) 26(48%) 8(15%) [0.24:0.51]

1-3 years (5) 30 15(50%) 11(37%) 4(13%) [0.31:0.69]
>3 years (3) 18 6(33%) 8(44%) 4(22%) [0.13:0.59]

Enough Time (36)

0.2001 0.2334 12.770 0.4900No (18) 108 26(24%) 57(53%) 25(23%) [0.16:0.33]
Yes (18) 108 35(32%) 49(45%) 24(22%) [0.24:0.42]

Training (38)

0.2681 0.0989 4.2590 0.66701 (1) 6 0(0%) 5(83%) 1(17%) [0.00:0.46]
2 (3) 18 3(17%) 4(22%) 11(61%) [0.04:0.31]

3 (12) 72 20(28%) 39(54%) 13(18%) [0.18:0.40]
4 (12) 72 19(26%) 36(50%) 17(24%) [0.17:0.38]
5 (10) 60 21(35%) 29(48%) 10(17%) [0.23:0.48]

TECHNICAL REPORT 9

TR-Precrime-2019-04 — Oracle Improvement

Parameters affecting user effectiveness. In the background questionnaire we asked participants questions
about their programming experience, their assessment on the understandability of training material and
their satisfaction with the time provided for the task. To analyse whether any of these factors affected
subjects’ effectiveness, we calculated the ratios of correct, incorrect and “I don’t know” answers within
each group corresponding to different parameter values. The first/second columns in Table 6 show the
parameter values and the number of overall responses within each group, while the next columns list the
oracle assessment answers. Column Conf. Int. shows confidence intervals (at 95% confidence level) for each
response.

Figure 5: What was the main challenge while performing the task?
As the table shows, the rate of correct answers increases when we switch from the group with ”< 1 year”
to the group with ”1 − 3 years” of programming experience. However, this increase does not continue for
the group with ”> 3 years” of programming experience. A similar pattern holds for Java and Industry
Experience. Regarding the time provided for the task, the number of responses are equal for both groups,
but the ratio of correct answers is higher when the answer was ”yes”. The user effectiveness also increases
as the understandability of the provided training material increases (according to participants). However,
even when participants think that the time allocated for the task was enough, their average effectiveness
is only 32%. Similarly, when they rate the provided training material with the highest possible mark, the
average effectiveness is still only 35%.
We calculated the Pearson correlation coefficient between the ratio of correct answers and each of the fac-
tors in Table 6. The correlation coefficients are positive for all factors except Java Experience. Industry
Experience is the factor with the highest correlation rate and the only one where correlation is statistically
significant (p ≤ 0.05). Even for this factor, the correlation is moderate, not strong. The permutation test for
the analysis of co-factors gives similar results.
To get participants’ opinion on the difficulties associated with the task, we asked them a multiple-choice
question “What was the main challenge while performing the task?”. We got responses from all 39 partici-
pants with 54 answers selected. As Figure 5 shows, the main challenge for participants was to understand
the source code of the classes, followed by understanding the assertions.
Agreement rate between participants. To analyse how much homogeneity there is between the classifi-
cations provided by users, we measured the degree of inter-rater agreement. Fleiss’ kappa [8] is the most
common statistical measure for assessing the reliability of agreement between a fixed number of raters
when classifying items. It calculates the degree of agreement in classification over the one that would be
obtained by chance. However, as we have overall 9 assertions and each participant classified only a sub-
set (6) of them, Fleiss’ kappa is not applicable to our data. Hence, we instead used Krippendorff’s alpha
[23] coefficient, which generalizes Fleiss’ kappa to incomplete (missing) data. Krippendorff’s alpha takes
value between 0 and 1, where 0 is perfect disagreement and 1 is perfect agreement. When it is less than 0
disagreements are systematic and exceed what can be expected by chance.
Table 7 shows the number of raters and Krippendorff’s alpha value for each subject group and for all
subjects (i.e., students, professionals and all participants). The highest agreement rate is for the assertions
in class Matrix, for professionals. According to Landis and Koch’s [24] interpretation of agreement rate
values, professionals have reached a fair agreement. This is related to the fact that all professionals have
classified one of the assertions (M3) in this class correctly, therefore fully agreeing. The agreement rate for
class StackAr between professionals and also for all participants is negative (poor). In all the other cases,
there is a slight agreement between students, professionals and all participants.

TECHNICAL REPORT 10

TR-Precrime-2019-04 — Oracle Improvement

Table 7: Agreement rate between participants

Students Professionals All
Alpha # Alpha # Alpha

Matrix 21 0.124 4 0.324 25 0.091
PolyFunction 22 0.006 5 0.042 27 0.011

Stack 23 0.005 3 -0.102 26 -0.006
33 0.010 6 0.015 39 0.049

Overall, these low agreement rate values show that although all subjects, even those with industry ex-
perience, find oracle classification hard, there is no evidence for systematic bias nor consistent misunder-
standing among subjects regarding their incorrect oracle inferences. For example, it is never the case that
participants consistently agree on classifying an assertion which actually has a false positive as an assertion
with a false negative.

RQ1 (effectiveness): Our experiments show that subjects can only achieve a poor correct classification rate
(29%) when assessing whether an assertion contains a false positive, a false negative or none of the two. Pro-
fessional developers achieve a significantly higher correctness rate (48%) than students (25%), but still such
correctness rate is largely below the desirable value (100%). The inter-rater agreement was also quite poor,
confirming that the oracle assessment is indeed a difficult task for humans. We observed a moderately strong
evidence that industrial experience is correlated with correct classification rate, but found no such evidence of
any other correlations.

RQ2: Misclassifications

Students

Professionals

Overall

Students

Professionals

Overall

Students

Professionals

Overall

0 10 20 30 40 50 60 70 80 90 100

16%

14%

16%

23%

24%

23%

26%

42%

23%

39%

45%

50%

35%

53%

54%

25%

59%

45%

86%

39%

27%

41%

24%

21%

33%

18%

Correct Incorrect Don't Know
FP

FN

None

Figure 6: Correctness rate divided by FP, FN and None

Harder to Detect Oracle Deficiencies. To investigate which type of oracle deficiencies is harder to detect
for developers, we summarized the results of the oracle assessment task for each type of oracle deficiency
and participant group (see Figure 6). As the figure reveals, both students and professional developers are
more successful in detecting false negatives than false positives (27% vs. 21% overall). However, the best
result is achieved for assertions with no oracle deficiencies at all. For these assertions, professionals were
able to provide correct classifications in 87% of the cases.
We asked the question “Which oracle deficiency is harder to detect?” to the participants in the exit question-
naire. As Figure 7 shows, the number of people finding false positives harder to detect than false negatives
is slightly higher, which is inline with our results. However, to check whether the response of participants
considering false negatives harder than false positives is consistent with the actual results we observed for
their performance, we calculated correct classification rates for false positives and false negatives by both
the ”FP is harder” and ”FN is harder” groups. The results show that the ”FN is harder” group is more
successful in detecting false positives (29%) than false negatives (19%). Similarly, the ”FP is harder” group
shows better results for assertions with false negatives (31%) than for the ones with false positives (18%).

TECHNICAL REPORT 11

TR-Precrime-2019-04 — Oracle Improvement

Therefore, the participants’ intuition about the difficulty of each oracle deficiency type is confirmed by the
results observed for each group of deficiency.

0

5

10

15

20

FP FN

1

4

13
16

Students Professionals

Figure 7: Which Oracle Deficiency is harder to detect?

Misclassification types. To analyse the type of mistakes participants made when assessing oracles, we
calculated how often each of the 6 possible misclassifications has occurred. Column Class-Misclass in Table 8
lists these misclassifications, where the notation OD1-OD2 means that the assertion has an oracle deficiency
of type OD1, but was classified as having OD2. Columns Students, Professionals and All show the rate of
each misclassification for the corresponding participant group. These rates were calculated by dividing the
number of times the misclassification OD1-OD2 took place by the overall number of assertions with OD1.

Table 8: Misclassifications

Class-Misclass Students Professionals All
FP-FN 29% 25% 28%
FP-None 30% 0% 26%
FN-FP 17% 18% 17%
FN-None 36% 18% 33%
None-FP 25% 0% 22%
None-FN 20% 0% 18%

As the Table 8 shows, students have made each possible misclassification. In contrast, for professional
developers three out of six possible erroneous classifications never took place. The ratio of each misclas-
sification is higher for students than for developers, except FN-FP, for which the difference is negligible.
Students misclassify false positives as false negatives or ”None” at very close ratios (29% vs. 30%), while
for professionals such difference is more perceptible (25% vs. 0%). Despite the fact that false positives are
being misclassified more often, the most common error for all participants is FN-None. This shows that
users often fail to recognise the bugs that the assertion can miss, and therefore tend to classify weak asser-
tions as strong. One of the least prevalent misclassifications is None-FN, showing that strong assertions are
classified as weak more rarely.

RQ2 (misclassifications): False positives were perceived (and were actually found) to be the hardest category
to identify for all subjects. The most common misclassification consists of weak assertions regarded as free
of deficiencies, showing that identifying faults potentially missed by an assertion is a quite difficult task for
humans.

3.2 Oracle Improvement Study

Once developers are aware of assertion deficiencies, they must improve the assertion so as to remove de-
ficiencies. To support developers in this process, our tool automatically generates counterexamples that
demonstrate the reason for each type of oracle deficiency. To check whether this leads to a more effective
oracle improvement process, we conducted a study to compare the improvement process when using our
tool against manual improvement unaided by our tool. We addressed the following research questions:

TECHNICAL REPORT 12

TR-Precrime-2019-04 — Oracle Improvement

RQ3: What is the quality of assertions improved using our tool compared to assertions improved manually?
RQ4: When using our tool, how many iterations and how much human effort does the iterative improve-
ment process require to remove all oracle deficiencies in the assertion?

3.2.1 Participants

Table 9: Improvement Study: Participants

Participant Group Experience # of Jobs Amount Job Title
P1 Without Tool 8 years 7 1000+ USD C, C++, Java Developer
P2 Without Tool 3 years 0 0 USD Software Quality Assurance Analyst
P3 Without Tool 3 years 18 1000+ USD Software Tester
P4 Without Tool 3 years 4 3000+ USD Full Stack Software Engineer
P5 Without Tool 5 years 0 0 USD Expert in Automation QA
P6 With Tool 3 years 0 0 USD Software Quality Assurance Engineer
P7 With Tool 1 year 2 15 USD Test Automation Engineer
P8 With Tool 3 years 1 40 USD Test Manager (Manual,Automation,Security)
P9 With Tool 6 years 0 0 USD QA Automation Engineer
P10 With Tool 5 years 0 0 USD Full Stack Java Enterprise Developer

In our approach, the developer is an integral part of the oracle improvement process. To analyse how ben-
eficial is the use of our tool for developers with various backgrounds, two different groups of participants
were involved in our experiments. We recruited the participants for the first group by sending personal
email invitations to 28 PhD students from Fondazione Bruno Kessler and to 19 PhD students and 2 post-
doctoral researchers from University College London. No financial incentive was offered in this invitation.
Overall, 17 PhD students and 2 postdoctoral researchers agreed to participate.
Our second group of participants were developers from Upwork. Upwork is a global freelancing platform
where businesses and independent professionals collaborate remotely. To hire developers on this platform,
we registered there as a client, by filling in necessary details and then adding and verifying the payment
method. After registration, we posted two different fixed-price jobs: 1) without using the tool, with a
payment of 20 USD; 2) using the tool, with a payment of 30 USD. The difference in the price is due to the
training on how to use our tool job, an extra activity that is carried out only for the second job. For both
jobs we required candidates to pass a qualification test. Overall, we received 20 job proposals for the first
and 12 job proposals for the second job. We aimed to have five freelancers completing each job. To reach
this quota we had to hire 15 freelancers overall: four of them did not pass the qualification test and one did
not submit the last part of the task.
Participants for each job were selected so that there is a balance in terms of experience between control and
treatment groups on average. Table 9 lists our final list of participants from the Upwork platform. Column
Group shows whether each participant worked on a task with or without the tool. Column # of Jobs shows
the number of jobs each freelancer did on the Upwork platform and Column Amount shows how much
money each freelancer has earned overall.
We had limited control on the group composition (we could just approximately balance the level of Experi-
ence). In fact, it turned out that the group Without Tool includes participants with slightly higher # of Jobs and
Amount, possibly giving a slight unfair advantage to this group of subjects. We deemed this possible bias
acceptable since it reduces the chance of Type I errors (incorrectly inferring that our tool provides benefits
to its users).

3.2.2 Experimental Procedure

Oracle Improvement
Training

Oracle Improvement

Practice Task Tool Training Final Task Questionnaire

5 USD 15 USD10 USD

Figure 8: Oracle Improvement Study: Experimental Procedure

TECHNICAL REPORT 13

TR-Precrime-2019-04 — Oracle Improvement

The main structure of our experimental procedure is shown in Figure 8. The PhD student/Postdoc sessions
were organised individually for each participant as a single 1.5 - 2 hour session. In Upwork we divided our
experimental session into milestones, i.e., subtasks with separate budgets and deliverables. Each participant
had to pass each milestone to be able to proceed with the next one. The green bars in Figure 8 show the
content and the payment offered for each milestone.
Each experimental session started with a 30-minute Oracle Improvement Training, which contained all the
information from the Oracle Assessment Study training material, with the addition of multiple examples
on how to improve the assertions to remove oracle deficiencies. For the participants from Upwork, this
material was provided in written form, while for the PhD student/Postdoc sessions it was delivered in the
form of a presentation.
The training was followed by an Oracle Improvement Practice Task, where participants were provided with
4 simple Java methods with an initial assertion each. The objective of the task for the participants was to
improve the assertions so that they have no false positives and no false negatives. The aim of the task was
to ensure that participants understand the oracle improvement process. In the Upwork setting, participants
submitted their improved assertions online. In case any of the four assertions still had oracle deficiencies
left, the written feedback explaining the reason for the oracle deficiency was sent to them. Participants could
resubmit based on the feedback provided. In case the participant was not able to finish the improvement
process after two iterations of feedback, her/his participation in the experiment was terminated. This was
the case for 4 participants out of 15. In the PhD student/Postdoc sessions, this part was conducted in a more
interactive way, where participants could write the improved assertion and receive immediate feedback,
possibly followed by a discussion, and could subsequently improve the assertion until all deficiencies were
removed. All participants from PhD student/Postdoc sessions have passed the practice task.
The Tool Training was conducted only with participants from the treatment (With Tool) group. The training
material was provided in written form to participants from Upwork and in the form of a presentation to
the others. The training included information on: (1) how to run the tool; (2) the output of the tool for False
Positives; (3) the output of the tool for False Negatives, including the explanation of each mutation operator
that could be applied to the source code.
To give a hands-on experience on the use of the tool, participants ran the tool and analysed its output
for the methods from the Oracle Improvement Task. We reused these methods to ensure that participants
performing the task with the tool did not get more examples and experience of oracle improvement than
participants not using the tool. We provided a machine with pre-installed tool to the participants in the
PhD student/Postdoc sessions.
We provided instructions on where to download the tool and how to run it on their machine to participants
from Upwork. Participants from Upwork were also required to submit a written description of the output
produced by the tool for each method, to check that they could understand it properly. For False Positives
they had to explain why the generated test case makes the assertion fail. For False Negatives they had to
describe the applied mutations and why the assertion does not react to them. Examples of such descriptions
were provided in the training material.
After participants received all the necessary training, they proceeded with the Final Task. In this task they
were provided with a single Java class StackAr which had an assertion with a false positive in the top
method and an assertion with a false negative in the pop method. The objective of the task was to improve
both assertions so that they have no oracle deficiencies. The aim of the task was to compare the outcome
of the oracle improvement process when participants use the tool and when they do not. Participants from
both groups knew the type of oracle deficiency each assertion has.
The control group was instructed to improve the assertions manually. The treatment group had the tool to
guide them: for each improvement step they could run the tool and if an oracle deficiency was detected,
based on the test cases reported as an evidence they could decide on the next improvement step. The stop-
ping point for the participants from the treatment group was when the tool reported no oracle deficiencies,
while for the control group it was only the participant’s own confidence in the final assertions. In the Up-
work experiments we offered a bonus of 5 USD to participants from the control group who were able to
submit assertions with no oracle deficiencies.
Once the task was over, participants were asked to submit their final assertions along with the information
about their background, as well as their assessment of the experimental session through the exit question-
naire.

TECHNICAL REPORT 14

TR-Precrime-2019-04 — Oracle Improvement

3.2.3 Oracle Improvement Process: Possible Cases

In our experiments, the initial assertions have either a false positive or a false negative. After getting the
report of the tool for the initial oracle deficiency, the developer has to decide on the improvement step to
take. Depending on this improvement step, the new assertion can, in the best case, be Fully Correct (no
oracle deficiencies), can have an oracle deficiency (of the same or new type) or can lead to a Crash in the
program. Figure 9 shows all the possible state changes for the assertion during the improvement process.

Figure 9: Oracle Improvement Process: Possible Outcomes

The example in Figure 10 (top) shows a shortened version of the class StackAr that we have used in our
study. In method pop there is an initial assertion which has a False Negative. The bottom part of Figure 10
shows assertions that were produced by different developers as an improvement to the initial one after one
iteration of improvement process.

publ ic c l a s s StackAr {
p r i v a t e Object [] theArray ;
p r i v a t e i n t topOfStack ;

publ ic StackAr (i n t c a p a c i t y) {
theArray = new Object [c a p a c i t y] ;
topOfStack = −1;

}

publ ic void pop () throws UnderflowException {
//instrumentat ion
i n t old topOfStack = topOfStack ;
//instrumentat ion
Object [] old theArray =

Arrays . copyOf (theArray , theArray . length) ;

i f (topOfStack == −1)
throw new UnderflowException () ;

theArray [topOfStack] = n u l l ;
topOfStack = topOfStack − 1 ;

a s s e r t (theArray [topOfStack + 1] == n u l l) ;
}

}

(1) a s s e r t (theArray [topOfStack] == n u l l) ;
(2) a s s e r t (theArray [topOfStack + 1] == n u l l &&

topOfStack − 1 == old topOfStack) ;
(3) a s s e r t (theArray [topOfStack + 1] == n u l l &&

old topOfStack − 1 == topOfStack) ;
(4) a s s e r t (theArray [topOfStack + 1] == n u l l &&

old topOfStack − 1 == topOfStack &&
val idateArray (theArray , old theArray , old topOfStack))

Figure 10: Class StackAr: method pop

TECHNICAL REPORT 15

TR-Precrime-2019-04 — Oracle Improvement

The first assertion in Figure 10 (bottom) causes a Crash. It can lead to ArrayIndexOutOfBoundsException, if
the value of variable topOfStack is equal to -1 when the assertion gets executed. Assertions are part of
source code, but they should not cause any side effects. Therefore it is unacceptable that they lead to an
exception during program execution. When our tool performs False Positive detection, if during the search
process any test case causes an exception, such that the error stack trace for this exception contains the line
number of the assertion in the code, the test case gets reported to the developer as an evidence of Crash.
The second assertion shows how an attempt to fix a False Negative can lead to the introduction of a False
Positive. This assertion claims that the value of topOfStack has been incremented, while in fact it was
decremented. This makes the assertion fail any time it gets executed.
The third assertion shows an example of a correct improvement step. The initial assertion checked the prop-
erty stating that the value of theArray at index topOfStack is equal to null. The improved assertion adds
an additional check stating that the value of topOfStack was changed correctly, i.e., it was decremented
by one. This assertion is stronger than the initial one, but it still has a False Negative. The Fully Correct
assertion for method pop would be assertion number 4 in Figure 10 (bottom). Along with the previous
checks, it also ensures that method validateArray returns true. In turn, method validateArray loops
through the array and checks whether all the elements in theArray and old_theArray, except the one
at index topOfStack + 1, are equal. Therefore, to ensure Fully Correctness in this case one should check
that the method has changed correctly the part of the stack state it was supposed to change (i.e., the values
of topOfStack and theArray[ind], with ind = old_topOfStack) and that it has not affected the rest
of the state (i.e., the values of elements in theArray[ind], except for index ind = old_topOfStack).
Generating fully correct oracles might be an expensive and difficult process. Therefore, Partially Correct
assertions as the initial one in method pop or the third one in Figure 10 (bottom) might be regarded as
sufficiently adequate in practice. In fact, a complete specification of the state changes that a method should
perform might provide, in practice, a powerful enough method to catch most incorrect implementations,
even if such assertion is only partially correct, by not ruling out method implementations that operate state
changes on the part of the state that is supposed to be untouched by the operation implemented by the
method.
In our approach the level of partial correctness can be quantified as the mutation score of the assertion: a
higher mutation score indicates that the assertion is capable of ruling out a higher number of incorrect state
changes performed by buggy implementations (mutants), possibly including state changes that affect the
supposedly unchanged substate.

3.2.4 Results

Quality of Final Assertions

Table 10: Improvement Study: Results Without Tool

Participant Assertion1 Assertion2
Outcome Overall T. Outcome Overall T.

P1 Crash 45:00 Partially Correct 30:00
P2 Fully Correct 5:00 FP 10:00
P3 FP 5:00 FP 10:00
P4 Crash 25:00 Partially Correct 10:00
P5 Fully Correct 2:00 Partially Correct 4:00
P6 FP 6:00 Partially Correct 6:00
P7 Fully Correct 10:00 FN 7:00
P8 Fully Correct 16:00 FP 10:00
P9 Fully Correct 7:00 Partially Correct 2:00

UP1 Partially Correct 20:00 Partially Correct 20:00
UP2 Fully Correct 45:00 FN 40:00
UP3 FN 45:00 Partially Correct + FP 30:00
UP4 Partially Correct 17:00 Partially Correct 18:00
UP5 Partially Correct 25:00 Partially Correct + FP 35:00

21% Partially Correct 18:12 64% Partially Correct 15:28
43% Fully Correct

Table 10 shows the results for the participants who improved the assertions manually. Column Overall T.
shows the overall time spent on improving each assertion, as reported by each participant. Column Outcome
shows the oracle deficiency or the level of correctness the final assertion has reached, where the distinction
among FN, Partially Correct and Fully Correct is that an assertion labelled FN has some initial mutation
score m; an assertion labelled Partially Correct has mutation score >m and < 1; an assertion labelled Fully

TECHNICAL REPORT 16

TR-Precrime-2019-04 — Oracle Improvement

Table 11: Improvement Study: Results With Tool

Participant Assertion1 Assertion2
Outcome Overall T. Tool T. Human T. Outcome Overall T. Tool T. Human T.

P10* Fully Correct 19:02 03:53 15:09 Partially Correct 14:07 07:48 06:19
P11* Fully Correct 18:01 05:22 12:39 Partially Correct 24:06 14:16 09:50
P12* Fully Correct 21:11 03:52 17:19 Partially Correct 13:59 07:47 06:12
P13* Fully Correct 16:37 10:26 06:11 Partially Correct 10:56 07:52 03:04
P14* Fully Correct 10:27 06:03 04:24 Partially Correct 20:03 11:27 08:36
P15 Fully Correct 12:59 06:41 06:18 Partially Correct + FP 52:18 15:04 37:14
P16 Fully Correct 19:51 10:49 09:02 Partially Correct + FP 44:06 19:16 24:50
P17 Fully Correct 12:20 07:10 05:10 Partially Correct + FP 47:44 28:08 19:36
P18 Fully Correct 12:44 06:03 06:41 Fully Correct 40:40 15:55 24:45
P19 Fully Correct 47:38 14:15 33:23 Partially Correct 34:43 16:17 18:26
UP6 Fully Correct 13:46 07:48 05:58 Fully Correct 22:14 10:48 11:26
UP7 Fully Correct 15:17 09:15 06:02 Partially Correct 31:38 10:47 20:51
UP8 Fully Correct 08:24 04:57 03:27 Fully Correct 22:16 10:05 12:11
UP9 Fully Correct 09:25 05:34 03:51 Fully Correct 06:28 03:57 02:31

UP10 Fully Correct 16:36 08:53 07:43 Fully Correct 28:20 11:16 17:04
100% Fully Correct 16:57 07:24 09:33 33% Fully Correct 27:33 12:42 14:51

67% Partially Correct

Correct has mutation score = 1 (assuming in all three cases that there is no residual false positive, which
would cause otherwise the labelling FP).
The results presented in Table 10 show that only five out of nine participants in the PhD student/Postdoc
sessions achieved full correctness for Assertion 1. The assertions submitted by the remaining four partici-
pants either still have a false positive or cause a crash in the program. None of the participants was able to
improve Assertion 2 to the point of full correctness, but five out of nine participants have achieved partial
correctness. The participants from Upwork (UP1-UP5) performed worse for Assertion 1 and better for As-
sertion 2 in comparison to the participants from PhD student/Postdoc sessions. For the first assertion, only
one participant achieved full correctness. For the second assertion four participants submitted partially
correct assertions and no one submitted a fully correct one.
Table 11 shows the results for the participants who used our tool to improve the assertions. Here, column
Overall T. comprises the running time of the tool, reported in column Tool T., and the time the developer
spent on analysing the output of the tool and improving assertions, i.e., the human cost, reported in column
Human T. Every time the participant ran our tool, we recorded the time of the day and the assertions in the
code. Based on this information, we calculated the human cost as the sum of time intervals between tool
runs and the running time of the tool as the sum of tool run durations for all iterations.
When using the tool, all the participants from both PhD student/Postdoc sessions and Upwork sessions
have achieved full correctness for Assertion 1. As our PhD student/Postdoc experimental sessions were
limited in time, initially we configured the tool so that it reports false negatives for Assertion 2 only until
partial correctness was achieved (as in the third assertion in Figure 10). Five participants (marked with
an asterisk in Table 11) have run the tool with this configuration. As they achieved the desired partial
correctness in a relatively short time, we used the standard configuration of the tool reporting all false
negatives for the rest of the participants. As a result, these participants received a false negative report after
achieving partial correctness. However, only one of them was able to improve the assertion to the point of
full correctness. Three participants (P15, P16, P17) understood the reason of the reported false negative and
made steps towards improvement, but the added checks contained a false positive which they were not
able to remove by the end of experimental session. Participant P19 was not able to understand the reason
for the reported false negative, and, therefore did not improve the assertion beyond the point of partial
correctness. The same scenario occurred also for Upwork Participant UP9. The rest of Upwork participants
(four out of five) were successful in achieving full correctness.
In Tables 10 and 11 we do not indicate explicitly the level of partial correctness (i.e., the mutation score),
because it is the same across all participants: Partial Correctness for Assertion 1 has mutation score = 75%,
while for Assertion 2 it is 92%.
Overall, for Assertion 1, participants achieved 43% of full and 21% of partial correctness when improv-
ing assertions manually versus 100% of full correctness when improving assertions using our tool. For
Assertion 2 manual improvement led to 64% of partial correctness as opposed to 33% of full and 67% of
partial correctness when using the tool. We checked the statistical significance of the difference between the
manual and tool-supported improvement by applying the Fisher’s exact test (two-sided) in two different
configurations. In the first configuration we compared the outcomes of assertions in terms of achieving
partial correctness and in the second in terms of achieving full correctness. In both cases the difference is

TECHNICAL REPORT 17

TR-Precrime-2019-04 — Oracle Improvement

statistically significant at 95% confidence level, with p = 0.00025 in the first configuration and p = 0.00067
in the second.
We conducted a co-factor analysis to check if the type of participants (whether they are from Upwork
or PhD student/Postdoc sessions) is significantly affecting their performance. Another co-factor here is
whether the tool was used or not, while mutation score is the dependent variable. The permutation test
shows that the effect of participant type is not statistically significant with p = 0.33333, but the effect of tool
usage is statistically significant with p < 2 ∗ 10−16.

RQ3 (Quality of Final Assertions): The tool helped developers produce assertions with higher quality. Par-
ticipants who used the tool were able to achieve 67% of full and 33% of partial correctness, while participants
without tool achieved only 21% of full and 43% of partial correctness. The difference is statistically significant.

Manual Improvement Process
To understand the approach of developers when improving the assertions manually we asked them what
was their strategy for the detection and improvement of false positives and false negatives. Figure 11 shows
the participants’ answers to the multiple-choice questions.

24%

18%

6%

53%

Reading the Code (RC)
Executing with Debugging (D)
Executing without Debugging (ND)
Other (O)

19%

19%

6%

56%

False Positives False Negatives

O

RC
ND

D

ND

O

RC

D

Figure 11: Strategies to Manually Detect FP and FN

Around 55% of participants just read the code when performing manual improvement, while around 40%
also executed the code with or without debugging enabled. In case the option ”Other” was picked, the
participant could describe his/her strategy using the textbox provided in the questionnaire. Only three
participants have provided meaningful descriptions of their strategies. The first participant noted that he
ran the method with the improved assertion distinguishing ”empty case, one element, more than one ele-
ment”. The second participant described his strategy as ”reading the commented description of what the
function should do” and then encoding his interpretation of the expected behaviour in a boolean formula
using the ”old” and updated variables. The description of the third participant was ”to try to study in-
stances that will make the assertion fail”, define what the assertion for this method should look like and
then compare it with the current one and improve it.
Overall, the participants’ approach to oracle improvement seems strongly based on static inspection of
code and documentation. Dynamic analysis, tracing and debugging are not widely used. We conjecture the
following reasons for such strategies: (1) the definition of assertions might be perceived as a coding/doc-
umentation activity; (2) debugging and fixing bugs in assertions is not as common as debugging and bug
fixing in the code. There seems to be no standard practice for handling issues that affect assertions – hence,
the need for a well-established approach and for supporting tools.
Iterative Improvement Process
Analysis of the time required to complete the iterative improvement process (see Tables 10, 11) is quite prob-
lematic, because we had to measure time differently in the different settings of the experiments. Specifically,
the PhD student/Postdoc group without tool marked time in a paper sheet in a strictly controlled classroom
setting, so their reported time is quite reliable.
On the contrary, Upwork participants self reported the time spent to improve the assertions without tool in
an uncontrolled environment. They might have inflated times a bit to justify their remuneration and they

TECHNICAL REPORT 18

TR-Precrime-2019-04 — Oracle Improvement

Figure 12: Improvement Study Results: Iterative Process Details

might have been quite approximate in their time measurement. Time values measured for both groups
when using the tool were obtained in a completely different way, since these values have been extracted
from the tool execution logs. This means that they are very accurate, but also quite different from the times
that humans self-report. Because of such differences, we can make only limited claims on time.
Overall, we observe that the order of magnitude is the same. In fact, the overall average time ranges be-
tween 15:28 and 27:33, considering both groups and treatments, with two intermediate values at 16:57 and
18:12. This indicates that the introduction of the tool can be extremely beneficial to the assertion quality (as
shown in previous section) without having any remarkable impact on the time developers take to complete
the improvement process. We can also notice that the human time (Column Human T.) when the tool is
used (see Table 11), tends to be lower than the human overall time when no tool is available (see Table 10).
It is only when the tool time (Column Tool T.) is added that we get comparable times to the setting without
tool. These findings indicate that the tool execution time has a significant impact on the improvement pro-
cess and that any performance improvement that could be achieved on the tool speed (the tool is a research
prototype and was not optimized for performance) could directly benefit the overall iterative improvement
time experienced by the tool users.
Figure 12 shows the overall number of iterations and the outcome of each iteration for both assertions and
for all 15 participants who used the tool in the oracle improvement process. For the first assertion the num-
ber of iterations varied from 1 to 8 and the average number of iterations required to achieve full correctness
was 2.93. For the second assertion the number of iterations varied from 1 to 13 and the average number
of iterations was equal to 4.66. The average number of iterations participants went through to achieve full
correctness was 3.8, while for partial correctness it was 3.66. Since these two numbers are approximately
the same, we can conjecture that participants who were able to achieve full correctness performed bigger
improvement steps, since they achieved higher quality in approximately the same number of iterations.
At each iteration developers spent on average 195 seconds for the analysis of tools’ output and fixing the
oracle deficiency in case of Assertion 1 and 191 seconds in case of Assertion 2.
Only three participants (P14, P18, UP8) were able to improve the first assertion to the point of full cor-
rectness immediately after getting the report for the initial false positive, i.e. in one iteration. The more
common scenario is to have a sequence of iterations (from 2 to 8) in which the tool still reports false posi-
tives. When trying to fix the false negatives in Assertion 2, 9 participants have introduced a false positive
and 2 participants have introduced a crash into the assertion. A very peculiar case is the improvement
process followed by Participant P17, since in 7 out of 13 iterations the tool reported a Crash.
The oracle deficiencies with an asterisk in Figure 12 denote the cases where the tool was run on an as-
sertion identical to the initial one. This means the participant has decided to restart the process from the

TECHNICAL REPORT 19

TR-Precrime-2019-04 — Oracle Improvement

initial assertion. Five participants has acted so in eight different cases after on average 2.3 iterations of im-
provement. While it is understandable that after making a series of unsuccessful changes to the assertion,
developers roll them back and restart from scratch, the initial iterations serve apparently no purpose, as the
same deficiency that was already reported initially is analysed later in the process.

RQ4 (Human Effort for Iterative Process): The introduction of the tool in the process does not impact the
overall iterative improvement time to any major extent. If we exclude the tool execution time, it actually reduces
the time required from humans. The number of iterations varied between 1 and 13, with an average of 3.9
iterations. In each iteration, developers spent, on average, 193 seconds of manual effort.

Tool Performance and User Feedback
We measured the performance of our tool during the experiments as the amount of time it took to report the
presence or absence of oracle deficiencies. The tool starts each iteration from a search for a false positive.
In case no false positive is detected, the search for false negative is initiated. Therefore, the detection time
for false negative includes the whole search budget of a false positive (60 seconds by default). Similarly,
the tool uses its search budget for both false positives and false negatives before reporting that no evidence
of oracle deficiencies was found. On average, during our experiments false positives were reported in 60,
crashes in 62 and false negatives in 162 seconds, while the report for no oracle deficiencies took 271 seconds.

Figure 13: User Feedback on Tool

To get insight into the perceived quality of the tool, we asked participants to rate their experience with it in
the exit questionnaire. We asked five Likert scale format questions, with a range of options from 1 (strongly
disagree) to 5 (strongly agree). Figure 13 lists the questions an shows the answers of participants to each of
them. As results show, the tool was assessed to be easy to run (4.5 on average). The usefulness of its output
to understand the reason of a false positive was rated as 4.07, while its helpfulness to fix a false positive
was evaluated as 4.13. For false negatives both of these numbers were a bit lower: 3.87 on average.
We also asked a multiple-choice question about the main difficulties users face when trying to interpret
the output of the tool for each oracle deficiency. Figure 14 shows the percentages of chosen answers. For
false positives, understanding the reported test cases (40%) and understanding why the test case makes the
assertion fail (40%) were equally challenging for participants. For false negatives the main difficulty was
figuring out why the assertion does not react to the mutation (47%), followed by understandability of the
reported test cases (26%) and reported mutations (21%).

3.3 Threats to Validity

Internal. A threat to internal validity may result if the training material or experiment objectives were
unclear to participants. To mitigate this threat we thoroughly revised all our training materials and tested
them on a pilot study. Moreover, in the Improvement Study we included a practice task and ensured that
participants had successfully completed it before proceeding to the real task. For Upwork participants,

TECHNICAL REPORT 20

TR-Precrime-2019-04 — Oracle Improvement

20%

40%

40%

Test Cases (TC)
Why Assertion Fails for TC (AF)
Other (O)

5%

21%

47%

26%

Test Cases (TC)
Why Assertion does
not React to Mutation (AM)
Reported Mutations
Other (O)

False Positives False Negatives

O

O

AF

TC

AM

RM TC

Figure 14: Difficulties in Understanding Tool’s output

who received the training material and performed the tasks in remote mode, after each type of training
(oracle improvement and tool) we required a test to be completed. They could proceed with the final task
only after passing these tests.
In the Assessment Study participants were assigned tasks randomly to avoid bias and to have the same
number of data points for all classes. In the Improvement Study we assigned participants from PhD stu-
dent/Postdoc sessions’ to control/treatment groups randomly, while Upwork participants were assigned
based on their programming experience. During the Improvement Study each subject was either using the
tool or not using it for both assertions, so as to eliminate learning effects that could influence our results.
A part of our Improvement Study was performed in a remote setting using the Upwork freelancing platform.
The training provided to these participants was in a written form. Moreover, participants could work on the
tasks at their own discretion and we could not oversee their behaviour. In the exit questionnaire, Upwork
participants rated the training material as 4.8 out of 5, on average, which indicates that they were satisfied
with its quality. For the participants who used the tool, we collected metadata on each tool run, therefore
we could check the timeframe and iterative process for each assertion. Participants who did not use the tool
self-reported time spent on each assertion. We include this information in our results, but acknowledge that
it is not reliable. Overall, co-factor analysis shows that results of Upwork participants are not significantly
different from the results of other participants.
In both studies, our measurements of user effectiveness are obtained by comparing participants’ results
against the outcome of OASIs. While OASIs provides evidence for any oracle deficiency it detects, it may
report no oracle deficiencies even if some (undetected) is actually there. To deal with this issue, the authors
thoroughly studied each assertion with no oracle deficiencies according to OASIs, to ensure that the tool’s
judgement is indeed correct.
External. The classes used in our study were not developed by our participants and may have been unfa-
miliar to them. However, it is a common practice that developers test the code not written by them. We
selected three Java classes for our Assessment Study due to limited time for the sessions. Similarly, our
Improvement Study analyses only one Java class. Furthermore, our case examples were chosen to be sim-
ple enough to be quickly understood. We acknowledge that our results cannot be generalised to other Java
classes. However, we had a large number of participants in each study, and therefore we believe that our
results provide insight into the behaviour of developers with different experience and background in the
oracle assessment and improvement process.
A further threat to external validity is that our results might be biased by the population of developers who
were registered at Upwork. Results could have been different if we had involved a different population of
professional developers (e.g., using another freelancing platform). We mitigated this threat by introducing
a qualification test. By adopting such a filter, we expect to be able to recruit a subset of workers with similar
skills in any platform.

4 Related work

The importance of oracles as an integral part of the testing process has been a key topic of research for over
three decades [36, 40, 44]. For a recent survey on the oracle problem and techniques for defining software

TECHNICAL REPORT 21

TR-Precrime-2019-04 — Oracle Improvement

oracles the reader is referred to the comprehensive review by Barr et al. [2]. In this review of related
work we focus on previous work on oracle generation, improvement and studies of software engineers’
behaviour with regard to oracles.

4.1 Automated Oracle Generation

4.1.1 Test Case Assertions

Modern test case generators as EvoSuite [9, 10] and Randoop [31] have the capability to automatically
synthesize test case assertions. Randoop annotates the source code of the class to identify observer methods
and uses them in assertion generation. EvoSuite applies the mutation-driven approach, where for each test
case it selects assertions with the highest mutation killing score [12].
The work by Staats, Gay and Heimdahl [38] uses an approach similar to Evosuite’s, where for each test
case input it uses mutation analysis to rank variables (not assertions) in terms of fault-finding effectiveness.
It then reports a set of top-ranked variables to the developers, so that they can manually write assertions
that check the expected values for each variable. The work by Loyola et al. [25] explores a similar scenario,
but program variables are ranked based on the dependencies observed between them during program
execution. The analysis begins by using data flow analysis to construct a network of program variables
for each test input. Then network centrality metrics are used to rank variables in terms of relevance or
centrality in the resulting network.
The test case oracles generated by all these approaches are specific to a single run. To capture general, rather
than concrete behaviour, the work by Fraser and Zeller [11] generates parameterised unit tests for which
oracles are represented in the form of pre- and postconditions characterising test input and test result. The
evaluation shows that parameterised unit tests are more expressive and cover 72.6% more branches than
concrete unit tests. However, they are more expensive to produce and may require several minutes per test
case generation.
Different approaches have been proposed to assess the quality of already generated test case assertions.
The work by Schuler and Zeller [37] addresses the problem of traditional coverage metrics not reflecting
the actual oracle quality and introduces the concept of checked coverage – the dynamic slice of covered
statements that actually influence the oracle. The results of their study show that checked coverage is a
better indicator of the quality of testing than coverage alone.
Huo and Clause [18] introduce a technique that is based on dynamic tainting and works by tracking the
flow of controlled (explicitly provided by the test itself) and uncontrolled inputs along data- and control-
dependencies. When a test finishes execution, the tracked information is used to generate reports that
identify brittle assertions, assertions that check values that are derived from uncontrolled inputs, and unused
inputs, inputs that are controlled by the test but are not checked by any assertion. In the evaluation of 4,000
real test cases, 164 tests were found to contain brittle assertions and 1,618 tests to contain unused inputs.
While the technique contains a separate step to filter false positives, the final false positive rate is still very
high: 63% on average for brittle assertions and 40% for unused inputs.

4.1.2 Specification Mining

Another form of automated oracles are mined specifications. The work by Nguyen, Marchetto and Tonella [42]
evaluates three types of such automated oracles in terms of cost and effectiveness: data invariants, tempo-
ral invariants and finite state automata. The following tools are used as representatives of these mined
specifications: KLFA [26] for FSA oracles, Daikon [7] for data invariants and Synoptic [3] for temporal invari-
ants. The procedure adopted for the experimental design is as follows: while a subject system P is running,
its execution is monitored to obtain traces, and different automated oracles are inferred from those traces.
Then, due to the new usages, the automated oracle may report alarms when the execution violates them.
Alarms might be due to a fault that has been triggered, or they may be wrong (false positives). Results
show that automated oracles can detect several real faults, but such fault detection capability comes at the
price of a quite high false positive rate (30% on average).
The work by Zhang et al. [46] presents iDiscovery, a technique that employs a feedback loop between
symbolic execution and dynamic invariant discovery to infer accurate and complete invariants. In each
iteration, iDiscovery transforms Daikon invariants into assertions and adds them to the program. The in-
strumented program is analysed with symbolic execution to generate additional tests to augment the initial
test suite provided to Daikon. With the newly added inputs, dynamic invariant discovery will be based

TECHNICAL REPORT 22

TR-Precrime-2019-04 — Oracle Improvement

on a richer set of program executions enabling discovery of higher quality invariants. Experimental results
show that iDiscovery is able to falsify from 24% to 72% of the invariants generated by Daikon.
Overall, the existing work in generation and assessment of oracles focuses mainly on the oracles for single
test inputs. Our preliminary evaluation showed that assertion oracles generated using our approach have
higher fault detection capability than the ones generated by Evosuite and Randoop. A few approaches as
the generation of parameterised unit tests [11] or iDiscovery [46] address oracles for more general behaviour.
The evaluation of oracles in automatically generated parameterised unit tests shows that they still have
19.6% false negative and 8.3% false positive rate. Therefore, our approach can be applied also to these
oracles to further improve them. Similarly, it can be applied to the final Daikon invariants generated by
iDiscovery.

4.2 Human Studies

Automatically generated oracles capture the implemented behaviour of the program rather than intended
behaviour. Therefore, to turn them into oracles useful for fault detection developers have to identify and fix
the incorrect ones, which requires human intelligence. Rather than using the human input directly, some
approaches reuse the artefacts produced by humans for the program under test.
The work by Pastore and Mariani [34] aims to identify the incorrectly synthesized assertions using the
manually written test cases as the source of human knowledge about the system. They present their tool
ZoomIn, which pinpoints wrong assertions by comparing the executions produced by the manual test cases
to the executions produced by the automatically generated test cases. Their intuition is that the execution of
an automatic test case is likely to constitute a failure if it produces anomalous variable values while covering
a case already tested by the developers. For the purpose of evaluation 7 real faults from Apache Commons
Math library were selected and ZoomIn was applied to the test cases generated by EvoSuite. Results show
that ZoomIn has been able to detect 50% of the analyzed non-crashing faults requiring inspection of less
than 1.5% of the automatically generated assertions.
The work by Goffi et al. [13] introduced Toradocu, which uses developer-written Javadoc comments to
create automated oracles for exceptional behaviours. The experimental evaluation of Toradocu shows that
it improves the fault-finding effectiveness of EvoSuite and Randoop test suites by 8% and 16% respectively,
and it reduces EvoSuite’s false positives by 33%. The later work by Blasi et al. [4] extends Toradocu so
that it produces specifications not only for exceptional behaviours, but also specifications capturing for
normal pre- and postconditions. Such extended Toradocu achieves a precision of 91% and a recall of 83% in
translating Javadoc comments into method specifications. These specifications enable Randoop to generate
test cases that reveal more defects and produce fewer false alarms.
Only two human studies have been conducted to evaluate the capability of humans to improve automated
oracles. They respectively used CrowdSourcing [35] to verify test case assertions and real developers to
determine the quality of invariants [39]. In general, CrowdSourcing a problem consists of specifying it in the
form of a Human Intelligence Task (HIT) and making the problem available in a CrowdSourcing platform,
where registered workers can choose to complete HITs for a small remuneration. Pastore, Mariani and
Fraser [35] proposed the idea of CrowdOracles, where test cases with synthesized assertions are verified
with respect to the documentation and fixed by the crowd. The results show that CrowdOracles are a viable
solution to address the oracle problem. However, to be successful, this approach requires a qualified crowd,
which is not easy to find; monetary investment, which can be high in case of a big number of test cases and
assertions; and also the existence of a good documentation for the programs under test, for the crowd to be
able to determine right and wrong assertions.
Staats et al. [39] conducted an empirical study with 30 participants to determine the user classification
effectiveness for invariants generated using Daikon, and to understand what factors lead to successful or
unsuccessful classification. In each study, participants were given one of three Java classes with automat-
ically generated invariants. Participants were asked to determine, for each generated invariant, if the in-
variant was correct or incorrect with respect to the Java class. On average, study participants misclassified
9.1-39.8% of correct invariants and 26.1-58.6% of incorrect invariants.
To evaluate classifications made by each participant, authors needed to determine whether each invariant
was correct or incorrect. For this they employed two automated approaches to try to falsify invariants. First,
they applied Randoop using 100,000 test inputs (far more than the 1,000 used to generate the invariants).
Second, a different, manually written random test generation harness was produced for each case example,
and then applied for a long period of time (24 hours). For any remaining invariants, three of the authors
manually examined each one, attempting to develop a test input capable of violating the invariant. When

TECHNICAL REPORT 23

TR-Precrime-2019-04 — Oracle Improvement

failing, they tried to understand whether the invariant was indeed correct. Invariants that they could not
falsify were accepted as correct. As we have noted before, the definition of invariant correctness in this
study is in line with our definition of false positives. So, to recheck the classification of the authors, we
applied OASIs, considering only false positive detection, to the invariants used in the study by Staats et al.
[39]. Table 12 shows that while the approach described in the paper [39] found 73 assertions with a false
positive among 324 assertions, our approach found false positives in 60 more assertions.

Table 12: Improvement Study: Results Without Tool

Class # of Assertions Incorrect
In Paper [39] OASIs

Matrix 122 18 42
Poly 121 26 50

StackAr 81 29 41
Overall 324 73 133

Our human study was designed to assess the usefulness of the information that our tool provides to devel-
opers. Evidence for the necessity and importance of such kind of studies can be found in empirical research
on program debugging tools. Indeed, our tool in some ways resembles these in that it assists the developer
to ”repair” the oracle. The work by Parnin and Orso [33] analyses whether automated debugging tools
are actually helping programmers. Their results show that debugging tools are helpful in completing a
task significantly faster, but only for experienced developers and simpler code. The study by Tao et al.[41]
shows that automatically generated high-quality patches significantly improve debugging correctness of
developers, but this effect is limited to difficult bugs. Moreover, debugging time is significantly affected
by participant type and the specific bug to fix. The user study by Wang et al.[43] demonstrates that the
support provided by information retrieval based techniques is helpful to developers only in getting to the
faulty file quickly, but not in understanding and fixing the bug within that file. In contrast, our human
study confirmed our hypothesis that OASiS is useful to the developer in all tasks associated with oracle
improvement.
Overall, the results of the two existing human studies [35, 39] addressing the oracle problem are not consis-
tent with each other: the second study indicates that human testers are not good at identifying correct test
oracles, while the first one indicates that qualified human testers can reliably identify correct test oracles
and fix the incorrect ones. While this might be partially explained by the different nature of the oracles
considered in the two studies (test case assertions vs. Daikon invariants), it also shows that there is a strong
need for more experiments analysing the performance of human testers in the oracle improvement process.

4.3 Tool Output Improvement

Our tool OASIs can provide the evidence of existing oracle deficiencies and can guide developers in fixing
them. Such evidence/guidance takes the form of automatically generated test cases. Any improvement
in the understandability of these test cases is beneficial for the adoption of our approach. Therefore, the
techniques to improve the readability of automatically generated test cases [6] or to provide test case sum-
maries in natural language [32] are all related to our work. The analysis of the iterative oracle improvement
process using OASIs shows that around 45% of time for each iteration is spent on actually running the tool.
The main cost associated with the execution of OASIs is the mutation analysis step, performed to identify
false negatives. One performance optimisation could be to avoid analysing all possible mutations for a
method, considering only a meaningful/representative subset of such mutations. Therefore, the works on
mutant selection [30, 45] can become a part of our implementation in future work.

5 Conclusion

We analysed whether our approach for oracle assessment and improvement with the human in the loop
supports the creation of better oracles. The role of the human in the loop was played by developers with
different backgrounds and experience: master degree students, PhD students, postdoctoral researchers,
professional developers and freelancers from the Upwork platform. Our results show that humans perform
poorly when assessing oracles manually. Their correct classification rate is 29%, on average. Professional
developers (48%) show almost twice better performance than students (25%), but still misclassify more than

TECHNICAL REPORT 24

TR-Precrime-2019-04 — Oracle Improvement

half of oracle deficiencies. Overall, false positives are harder to detect than false negatives. However, the
most common misclassification type is when an assertion with a false negative is classified as an assertion
having no oracle deficiencies. We analysed the effect of multiple factors (experience, level of satisfaction
with time allocated for the task and with the training material provided) on users’ performance, but found
no strong correlation with any of them.
When provided with the information on the type of oracle deficiency the assertion has and asked to improve
it manually, developers, on average, achieved 21% of full and 43% of partial correctness. These numbers
increased significantly, with developers achieving 67% of full and 33% of partial correctness when the they
used our tool OASIs for the improvement process. The overall number of iterations varied from 1 to 13,
with an average of 3.8 for full and of 3.66 for partial correctness. Results show that developers struggle with
achieving full correctness. None of the participants doing manual improvement was able to improve any
of the assertions in our study to a fully correct state. 3 participants from the group with the tool ran it for 2.6
extra iterations on average after achieving partial correctness to produce a fully correct assertion, but they
did not succeed. While the reports of OASIs, informing users that their assertions are only partially correct,
were judged definitely useful (they prevent developers from believing the their oracles will not miss any
faults), in practice users might prefer to stop the improvement process at a partially correct state, due to the
substantial effort incurred to achieve full correctness.
Overall, our results show that the proposed approach supports the developer in both the oracle assessment
and oracle improvement processes, and leads to the creation of more sound and complete oracles. Our
future work will be to optimise the performance of OASIs, so that it takes less time to run and leads to
a smoother incremental improvement process. The user feedback collected during these studies about
the understandability and helpfulness of the tool’s output, including the difficulty in understanding the
automatically generated test cases, will be addressed by incorporating existing works in the area of test
code understandability into the implementation of OASIs.

TECHNICAL REPORT 25

TR-Precrime-2019-04 — Oracle Improvement

References

[1] Kelly Androutsopoulos, David Clark, Haitao Dan, Robert M. Hierons, and Mark Harman. An analysis
of the relationship between conditional entropy and failed error propagation in software testing. In
36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
pages 573–583, 2014.

[2] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The oracle problem in
software testing: A survey. IEEE Transactions on Software Engineering, 41(5):507–525, May 2015.

[3] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D. Ernst. Leveraging
existing instrumentation to automatically infer invariant-constrained models. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, ES-
EC/FSE ’11, pages 267–277, New York, NY, USA, 2011. ACM.

[4] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D. Ernst, Mauro Pezzè,
and Sergio Delgado Castellanos. Translating code comments to procedure specifications. In ISSTA
2018, Proceedings of the 2018 International Symposium on Software Testing and Analysis, Amsterdam,
Netherlands, July 2018.

[5] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three decades later. Com-
munications of the ACM, 56(2):82–90, February 2013.

[6] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer. Modeling readability
to improve unit tests. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 107–118, New York, NY, USA, 2015. ACM.

[7] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program., 69:35–45, December 2007.

[8] J.L. Fleiss et al. Measuring nominal scale agreement among many raters. Psychological Bulletin,
76(5):378–382, 1971.

[9] Gordon Fraser and Andrea Arcuri. Evolutionary generation of whole test suites. In Manuel Núñez,
Robert M. Hierons, and Mercedes G. Merayo, editors, 11th International Conference on Quality Software
(QSIC), pages 31–40, Madrid, Spain, July 2011. IEEE Computer Society.

[10] Gordon Fraser and Andrea Arcuri. EvoSuite: automatic test suite generation for object-oriented soft-
ware. In 8th European Software Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE ’11), pages 416–419. ACM, September 5th - 9th 2011.

[11] Gordon Fraser and Andreas Zeller. Generating parameterized unit tests. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, ISSTA ’11, pages 364–374, New York, NY,
USA, 2011. ACM.

[12] Gordon Fraser and Andreas Zeller. Mutation-driven generation of unit tests and oracles. IEEE Trans.
Software Eng., 38(2):278–292, 2012.

[13] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. Automatic generation of oracles
for exceptional behaviors. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, ISSTA 2016, pages 213–224, New York, NY, USA, 2016. ACM.

[14] Mark Harman, Lin Hu, Robert M. Hierons, Joachim Wegener, Harmen Sthamer, André Baresel, and
Marc Roper. Testability transformation. IEEE Trans. Software Eng., 30(1):3–16, 2004.

[15] Mark Harman, Yue Jia, and Yuanyuan Zhang. Achievements, open problems and challenges for search
based software testing (keynote). In 8th IEEE International Conference on Software Testing, Verification and
Validation (ICST 2014), Graz, Austria, April 2015.

[16] Mark Harman, Afshin Mansouri, and Yuanyuan Zhang. Search based software engineering: A com-
prehensive analysis and review of trends techniques and applications. Technical Report TR-09-03,
Department of Computer Science, King’s College London, April 2009.

[17] Joe Hicklin, Cleve Moler, Peter Webb, Ronald F Boisvert, Bruce Miller, Roldan Pozo, and Karin Rem-
ington. Jama: A java matrix package. URL: http://math. nist. gov/javanumerics/jama, 2000.

TECHNICAL REPORT 26

TR-Precrime-2019-04 — Oracle Improvement

[18] Chen Huo and James Clause. Improving oracle quality by detecting brittle assertions and unused
inputs in tests. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pages 621–631, 2014.

[19] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. Test oracle assessment and im-
provement. In Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA
2016, pages 247–258, New York, NY, USA, 2016. ACM.

[20] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. OASIs: Oracle assessment and
improvement tool. In Proceedings of the 27th International Symposium on Software Testing and Analysis
(Tool Demonstrations), ISSTA 2018, New York, NY, USA, 2018. ACM.

[21] Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering, 37(5):649 – 678, September–October 2011.

[22] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and Gordon Fraser. Are
mutants a valid substitute for real faults in software testing? In International Symposium on Foundations
of Software Engineering (FSE), pages 654–665, 2014.

[23] klaus krippendorff. Content analysis: An introduction to its methodology. sage, thousand oaks krip-
pendorff k (2011) principles of design and a trajectory of artific iality. 28, 01 2004.

[24] J. Richard Landis and Gary G. Koch. The measurement of observer agreement for categorical data.
Biometrics, 33(1), 1977.

[25] Pablo Loyola, Matt Staats, In-Young Ko, and Gregg Rothermel. Dodona: automated oracle data set
selection. In International Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA -
July 21 - 26, 2014, pages 193–203, 2014.

[26] Leonardo Mariani and Fabrizio Pastore. Automated identification of failure causes in system logs. In
Proceedings of the 2008 19th International Symposium on Software Reliability Engineering, ISSRE ’08, pages
117–126, Washington, DC, USA, 2008. IEEE Computer Society.

[27] Math4J. A java numerics package. 2005.

[28] Phil McMinn. Search-based software test data generation: A survey. Software Testing, Verification and
Reliability, 14(2):105–156, June 2004.

[29] Jeremy W. Nimmer and Michael D. Ernst. Automatic generation of program specifications. SIGSOFT
Softw. Eng. Notes, 27(4):229–239, July 2002.

[30] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf. An exper-
imental determination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol., 5(2):99–118,
1996.

[31] Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-directed random testing for java. In Com-
panion to the 22Nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications
Companion, OOPSLA ’07, pages 815–816, New York, NY, USA, 2007. ACM.

[32] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and Harald C. Gall. The
impact of test case summaries on bug fixing performance: An empirical investigation. In Proceedings of
the 38th International Conference on Software Engineering, ICSE ’16, pages 547–558, New York, NY, USA,
2016. ACM.

[33] Chris Parnin and Alessandro Orso. Are automated debugging techniques actually helping program-
mers? In Proceedings of the 2011 International Symposium on Software Testing and Analysis, ISSTA ’11,
pages 199–209, New York, NY, USA, 2011. ACM.

[34] Fabrizio Pastore and Leonardo Mariani. Zoomin: Discovering failures by detecting wrong assertions.
In Proceedings of the International Conference on Software Engineering, 2015.

[35] Fabrizio Pastore, Leonardo Mariani, and Gordon Fraser. Crowdoracles: Can the crowd solve the oracle
problem? In ICST’13: Proceedings of the 6th International Conference on Software Testing, Verification and
Validation, pages 342–351. IEEE Computer Society, 2013.

TECHNICAL REPORT 27

TR-Precrime-2019-04 — Oracle Improvement

[36] Dennis K. Peters and David Lodge Parnas. Using test oracles generated from program documentation.
IEEE Transactions on Software Engineering, 24(3):161–173, 1998.

[37] David Schuler and Andreas Zeller. Assessing oracle quality with checked coverage. In Fourth IEEE
International Conference on Software Testing, Verification and Validation, ICST 2011, Berlin, Germany, March
21-25, 2011, pages 90–99, 2011.

[38] Matt Staats, Gregory Gay, and Mats Per Erik Heimdahl. Automated oracle creation support, or: How
I learned to stop worrying about fault propagation and love mutation testing. In 34th International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pages 870–880, 2012.

[39] Matt Staats, Shin Hong, Moonzoo Kim, and Gregg Rothermel. Understanding user understanding:
Determining correctness of generated program invariants. In Proceedings of the 2012 International Sym-
posium on Software Testing and Analysis, ISSTA 2012, pages 188–198, New York, NY, USA, 2012. ACM.

[40] Matt Staats, Michael W. Whalen, and Mats Per Erik Heimdahl. Programs, tests, and oracles: the foun-
dations of testing revisited. In Proceedings of the 33rd International Conference on Software Engineering,
ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 391–400, 2011.

[41] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. Automatically generated patches as debugging
aids: A human study. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 64–74, New York, NY, USA, 2014. ACM.

[42] Paolo Tonella, Cu D. Nguyen, Alessandro Marchetto, Kiran Lakhotia, and Mark Harman. Automated
generation of state abstraction functions using data invariant inference. In Proceedings of the 8th Inter-
national Workshop on Automation of Software Test (AST), 2013.

[43] Qianqian Wang, Chris Parnin, and Alessandro Orso. Evaluating the usefulness of ir-based fault local-
ization techniques. In Proceedings of the 2015 International Symposium on Software Testing and Analysis,
ISSTA 2015, pages 1–11, New York, NY, USA, 2015. ACM.

[44] Elaine J. Weyuker. On testing non-testable programs. The Computer Journal, 25(4):465–470, November
1982.

[45] W. Eric Wong and Aditya P. Mathur. Reducing the cost of mutation testing: An empirical study. Journal
of Systems and Software, 31(3):185–196, 1995.

[46] Lingming Zhang, Guowei Yang, Neha Rungta, Suzette Person, and Sarfraz Khurshid. Feedback-driven
dynamic invariant discovery. In Proceedings of the 2014 International Symposium on Software Testing and
Analysis, ISSTA 2014, pages 362–372, New York, NY, USA, 2014. ACM.

TECHNICAL REPORT 28

	Introduction
	Background
	Quality of Assertions
	Approach & Implementation
	False Positive Detection
	False Negative Detection
	Iterative Improvement Process

	Preliminary Validation

	Human Study
	Oracle Assessment Study
	Object Selection
	Participants
	Experimental Procedure
	Results

	Oracle Improvement Study
	Participants
	Experimental Procedure
	Oracle Improvement Process: Possible Cases
	Results

	Threats to Validity

	Related work
	Automated Oracle Generation
	Test Case Assertions
	Specification Mining

	Human Studies
	Tool Output Improvement

	Conclusion

