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Summary. We present an adaptive wavelet method for solving the incompressible
Navier–Stokes equations in two space dimensions using the vorticity-stream function
formulation. For time discretization a semi–implicit scheme of second order is used.
The space discretization is based on a Petrov–Galerkin method, where orthogonal
spline wavelets of 4th order are employed as trial functions and operator adapted
wavelets as test functions. The no–slip boundary conditions are imposed using a
volume penalisation method. As example we present adaptive simulations of vortex-
dipole wall interactions.

1 Introduction

The mathematical properties of wavelets (see, e.g.,Daub92) motivate their
use for the numerical solution of partial differential equations (PDEs). The
localization of wavelets, both in scale and space, leads to effective sparse rep-
resentations of functions and pseudo–differential operators (and their inverse)
by performing nonlinear thresholding of the wavelet coefficients of the function
and of the matrices representing the operators. Estimating the local regularity
of the solution of the PDE auto–adaptive discretizations with local mesh re-
finements can be defined. The characterization of function spaces in terms of
wavelet coefficients and the corresponding norm equivalences allow diagonal
preconditioning of operators in wavelet space. Finally, the existence of the fast
wavelet transform yields algorithms with optimal linear complexity.

The currently existing algorithms can be classified in different ways. We
can distinguish between Galerkin, collocation schemes and algebraic wavelet
methods. By the latter we mean algorithms which start from a classical dis-
cretization, e.g. by finite differences or finite volumes. Wavelets are then used
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to speed up the linear algebra and to define adaptive grids. On the other hand
the former two schemes employ wavelets directly for the discretization of the
solution and the operators. For an overview on wavelet methods we refer the
reader to [5, 4].

Wavelet methods have been developed to solve Burger’s equation, Stokes’
equation, Kuramoto–Sivashinsky equation, the nonlinear Schrödinger equa-
tion, the Euler and Navier–Stokes equations.

In the follwing we present an adaptive wavelet algorithm of Galerkin type
[10] to solve the two–dimensional Navier–Stokes equation in vorticity–stream
function formulation. The boundary conditions are imposed using a volume
penalisation technique. As application we present computations of a vortex
dipole impinging on a no-slip wall in a square container at Reynolds number
1000, which is a challenging test case for numerical methods [12, 3]. Finally,
we present some conclusions and perspectives for future work.

2 Adaptive wavelet discretization with volume
penalisation

2.1 An adaptive wavelet scheme

The volume penalisation method has been proposed by Arquis and Calta-
girone [1]. Its is based on the physical idea which consists in modelling solid
walls or obstacles as porous media whose porosity η tends to zero. The geom-
etry of the flow is described by a mask function χ. The incompressible Navier-
Stokes equations are modified by adding a forcing term containing the mask
function. Using vorticity ω and the stream function Ψ , which are both scalars
in 2d, the equations are:

∂tω + v · ∇ω − ν∇2 ω = ∇× F (1)
∇2Ψ = ω and v = ∇⊥Ψ (2)

for x ∈ Ω , t > 0. The velocity is denoted by v, ν > 0 is the constant kinematic
viscosity and∇⊥ = (−∂y, ∂x). The fluid region Ωf is embedded in the enlarged
domain Ω containing in addition a solid region Ωs which is surrounding the
fluid region. The penalisation term F = − 1

η χΩs
v imposes no–slip boundary

conditions on the walls, corresponding to the interface between the fluid and
solid region, i.e. Ωf and Ωs, respectively. The mask function χ is defined as

χΩs
(x) =

{
1 for x ∈ Ω̄s,
0 elsewhere (3)

where Ωs denotes the ensemble of solid obstacles. The above equations are
completed with a suitable initial condition.
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In [2] it has been shown rigorously that the penalised equations written
in primitive variables converge towards the Navier–Stokes equations with no-
slip boundary conditions, with order η3/4 inside the obstacle and with order
η1/4 elsewhere, in the limit when η tends to zero. In numerical simulations an
improved convergence of order η has been reported [2, 11].

Time discretization

Introducing a classical semi–implicit time discretization with a time step δt
and setting ωn(x) ≈ ω(x, nδt) we obtain

(1− νδt∇2)ωn+1 = ωn + δt(∇× Fn − vn · ∇ωn) (4)
∇2Ψn+1 = ωn+1 and vn+1 = ∇⊥Ψn+1 (5)

Hence in each time step two elliptic problems have to be solved and a dif-
ferential operator has to be applied. Formally the above equations can be
written in the abstract from Lu = f , where L is an elliptic operator with
constant coefficients, corresponding to a Helmholtz type equation for ω with
L = (1− νδt∇2) and a Poisson equation for Ψ with L = ∇2.

In practice we use a time scheme composed of an Euler–Backwards scheme
and an Adams–Bashforth scheme, both of second order [10].

Spatial discretization

For the spatial discretization we use the method of weighted residuals, i.e., a
Petrov–Galerkin scheme. The trial functions are orthogonal wavelets and the
test functions are operator adapted wavelets. To solve the elliptic equations
Lu = f at time step tn+1 we develop un+1 into an orthogonal wavelet series,
i.e., un+1 =

∑

λ ũ
n+1
λ ψλ, where λ = (j, ix, iy, d) denotes the multi–index

containing scale, space and direction information. Requiring that the residuum
vanishes with respect to all test functions θλ′ , we obtain a linear system for
the unknown wavelet coefficients ũn+1

λ of the solution u:
∑

λ

ũn+1
λ 〈Lψλ , θλ′〉 = 〈f , θλ′〉. (6)

The test functions θ are defined such that the stiffness matrix turns out to
be the identity. Therefore the solution of Lu = f reduces to a change of the
basis, i.e., un+1 =

∑

λ〈f , θλ〉ψλ.
The right-hand side f can then be developed into a biorthogonal operator

adapted wavelet basis f =
∑

λ 〈f , θλ〉µλ, with θλ = L�−1ψλ and µλ = Lψλ
(� denotes the adjoint operator). By construction θ and µ are biorthogonal,
〈θλ , µλ′〉 = δλ,λ′ . It can be shown that both have similar localization proper-
ties in physical and Fourier space as has ψ and that they form a Riesz basis
[10].
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Adaptive discretization

To get an adaptive space discretization for the problem Lu = f we consider
only the significant wavelet coefficients of the solution. Hence we only retain
coefficients ũnλ which have an absolute value larger than a given threshold ε,
i.e., |ũnλ| > ε. The corresponding coefficients are shown in Fig.1 (white area
under the solid line curve).

Fig. 1. Illustration of the dynamic adaption strategy in wavelet coefficient space.

Adaption strategy

To be able to integrate the equation in time we have to account for the evo-
lution of the solution in wavelet coefficient space (indicated by the arrow in
Fig. 1). Therefore we add at time step tn the local neighbors to the retained
coefficients, which constitute a security zone (grey domain in Fig.1). The equa-
tion is then solved in this enlarged coefficient set (white and grey region in
Fig.1) to obtain ũn+1

λ . Subsequently we threshold the coefficients and retain
only those with |ũn+1

λ | > ε (coefficients under the dashed curve in Fig.1 ). This
strategy is applied in each time step and allows hence to track automatically
the evolution of the solution in scale and space.

Evaluation of the nonlinear term

For the evaluation of the nonlinear term f(un), where the wavelet coefficients
of un are given, there are two possibilities:

• evaluation in wavelet coefficient space.
As illustration we consider a quadratic nonlinear term, i.e., f(u) = u2. The
wavelet coefficients of f can be calculated using the connection coefficients,
i.e., one has to calculate the bilinear expression,

∑

λ

∑

λ′ ũλ Tλλ′λ′′ ũλ′
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with the interaction tensor Tλλ′λ′′ = 〈ψλ ψλ′ , θλ′′〉. Although many coef-
ficients of T are zero or very small, the size of T leads to a computation
which is quite untractable in practice.

• evaluation in physical space.
This approach is similar to the pseudo-spectral evaluation of nonlin-
ear terms used in spectral methods, and therefore this method is called
pseudo–wavelet technique. The advantage of this scheme is that more gen-
eral nonlinear terms, e.g., f(u) = (1−u) e−C/u, can be treated more easily.
The method can be summarized as follows: starting from the significant
wavelet coefficients of u, i.e., |ũλ| > ε, one reconstructs u on a locally
refined grid, u(xλ). Then one can evaluate f(u(xλ)) pointwise and the
wavelet coefficients of f can be calculated using the adaptive decomposi-
tion to get f̃λ.

Finally, we have to calculate those scalar products of the r.h.s f with the
test functions θ, to advance the solution in time. We compute ũλ = 〈f, θλ〉
belonging to the enlarged coefficient set (white and grey region in Fig. 1).

In summary the above algorithm is of O(N) complexity, where N denotes
the number of wavelet coefficients used in the computation.

3 Vortex-dipole wall interactions

To illustrate the above algorithm we present an adaptive wavelet computation
of a vortex–dipole impinging on a no-slip wall at Reynolds number Re = 1000
in a square container with Re = uL

ν and where u denotes the rms velocity
of the flow, L the half-width of the container and ν the kinematic viscosity.
The Navier-Stokes equations are solved in a periodic square domain of size
2.2 in which the square container [−1, 1]2 is imbedded. The no slip boundary
conditions are imposed using a volume penalisation method. The porosity η
is 10−3 and the maximal numerical resolution is 10242. The initial vorticity
distribution of the two isolated monopoles is given by

ω(r, t = 0) = ω0

(

1−
(

r

r0

)2
)

exp

(

−
(

r

r0

)2
)

(7)

where r is the distance from the center of the monopole. Following [3] we chose
r0 = 0.1 and ω0 = ±320. The initial position of the two isolated monopoles is
{(x1, y1), (x2, y2)} = {(0, 0.1), (0,−0.1)}.

Figure 2 (left) shows snapshots of the vorticity field at times t = 0.2, 0.4, 0.6
and 0.8. We observe that the dipole is moving towards the wall and that strong
vorticity gradients are created when it hits the wall. The computational grid
is dynamically adapted during the flow evolution, since the nonlinear wavelet
filter automatically refines the grid in regions where strong gradients develop.
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Fig. 2. Dipole–wall interaction at Re = 1000. Vorticity fields (left), corresponding
centers of active wavelets (right), at t = 0.2, 0.4, 0.6 and 0.8 (from top to bottom).

Figure 2 (right) shows the centers of the retained wavelet coefficients at cor-
responding times. Note that during the computation only 5% out of 10242

wavelet coefficients are thus used. The time evolutions of total kinetic energy



828 Kai Schneider and Marie Farge

E(t) = 1
2

∫ 1

−1

∫ 1

−1
v2dxdy and total enstrophy Z(t) = 1

2

∫ 1

−1

∫ 1

−1
ω2dxdy are

plotted in Fig. 3 to illustrate the production of enstrophy and the dissipation
of energy when the dipole is hitting the wall.
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Fig. 3. Time evolution of energy (solid line) and enstrophy (dotted line).

4 Conclusions

In conclusion, we have checked the ability of the adaptive wavelet solver to
track the evolution of the dipole and its nonlinear interaction with the no-slip
wall. The utilisation of a volume penalisation method enables us to take into
account complex geometries using a mask function, without modifying the
numerical scheme and the underlying grid. The precision of the method is
determined by the penalisation parameter η which can be chosen a priori. An
explicit time discretization of the penalisation term implies, however, a time
step smaller than η to guarantee stability of the numerical scheme. We have
shown that this approach is suitable to model walls even in the case of strong
interaction with vortices.

The adaptive wavelet method presented in this paper allows automatic
grid generation and refinement near the wall and also in shear layers which de-
velop during the flow evolution. Therewith, the number of required grid–points
in the simulations is significantly reduced. We conjecture that the compres-
sion rate thus obtained increases with the Reynolds number. Current work is
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dealing with the development of adaptive local time stepping using a Runge–
Kutta–Fehlberg method in order to control the error of the scheme in time
[7].

In future work we will extend the penalisation scheme to compute three–
dimensional flows and perform computations at high Reynolds numbers using
the Coherent Vortex Simulation approach (CVS), proposed in [8, 9]. Applica-
tions to 3d turbulent mixing layers have been presented in [14].
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