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We present a method to extract coherent vortices out of turbulent flows, based on thresholding the
wavelet coefficients of vorticity. We compare two ways of choosing the threshold and show how one
can thus split each flow realization into coherent vortices and quasi-Gaussian white noise. We then
describe a new method, called CVS (coherent vortex simulation), for computing deterministically
the time evolution of the coherent vortices while neglecting or modelling the incoherent background
noise. We develop a hierarchy of model equations based on the nonlinear Galerkin approach. In the
first CVS method there is no modelling of the effect of the discarded coefficients and filtering out
the incoherent background at each time step plays the role of turbulent dissipation. For the second
approach we derive an additional linear equation to compute the effect of the incoherent background
flow whose coefficients have been discarded. Finally, to validate both CVS approaches, we analyse the
different terms of the filtered equations and present different simulations of homogeneous isotropic
turbulence.
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wavelets; turbulence

1. Introduction

Turbulence is characterized by its multiscale behaviour, self-organization into coherent struc-
tures and a generic randomness. The number of active spatial and temporal scales involved
is increasing with the Reynolds number which implies a prohibitive complexity for direct
approaches to compute turbulent flows. However, observations show that for a given flow
realization these scales are not homogeneously distributed, neither in space nor in time, which
corresponds to the flow intermittency. To be able to benefit from this property, a suitable
representation of the flow should reflect the lacunarity of the fine-scale activity, in both space
and time.

A prominent tool for multiscale decompositions is wavelets. A wavelet is a well-localized
oscillating smooth function, i.e. a wave packet, introduced by Grossmann and Morlet [17], as
basis blocks to decompose any signal orfield. The wavelet is dilated to generate different scales,
and translated to generate different positions and the wavelet basis functions are thus generated
by the affine group. Therewith a flow field can be decomposed into scale–space contributions
from which it can be perfectly reconstructed. Note that for finer scales the physical support of
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the basis functions decreases. This is in contrast to the windowed Fourier transform where the
Weyl–Heisenberg group generates modulated and translated basis functions whose support
does not decrease with scale.

The flow intermittency is reflected in the sparsity of the wavelet representation, i.e. only a
few coefficients, the strongest ones, are necessary to represent the dynamically active part of
the flow. From corresponds to mathematical point of view this nonlinear approximation, where
the coefficients are sorted by decreasing order and only the N strongest ones are retained. It
yields a better precision than a linear approximation where a cut off scale is imposed a priori.
The former, where the actual choice of the coefficients depends on the flow realization, is
particularly attractive when the underlying flow field is of inhomogeneous regularity, i.e. for
increasing intermittency. This property is reflected by the fact that theflow field regularity, esti-
mated in function spaces measuring local properties of thefield like Besov spaces, is larger than
its regularity, estimated in function spaces measuring global properties like Sobolev spaces.

Note that Besov spaces are used indirectly in the turbulence community since the Besov
norms are equivalent to the structure functions, see e.g. [28]. This nonlinear approximation
allows efficient and sparse representations of such functions with inhomogeneous regular-
ity using few coefficients nevertheless preserving excellent precision. These properties have
been proven by DeVore and co-workers [7] and are well known in the approximation theory
community.

A second ingredient in turbulent flows is that the observed coherent structures seem to be
imbedded in a random background sea. In statistics wavelets have turned out to be a suitable
tool for this denoising task [9, 8]. It has been proven rigorously that wavelet thresholding of
noisy data allows us to estimate the underlying signal, given its inhomogeneous regularity,
in a quasi-optimal way. This is due to the sparsity of the wavelet representation of the signal
and the property that noise is invariant under orthogonal transformations, which means that a
noise remains a noise in any basis and does not become sparse.

Wavelet techniques have been introduced in the early nineties to analyse turbulent flows [10,
21]. Since then different directions for wavelets and turbulence have been pursued, e.g. signal
processing approaches, interpretations in the multifractal community, co-spectra, analyses and
eduction of coherent structures using experimental data.

In [11, 12] we have introduced the coherent vortex simulation (CVS) approach to compute
and model turbulent flows. Further developments have been presented in [14, 18]. The idea
of CVS is to combine nonlinear approximation with denoising and additionally to exploit
the properties of wavelets for numerical analysis. Wavelets yield attractive discretizations for
operator equations. They allow auto-adaptive discretizations by estimating the local regularity
of the solution. Furthermore, many integral and differential operators have a sparse repre-
sentation in a wavelet basis and can furthermore efficiently be preconditioned using diagonal
scaling. For a review we refer to the book of Cohen [4]. The idea of CVS is based on filtering
turbulent flows using adaptive multiresolution techniques. Therewith the flow is split into two
parts, a coherent flow, whose evolution is deterministically computed in an adaptive basis, and
an incoherent flow, which is noiselike and whose effect on the coherent flow is modelled.

The aim of the present paper is to present CVS in a concise way by combining the aspect
of nonlinear approximation and denoising first for the extraction of coherent vortices. We
assess the iterative wavelet-based denoising algorithm, which was justified mathematically
in [1], for extracting vortices in two-dimensional flows. We also show that this scheme can
be interpretated as a nonlinear diffusion process. Then we present the previously introduced
CVS approach [11, 12] and derive a hierarchy of model equations, taking into account the
influence of the incoherent part of theflow. Different numerical simulations of two-dimensional
turbulent flows show the validity of the CVS models. Finally, we conclude and present some
perspectives for 3D flows.
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2. Wavelet-based coherent vortex extraction

2.1 Orthogonal wavelets and denoising

In the following we fix the notation for the wavelet decomposition of a one-dimensional scalar
valued signal and summarize the main ideas of wavelet-based denoising. For more details on
the orthogonal wavelet transform, its extension to higher dimensions, we refer the reader to
textbooks, e.g. [6].

We consider a signal u and decompose it into an orthogonal wavelet series

u(x) =
∑
λ∈�

ũλψλ(x), (1)

where the multi-index λ = ( j, i) denotes the scale j and the position i of the wavelets. The cor-
responding index set � is � = {λ = ( j, i), j = 0 . . . , i = 0 . . . 2 j − 1}. Due to orthogonality
the coefficients are given ũλ = 〈u, ψλ〉 where 〈·, ·〉 denotes the L2-inner product.

When a signal s is corrupted by Gaussian white noise n, i.e. we observe u = s +n, then this
noise is contained to a small amount in all wavelet coefficients ũλ, while the original signal s
is in general determined by few significant coefficients. The idea of wavelet denoising can be
summarized in the following three-step procedure:

� Decomposition: compute the wavelet coefficients ũλ using the fast wavelet transform.
� Thresholding: apply the thresholding functionρε to the wavelet coefficients ũλ, thus reducing

the relative importance of the coefficients with small absolute value.
� Reconstruction: reconstruct a denoised version uC from the thresholded wavelet coefficients

using the fast inverse wavelet transform.

The thresholding parameter ε depends on the variance of the noise and on the sample size.
Different thresholding functions ρ are used in the statistical community, the most prominent
ones are linear, soft, hard and firm thresholding.

In the following we consider hard thresholding corresponding to

ρε(a) =
{

a if |a| > ε

0 if |a| ≤ ε
, (2)

where ε denotes the threshold.
For soft and hard thresholding Donoho and Johnstone have shown [9] that the relative

quadratic error between the signal s and its estimator uC is close to the minimax error for
all signals s ∈ H, where H belongs to a wide class of function spaces, including Hölder and
Besov spaces. They also showed using the threshold

εD = σn

√
2 ln N (3)

yields an error which is close to the minimum error. Since εD depends only on the number
of samples N and on the variance of the noise σ 2

n , it is called universal threshold. However,
in many applications σ 2

n is unknown, like in turbulence, and has to be estimated from the
available noisy data u. In [1] we have developed an iterative algorithm for this task, based on
the method presented in [11], which is briefly sketched in the following.

Initialization

� given uk, k = 0, . . . , N −1. Set i = 0 and compute the fast wavelet transform of u to obtain
ũλ.
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� compute the variance σ 2
0 of u as a rough estimate of the variance of n and compute the

corresponding threshold ε0 = (2 ln Nσ 2
0 )1/2.

� set the number of coefficients considered as noise Nnoise = N .

Main loop
Repeat

� set N ′
noise = Nnoise and count the wavelet coefficients Nnoise with modulus smaller than εi .

� compute the new variance σ 2
i+1 from the wavelet coefficients whose modulus is smaller than

εi and the new threshold εi+1 = (2(ln N )σ 2
i+1)1/2.

� set i = i + 1

until (N ′
noise==Nnoise).

Final step

� compute uC from the coefficients with modulus larger than εi using the inverse fast wavelet
transform.

In [1] we have proven that the algorithm converges within afinite number of iterations which
is in practice small. The iterations are performed in wavelet coefficient space and hence the
algorithm only requires one fast wavelet transform and one inverse which are both of O(N ).

2.2 Coherent vortex extraction algorithm

In [11, 13], a wavelet-based method to extract coherent vortices out of both two- and three-
dimensional turbulent flows was proposed. The idea is to apply the previously described
denoising algorithm to the vorticity field ω given at resolution N at a given time instant
t . Therewith the flow is split into two parts: a coherent flow corresponding to the coherent
vortices and an incoherent flow corresponding to the noise [11].

This decomposition yields ω = ωC + ωI . Due to orthogonality we have 〈ωC , ωI 〉 = 0 and
hence it follows that enstrophy is conserved, i.e. Z = ZC + Z I .

Inverting the curl operator we obtain the corresponding velocity fields, i.e. 	v = 	vC + 	vI .
As the Biot–Savart operator is not diagonal in wavelet space we have for the energy that
E = EC + EI + ε where ε is small (cf. [11]).

2.3 Application to 2D turbulence

In the following we apply the coherent vortex extraction algorithm to a 2D turbulent vorticity
field (figure 1) computed by direct numerical simulation at resolution 5122 using a classi-
cal Fourier pseudo-spectral method [2]. Note that for this computation hyperviscosity was
used.

We compare two cases: in the first we use the threshold ε0, based on the variance of the
enstrophy of the total flow, and in the second we apply the iterative scheme to compute the
threshold εit. Using the threshold ε0, we find that C = 0.32% of the modes are retained in the
coherent contribution which contain 82.31% of the variance of the vorticity. Using εit gives a
weaker compression ratio, with 3.22% of the modes retaining 95.44% of the enstrophy. We
observe that filtering with ε0 does not preserve the isotropy of the coherent vortices (figure 2).
Moreover, considering 1D cuts of the incoherent field in figure 2, we observe that still some
vortices can be found. In contrast, the isotropy of the vortices is perfectly respected using εit and
all vortices have been removed from the incoherent background flow. This fact is confirmed
when we look at the PDFs of the vorticity (figure 3) since we have a Gaussian distribution
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Figure 1. Two-dimensional turbulent vorticity field and horizontal cut.

for the incoherent background obtained when filtering with εit, while we have a non-Gaussian
distribution when using ε0, which is due to the presence of small vortices still present in the
incoherent field. Nevertheless, both filtering methods show a very good fit between the PDFs
of the total and coherent fields.
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Figure 2. Coherent vortex extraction using ε0 (left column) and εit (right column). Top row: coherent vorticity;
Bottom row: incoherent vorticity.

Finally, if we consider the enstrophy spectra (figure 4), we observe that the incoherent
background obtained using εit shows a tendency towards enstrophy equipartition, which cor-
responds to a k+1 scaling. Moreover, we observe that in the large scales, up to wave number
k = 30, all the contribution to the enstrophy comes from the coherent modes. Concerning the
filtering using ε0, the behaviour of the enstrophy spectrum confirms that we did not properly
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Figure 3. Coherent vortex extraction using ε0 (top) and εit (bottom). PDFs of the total, coherent and incoherent
vorticity.

separate coherent and incoherent contributions, since the coherent and total enstrophy spectra
begin to depart for scales smaller than wave number k 
 10. The incoherent enstrophy does
not present the same equipartition as we have obtained using εit.

2.4 Coherent vortex extraction and nonlinear diffusion

The extraction of coherent vortices using nonlinear wavelet thresholding can be interpretated
as the application of a nonlinear diffusion operator to the vorticity field. Nonlinear diffusion is
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Figure 4. Coherent vortex extraction using ε0 (top) and εit (bottom). Enstrophy spectra of the total, coherent and
incoherent vorticity.

used in image processing to restore images from noisy data [23]. We briefly sketch the main
ideas. Starting from a noisy image u0 and evolving it in time according to a process described
by a nonlinear PDE,

∂t u = ∇ · (ν(|∇u|) ∇u) (4)

with initial condition u(x, t = 0) = u0(x), one obtains a denoised image. The diffusivity
function ν depends on the modulus of the signal gradient. It is non-negative and decaying
for increasing magnitude of the signal gradient. The result is that smoothing is faster in
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homogeneous regions, where the gradient is small and fine-scale contributions are caused
by the noise. Regions of large gradients, e.g. discontinuities, which correspond to important
features of the image, are preserved due to small diffusion there.

In [22] the equivalence between nonlinear wavelet thresholding (using Haar wavelets) and
a single step of explicitly discretized nonlinear diffusion using centred finite differences has
been shown. For hard thresholding the diffusion coefficient ν corresponds to

ν(x) =



1

4τ
if |x | ≤ √

2ε

0 if |x | >
√

2ε

, (5)

where ε = √
2τ and τ denotes the time step size.

This relation between wavelet thresholding and nonlinear diffusion shows that the extraction
of coherent vortices can be seen as the application of nonlinear diffusion to the total vorticity
field. The proposed discarding of the influence of the incoherent part in the CVS computation
of the flow evolution to model turbulent dissipation can therewith be justified.

3. Principle of coherent vortex simulation (CVS)

In this section we present the application of the previously presented coherent vortex extraction
technique to turbulent flow simulations, performing coherent vortex simulations [11]. For the
statistical analysis of single turbulent flow fields, it has been demonstrated in section 2.3 that
wavelet filtering is an efficient tool to split a turbulent flow into coherent vortices and an
incoherent background flow. Although the filtered coherent flow part is highly compressed
in wavelet space, it conserves most of the total energy and enstrophy of the original flow
field. This property motivates the simulation of turbulent flows using only the reduced wavelet
basis instead of the total number of degrees of freedom, which will finally reduce the overall
computational cost.

We first develop the model equations, i.e. the CVS equations introduced in [11] and an
improved model including a model equation for the evolution of the incoherent flow. Then
we introduce the adaptive basis concept of CVS and explain the implementation of the basis
selection.

3.1 Development of the CVS model equations

The starting point is the two-dimensional Navier–Stokes equations in vorticity–velocity
formulation

∂tω + 	v · ∇ω − ν∇2ω = ∇ × 	f (6)

∇ · 	v = 0

ω(0, 	x) = ω0,

where the unknown is the scalar valued vorticity ω = ∇ × 	v, with 	v being the velocity; 	f is a
given forcing, and ν > 0 the kinematic constant viscosity. The above equations are completed
with periodic boundary conditions. The velocity can be reconstructed from the vorticity using
the Biot–Savart relation,

	v = ∇⊥(∇2)−1ω (7)

with ∇⊥ = (−∂y, ∂x).
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Using the decomposition of the flow into coherent and incoherent components, i.e.

ω = ωC + ωI and 	v = 	vC + 	vI , (8)

and projecting (6) onto coherent and incoherent components we obtain an equivalent system

∂tωC + (	vC · ∇ωC + 	vC · ∇ωI + 	vI · ∇ωC + 	vI · ∇ωI )C − ν∇2ωC = ∇ × 	f C (9)

∂tωI + (	vC · ∇ωC + 	vC · ∇ωI + 	vI · ∇ωC + 	vI · ∇ωI )I − ν∇2ωI = ∇ × 	f I (10)

∇ · 	vC = 0 and ∇ · 	vI = 0

ωC (0, 	x) = (ω0)C and ωI (0, 	x) = (ω0)I

which describes the evolution of the coherent and incoherent flow and their coupling in the
spirit of nonlinear Galerkin methods, see e.g. [5, 19].

For the two-dimensional Navier–Stokes equations it is well known that the global attractor
of (6) is contained in the balls [5]

||ω|| ≤ ρ0 ||∇ω|| ≤ ρ1 and ||∇2ω|| ≤ ρ2, (11)

where the radii ρi depend on the forcing 	f , ν and on the initial data ω0. The bounds are
uniform and apply for all times t ∈ IR, since the global attractor is invariant [5]. The above
estimations are used in [19] to develop error analyses of postprocessing Galerkin and nonlinear
Galerkin methods. By construction similar estimates as in equation (11) hold for the coherent
and incoherent flow.

In the following we derive estimations for the magnitude of the different terms. For the
norm of the incoherent vorticity we have ||ωI || = O(ε) where ε denotes the threshold [4].
Thanks to the norm equivalence of the wavelet decomposition we obtain estimates for the
gradient of vorticity, ||∇ω|| ∼= 2J ||ω||, and for the velocity ||	v|| ∼= 2−J ||ω||. This shows that
the magnitude of the gradient of the incoherent vorticity increases with the resolution (and
hence the Reynolds number), while the magnitude of the incoherent velocity decreases for
increasing J .

This yields the following orders of magnitude of the different terms:

� O(1) terms: ∇wI and ∇2ωI ,
� O(ε) terms: ωI ,
� O(ε2) terms: 	vI .

The terms for the coherent flow (ωC , ∇ωC , ∇2ωC , 	vC ) are all by construction of O(1). Ne-
glecting terms of increasing orders we obtain a hierarchy of CVS models [11, 12].

Retaining only terms containing the coherent flow we obtain the following model equations:

CVS O(1)

∂tωC + (	vC · ∇ωC )C − ν∇2ωC = ∇ × 	f C (12)

∇ · 	vC = 0

ωC (0, 	x) = (ω0)C .

Note that in this system the influence of the incoherent flow is completely neglected and only
the time evolution of the coherent flow is computed.

Retaining the O(1) and additionally the O(ε) terms we obtain more complete equations:

CVS O(ε)

∂tωC + (	vC · ∇ωC + 	vC · ∇ωI )C − ν∇2ωC = ∇ × 	f C (13)
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∂tωI + (	vC · ∇ωC + 	vC · ∇ωI )I − ν∇2ωI = ∇ × 	f I (14)

∇ · 	vC = 0 and ∇ · 	vI = 0

ωC (0, 	x) = (ω0)C and ωI (0, 	x) = (ω0)I .

We observe that the equation forωI is a linear advection–diffusion equation, where the coherent
velocity 	vC is given.

3.2 Selection of the active degrees of freedom

Performing numerical simulations using CVS implies the integration of the governing equa-
tions with a reduced set of degrees of freedom. This is achieved byfiltering theflow represented
in wavelet space at each time step, and thus selecting the active coefficients retained for the
numerical integration.

We apply at each time step the denoising algorithm which only retains the coherent vortices
responsible for the nonlinear dynamics which trigger the flow evolution. We first study the
structure of the isosurface corresponding to the threshold value and check if it defines a
simply connected manifold. Since the extraction algorithm uses orthogonal wavelets, the
corresponding coefficients are only defined on a dyadic lattice indexed by discrete scales,
corresponding to octaves j , and discrete positions, (ix/2 j , iy/2 j ). To be able to visualize this
interface, we interpolate the orthogonal wavelet coefficients to obtain a new representation on
an equidistant lattice, taking three voices s per octave to obtain 27 scales, and upsampling to
5122 positions at each scale.

We consider the same DNS as presented in section 2.3. In the movie, figure 5, we show
the time evolution of the vorticity field starting from a random initial condition and integrated
during 30 eddy turnover times without forcing.

Figure 5. Perspective view of the vorticity field at a given instant.
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Figure 6. Perspective view of the vorticity field at a given instant. Superimposed is a cut in the wavelet coefficient
space. The red curve corresponds to the threshold value which defines the interface in wavelet space between coherent
and incoherent flow.

In the movie, figure 6, we show the vorticity field at a given instant, together with a plane
corresponding to a vertical cut of the wavelet coefficient space. This plane shows the enstrophy
distribution in one direction of space (horizontal axis) and scale (vertical axis). The time
evolution, i.e. the plane moving from back to the front, scans the other space direction. The
colour scale corresponds to the enstrophy value of the wavelet coefficients represented in
space and scale. The red isoline corresponds to the threshold value which defines the interface
in wavelet space between the coherent and incoherent flow. We observe that this curve is
most of the time continuous and thus splits the wavelet coefficients into two simply connected
domains. From time to time, there are some disconnected parts but they remain in the vicinity
of the interface. In the next section we will introduce a so-called security zone which will
reconnect these regions.

In the movie, figure 7, we show the time evolution of the manifold, corresponding to the
isosurface of the wavelet coefficients whose magnitude is equal to the threshold value. This
interface thus splits the flow dynamics into two separated regions:

� The portion of wavelet space above this manifold contains the wavelet coefficients weaker
than the threshold which correspond to the noise associated with the linear dissipation term
of Navier–Stokes equations.

� The portion of wavelet space below this manifold contains the wavelet coefficients larger
than the threshold which correspond to the coherent vortices associated with the nonlinear
advection term of Navier–Stokes equations.

The movie illustrates the stability of the coherent vortices seen from the wavelet coefficient
space. It also confirms that this manifold remains continuous, which will allow us to retain only
as active degrees of freedom the coefficients below the manifold, plus the nearest coefficients
above defining the security zone, as explained below.
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Figure 7. Visualization in the wavelet coefficient space of the interface between coherent and incoherent flow at a
given instant.

3.3 Addition of a security zone in wavelet space

The previous movies, figures 6 and 7, show that the interface delimiting the set of active
degrees of freedom, corresponding to the coherent vortices, evolves in time. To compute the
flow evolution with a reduced number of degrees of freedom we track the position of this
interface in space and scale. Knowing the interface at a given time step we have to guess its
new position for the next time step. For this we add a security zone by adding the nearest
wavelet coefficients in both space and scale. We then compute the solution at the next time
step in this new set of coefficients, and then apply the threshold based on the vorticity field at
the new time step.

The time evolution of a turbulent flow results in the movement of its structures in space
and scale. With respect to the reduced integration domain this includes movements to regions
that are not captured by the initially filtered wavelet basis. This effect is illustrated for an
isolated one-dimensional structure in figure 8. Filtering the wavelet coefficients at a time
step by applying the threshold ε, a structure, e.g. a vortex, is represented by the coefficients
|ω̃| > ε (white area under the solid line curve). All coefficients |ω̃| ≤ ε are neglected and their
corresponding wavelets are not considered for the integration. The structure moves in space
and scale within the determined integration step (indicated by the arrow) and then, it could be
represented by the coefficients under the dashed lined curve. We recognize that some of these
coefficients (hatched area) are not captured by the initially retained coefficients. Therefore,
they would be ignored for the integration and their corresponding dynamical information is
irreversibly lost. To avoid this effect, we retain for the integration basis, together with the
coefficients |ω̃| > ε, their local neighbours in wavelet space, which constitute the security
zone (grey area). It is the function of the security zone to provide room for the solution to
evolve in space and scale. In figure 8 it is illustrated that the movement of the structure within
the determined integration step is captured by the enlarged basis and no dynamical information
is lost.
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Figure 8. Effect of the security zone extension. The wavelet coefficient space of a one-dimensional signal is shown,
spanned by the scale j and the position i . After filtering with a threshold ε a structure is represented by its coefficients
|ω̃| > ε in wavelet space (white area under the solid curve). By integrating the governing equations, the structure
moves in space and scale and then is represented by the coefficients under the dotted lined curve. The security zone
(grey domain) captures both sets of coefficients.

It is obvious that the set of filtered wavelet coefficients extended by the security zone
reduces compression. The challenge is to find a minimal security zone capturing all degrees
of freedom necessary to catch the flow dynamics. The security zones chosen for the two-
dimensional simulations are presented in the following.

3.3.1 Security zone in two dimensions. Figure 9 illustrates the selection of the secu-
rity zone in two dimensions. For each coefficient, fulfilling the threshold filtering condition
|ω̃| > ε, the coefficient itself (•) and automatically all its neighbours (×) are retained in the
filtering procedure. This neighbourhood includes coefficients on the same scale (light grey) as

Figure 9. Example for the selection of the security zone in two-dimensional wavelet space. For every scale j each
of the three quarters represents 22 j coefficients corresponding to the wavelets �

µ=h,v,d
j,	i oriented in horizontal (h),

vertical (v) and diagonal (d) directions, respectively (cf. [6]). When the absolute value of the coefficient at position
• is larger than the threshold, then the coefficient itself and automatically all its neighbours × are retained in the
filtering procedure.
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well as the corresponding coarser (dark grey) and finer (white) scales. Considering the nearest
neighbours only is justified by the semi-implicit time integration which implies a CFL con-
dition due to the nonlinear term. Because wavelet coefficients are localized in both scale and
space we include proximity information as well locally as in phase space. The security zone
presented in figure 9 is one possible choice, offering to the solver the possibility of evaluating
a solution in all directions and scales. Different types of security zones are possible, affecting
compression and the capability of conserving dynamical information of the filtered flow.

4. Numerical results

In this section we present results for the application of CVS to two-dimensional turbulent
flows. First, we show a direct numerical simulation of the flow evolution, representing the
reference case. Considering different ways of threshold selection for wavelet filtering, we
present simulations using the estimated threshold ε0 and the iteratively evaluated threshold
εit ≈ εD , introduced in section 2.1. In both cases the security zone extension (cf., section 3.3.1)
is applied. Two further simulations are shown to illustrate the effect and necessity of the security
zone imposing the same compression rate, one with and the other without it. We analyse the
compression properties of each method as well as its capability of conserving the dynamics
of the flow during the simulation.

4.1 DNS reference run

As reference simulation we compute by DNS a decaying homogeneous isotropic flow with
Newtonian viscosity using a classical Fourier pseudo-spectral method [2]. The equations are
normalized by the initial r.m.s. velocity v0 and vorticity ω0, and the computational domain
length L0. For the presented simulations the forcing term f is set to zero, i.e. the flow decays.
With the selected kinematic viscosity ν the resulting initial Reynolds number for the presented
flow becomes Re = v0L0/ν ≈ 8722. The equations are integrated in the domain  = [0; 1]2

with resolution N = 5122. The given time scales are normalized with τ = 1/
√

2Z0, where
Z0 is the total enstrophy at t = 0.

In figure 10 the vorticity fields are depicted for the initial condition and the end of the
simulation. From the vorticity plots typical behaviour of two-dimensional turbulent flows can
be identified: The number of vortices decreases as a consequence of the merging of co-rotating
vortices. Fine-scale structures like elongated filaments are formed by vortex interaction, i.e.
local fluid elements are compressed in one direction and simultaneously stretched in another.
Due to viscous dissipation the overall vorticity amplitude decreases.

The energy spectra are plotted in figure 10 (bottom). From statistical theory a k−3 inertial
range would be expected for two-dimensional turbulence. In numerical simulations either a k−3

behaviour is found when starting with random initial conditions with a narrow band spectrum
(see e.g. [3]) or steeper decays proportional between k−4 and k−5 are found starting with
broadband random initial conditions [20]. For the presented simulation we used a broadband
random initial condition and find spectra with a k−4-slope, which is hence consistent with the
literature. The total energy of the flow slowly decays, as no forcing is used. The shape of the
spectrum remains very similar during the evolution.

4.2 CVS of two-dimensional turbulent flows

In section 2.3 we have seen that wavelet filtering of a turbulent flow at a given time instant
preserves almost the whole energy and most of the enstrophy, coming along with a very high
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Figure 10. Direct numerical simulation (DNS) of 2d turbulence. Vorticity at τ = 0, (|ω|max = 232.5) and at τ =
18.2 (|ω|max = 156.3)(top). Corresponding energy spectra (bottom).

compression. We now check the influence of thefiltering on theflow evolution and compare the
CVS results with the DNS. As in the analysis section we focus on the compression properties
of the presented filtered simulations as well as on their capability of preserving the flow
dynamics.

Starting with the vorticity field ω at time t = 0 we extract the coherent vorticity ωC . Note
that the filter differs depending on the choice of the threshold, as described below. Then we
perform an integration for one time step and we obtain ω�

C . The time step is then completed
by reprojecting ω�

C to the basis of ωC by applying the filter again. Therewith we integrate
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Table 1. Compression ratio and conservation properties of the initial conditions (τ = 0)
in the case of the CVS-filtered simulations compared to DNS.

Run Compression ratio (%) Energy (%) Enstrophy (%)

CV-DS 46.9 100 100
CV-6 7.0 100 99.9
CV-1S 6.7 99.9 99.4
CV-TS 2.2 99.6 96.2

equation (12). In the following studies Coiflet12 wavelets are used. The simulation parameters
are identical with those of the DNS run.

To study two general aspects, four different simulations are presented:

� We compare flow evolutions obtained from CVS using either the threshold ε0 (run labelled
CV-TS) or εit (CV-DS), respectively. In both cases the security zone is applied.

� The necessity and effect of the security zone is demonstrated by comparing two simulations,
one with the security zone (labelled CV-1S) and the other without it (labelled CV-6), starting
both the simulations with about the same compression rate. Using the iterative threshold
estimation algorithm introduced in section 2.1, we limit the number of iterations in both
cases, i.e. one iteration for CV-1S and six iterations for CV-6. Only in the case of the CV-1S
run is the security zone added. The number of iterations chosen for these two runs is justified
to obtain an approximately identical compression ratio for their resulting initial condition.

The starting point for all these simulations is the initial condition of the DNS run shown in
figure 10. After the initial wavelet filtering we obtain the initial conditions for each simulation.
The corresponding compression ratios and the percentages of energy and enstrophy conserved
are listed in table 1.

The vorticity fields for the CV-TS and the CV-DS simulation run are depicted in figure 11.
For the CV-TS run the vorticity field at τ = 0, though it contains most of the energy compared
to the unfiltered DNS reference (cf., table 1), looks fragmented and many structures are not
completely resolved. At τ = 18.2 we recognize that compared to the reference case the vortices
are blurred, deformed and their positions are out of phase. Even their sizes and number differ
from the reference. Fine-scale structures are not sufficiently resolved, which is quantified
by the spectrum plot in figure 12 for τ = 18.2. Starting at k = 10 the spectrum for CV-TS
drops below the reference DNS, indicating non-resolved fine structures. The global enstrophy
evolution plot exhibits an increasing difference, compared to DNS. Representing with its
initial condition 96.2% of the reference’s enstrophy, only 88% of enstrophy are conserved for
the final vorticity field. These effects are due to the high compression, starting at τ = 0 with a
ratio of 2.2% (cf., table 1). The relative compression ratio is shown in figure 12. Furthermore,
a comparison of the PDF of the vorticity at τ = 18.2 illustrates significant differences for
large vorticity values. We can conclude that the compression resulting from the CV-TS run
obviously is too high to reproduce the reference flow accurately with all structures resolved.

Comparing the vorticity fields of the CV-DS (figure 11) and DNS (figure 10) runs by eye no
difference can be detected. The plots for the total enstrophy evolution, the PDFs of vorticity,
and the energy spectra yield the same result. This high degree of conformity becomes obvious
considering the compression, coming along with CV-DS (cf., figure 11). The filtered initial
vorticity field is compressed to only 46.9% of degrees of freedom. In addition, the relative
compression ratio evolution plot in figure 12 illustrates a global increase to 53.3%, i.e. more
than 50% of the degrees of freedom are retained.

As a result from the CV-DS and CV-TS simulation runs, we propose for the practical appli-
cation of CVS filtering in numerical turbulent flow simulations a modification of the threshold



18 K. Schneider et al.

Figure 11. Vorticity at τ = 0 and at τ = 18.2 of the simulation CV-TS using an estimated threshold ε0 (top), and
CV-DS based on the iteratively evaluated Donoho threshold εit (bottom). The security zone is applied for both runs.
For the colour palette, see figure 10.

estimation algorithm. Instead of using one of the presented extremes, i.e. a threshold based
on the total vorticity’s variance or the threshold obtained from a converging iteration process,
the threshold should be determined by the known iterative threshold estimation procedure
performing only a small fixed number of iterations. The number of iterations can be well
adjusted to the desired compression and properties to conserve the energy of the particular
physical problem. With the following CV-1S run we demonstrate that for the considered two-
dimensional flow already one iteration step for the threshold estimation yields a satisfactory
flow reproduction in accordance with an acceptable compression.

The vorticity fields of the CV-1S and the CV-6 runs are depicted in figure 13. Run CV-1S
starts with an initial condition reproducing the reference (cf., figure 10) slightly fragmented,
but globally no vortices are missing and even finer structures as filaments can be found in
the filtered field. At τ = 18.2 the vortices appear a little mutated in shape and some smaller
vortices as well as small scale filaments are missing, compared to the reference. However, the
vortices number and their positions in space confirm quite well the reference case. Certainly,
compared to the highly compressed CV-TS run (see above), the flow field for both time steps
is better reproduced in the CV-1S case. The total enstrophy for this run differs not very much
from the reference (cf., figure14). Containing 99.4% of the enstrophy of the reference at the
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Figure 12. Comparison between CV-TS, CV-DS and DNS. Top-left: relative compression ratio, i.e. compression
normalized by the initial compression at τ = 0. Top-right: total enstrophy evolution. Bottom-left: energy spectra at
τ = 18.2. Bottom-right: vorticity PDFs at τ = 18.2. In some plots only two curves can be recognized since in this
case DNS and CV-DS are almost identical.

beginning, a small decrease to 97.6% at the end of the simulation is found. Simultaneously,
the compression ratio decays from 6.7% to about 5.1% during the evolution. The spectra of
CV-1S and DNS at τ = 18.2 are almost identical. Solely at medium wave numbers (∼k > 50)
the CV-1S spectrum slips distinctly under the reference, indicating the lack of correspond-
ing fine-scale structures. Finally, the PDF of the vorticity for CV-1S shows no significant
deviation from the reference, i.e. the final vorticity field is statistically well reproduced. In
summary we can conclude that the major reference dynamical flow information is conserved
well in this filtered simulation run. The proposed threshold is affirmed to be a reasonable
choice.

The CV-6 run starts with an initial compression ratio of 7%, being only slightly larger than in
the CV-1S case. Because no security zone is added in CV-6, the whole set of selected wavelet
coefficients yielding the coherent vorticity field represents coherent structures. The CV-1S
initial condition is represented by about the same number of wavelet coefficients. But it must
be kept in mind, in contrast to CV-6 only a portion of these coefficients represent coherent
structures—the rest are only neighbours of coherent structures in wavelet space, chosen to be
a part of the coherent vorticity ωC to account for the flow evolution in scale and space. The
CV-6 initial condition looks more similar to the reference’s initial condition than the one of
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Figure 13. Vorticity at τ = 0 and at τ = 18.2 of simulation runs CV-1S using a Donoho-based threshold with one
iteration plus the security zone, and CV-6 using six iterations without the security zone. For the colour palette, see
figure 10.

the CV-1S run (cf., figure 13). But the obvious advantage turns into a disadvantage as soon
as the simulation is started and dynamics shall evolve within the selected basis. Because of
the lack of ‘space’ for the solution to evolve within, the effect described in section 3.3 and
illustrated in figure 8 for a too small basis takes place: within each time step some dynamically
relevant information e.g., structures of non-negligible energy partly leave the integration basis
and therefore they are cut off. As a consequence the dynamics of the considered flow are
successively destroyed, resulting for the CV-6 in a heavily fragmented vorticity field at the
end of the simulation, shown in figure 13. Only the positions of the largest vortices roughly
fit the DNS reference. It is not possible to assign smaller vortices to vortices in the reference
flow. They are completely out of phase and their number does not correspond to the reference.

Taking into account that CVS filtering is effective in extracting coherent structures from a
single flow field, the CV-6 compression ratio decay (cf., figure 14) indicates a fast reduction of
the coherent structure quantity. Furthermore, the monotonous decay of the compression ratio
exhibits that in the case of a missing security zone the simulation is not able to track coherent
structures in the reduced integration basis in scale and space. The steeper decay of the total
enstrophy, the energy spectrum and the PDF describing vorticity fields being very different
from the DNS or the CV-1S run are subsequent results of the loss of dynamics in the CV-6
run.
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Figure 14. Comparison of CV-1S, CV-6 and DNS. Top-left: compression ratio evolution. Top-right: total enstrophy
evolution. Bottom-left: energy spectra at τ = 18.2. Bottom-right: PDF of vorticity at τ = 18.2.

There are two main results from this consideration of the CV-1S and CV-6 simulations. First,
for the application to simulations of two-dimensional turbulent flows we proposed a CVS
filtering based on the iterative threshold estimation process performing only one iteration.
Applied with an additional security zone this choice was found to be a good compromise
between high compression and flow reproduction comparable to DNS. The respective extent
of information loss that is acceptable for any application has to be decided in each individual
case, and it can be controlled by the number of iterations for the threshold estimation and the
size of the security zone. Second, the security zone concept was shown to be a reliable way to
track the evolution of the flow dynamics in both space and scale. In comparison of the CV-1S
and CV-6 runs it was shown that the attachment of the security zone is more important than
capturing a maximum of coherent structures by a small threshold.

Results for the CVS O(ε) model

In the following we present results for the O(ε) model equations (13) and (14) using three
different thresholds, ε0, ε1 and εit, i.e. a threshold based on the variance of the total vorticity,
a threshold computed with the iterative algorithm with one iteration only and a threshold
computed with the iterative algorithm until convergence.
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Table 2. Relative norms of the nonlinear terms with respect to (	vC · ∇ωC )C using different
thresholds ε. The values are averaged in time over 20τ .

Term ε0 ε1 εit

(	vC · ∇ωC )C 1 1 1
(	vC · ∇ωC )I 7.69 × 10−1 5.50 × 10−1 9.51 × 10−2

(	vC · ∇ωI )C 4.59 × 10−1 2.97 × 10−1 6.37 × 10−2

(	vC · ∇ωI )I 9.47 × 10−1 5.34 × 10−1 8.22 × 10−2

(	vI · ∇ωC )C 7.93 × 10−2 7.78 × 10−3 3.29 × 10−4

(	vI · ∇ωC )I 6.25 × 10−2 9.99 × 10−3 2.81 × 10−4

(	vI · ∇ωI )C 3.03 × 10−2 1.40 × 10−3 1.69 × 10−5

(	vI · ∇ωI )I 6.95 × 10−2 3.77 × 10−3 2.25 × 10−5

To assess the magnitude of the different terms we first perform three DNS for the different
thresholds by integrating the equations for ωC and ωI (9), (10) without neglecting any terms.
For a period of 20τ we compute the norms of all nonlinear terms in both equations. The time
average of the relative norms || · ||/||(	vC · ∇ωC )C || is summarized in table 2. They illustrate
the importance of the different terms with respect to the most important one, (	vC · ∇ωC )C .
For the iterative threshold εit we can identify three orders of magnitude, i.e. a term of O(1)
corresponding to (	vC · ∇ωC )C , three terms of O(ε) corresponding to terms with 	vC and four
terms of O(ε2) corresponding to terms with 	vI . This confirms the presented estimation in
section 3.1. However, for the thresholds ε0 and ε1 we observe that the first three terms with
	vC cannot be considered as O(ε) but are O(1) terms. For all cases table 2 also shows that the
Leonard stress term, (	vC ·∇ωC )I = 	vC ·∇ωC − (	vC ·∇ωC )C , has the same order of magnitude
as the cross terms with 	vC .

Concerning the dependence of the relative norms on the choice of the threshold we observe
that for the largest threshold, i.e. ε0, the magnitude of the O(ε2) terms is two orders of
magnitude smaller than the norm of (	vC · ∇ωC )C , while for small thresholds, i.e. εit, there
is a difference of four orders of magnitude. This motivates the integration of the reduced
O(ε) model equations, where these terms are neglected, to check their actual influence on the
dynamics of the flow.

We performed three simulations, integrating the O(ε) model equations (13), (14) using three
different thresholds. The total flow is then reconstructed from the coherent and incoherent flow
using equations (8). In figure 15 we show the relative differences of the energy and enstrophy
evolution, i.e. (E(τ )− EDNS(τ ))/EDNS(τ ) and (Z (τ )− ZDNS(τ ))/ZDNS(τ ), with respect to the
DNS reference run. For the CVS O(ε) simulation with ε0 we observe that for both quantities

Figure 15. Evolution of energy (left) and enstrophy (right) using the CVS O(ε) model. Note that for both quantities
the relative differences with respect to the DNS results are plotted.
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the differences are less than 1% at the end of the run. Compared to the CV-TS run in section 4.2,
where the influence of ωI was simply neglected, we found a difference of 1.8% for the energy
and 12% for the enstrophy.

For the CVS O(ε) simulation with ε1 the differences of energy and enstrophy with re-
spect to the DNS remain smaller than 0.1%, while for the CVS O(1) simulation (run
CV-1S) with ε1 we found differences of 0.2% for the energy and of 3.9% for the enstro-
phy (cf. section 4.2). This shows that modelling the influence of ωI improves the precision
of CVS. Note that the CVS O(ε) simulation with εit almost perfectly reproduces the DNS
results.

5. Conclusion

In this paper we presented CVS of homogeneous isotropic two-dimensional turbulence. CVS
is a new method for the simulation of turbulent flows and lies between DNS and LES. The
model equations are based on the wavelet filtered Navier–Stokes equations. The time evolution
of the coherent vortices is computed deterministically while the influence of the incoherent
background noise is either neglected or modelled.

We presented the extraction of dynamically relevant coherent vortices out of turbulentflows.
The method is based on a wavelet decomposition of the vorticity, a subsequent thresholding of
the wavelet coefficients and a reconstruction of the coherent flow from those coefficients being
larger than a given threshold. We compared two different choices of thresholds and showed that
thus a flow realization can be split into coherent vortices and quasi-Gaussian white noise. The
coherent vortices correspond to few wavelet coefficients only, which contain most of the energy
and enstrophy. The computational complexity of the coherent vortex extraction algorithm is
of O(N ), where N denotes the number of grid points. Note that parallel implementations of
fast wavelet transforms are available, see e.g. [16].

We then derived model equations for CVS by splitting the Navier–Stokes equations written
in velocity–vorticity formulation into evolution equations for the coherent and incoherent
vorticities. A hierarchy of model equations inspired by the nonlinear Galerkin approach was
developed. In the previously presented CVS method [11] there was no modelling of the effect
of the discarded coefficients performed. Filtering out the incoherent background at each time
step played the role of turbulent dissipation. Using this CVS model we presented different
numerical simulations to study the role of the choice of the threshold (iterated or not) and the
influence of the security zone. By comparing simulations for the same compression rate with
and without the security zone, we found that the security zone plays an essential role to track
the flow evolution in space and scale. Furthermore, we showed that depending on the required
precision of the simulations one iteration to determine the threshold can be sufficient.

In the new two-equation CVS approach we derived an additional linear evolution equation
for the incoherent vorticity to compute the effect of the incoherent background flow whose
coefficients have been discarded. We analysed the different terms of the filtered equations.
We then performed CVS of homogeneous isotropic turbulence and validated the two-equation
model. Compared to the CVS model where the influence of the incoherent flow is discarded
we found an improved precision.

The extension of CVS to compute three-dimensional turbulent flows is currently under
way; results for a turbulent mixing layer discarding the incoherent vorticity to model turbulent
dissipation have been presented in [29]. Future studies will deal with applications which take
advantage of the CVS property to preserve locally small-scale activity. Their influence may
become important, e.g. for turbulent mixing in reactive flows, where small scales are important
for molecular mixing and chemical reactions.
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