Analysis of a bursting vortex using continuous
and orthogonal wavelets
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We study the time evolution of the quasi-periodic bursting of a laboratory
produced vortex using orthogonal and continuous wavelets.

1 Laboratory Experiment

The vortex is produced in laminar channel flow. The vortex is both stretched
by axial suction and strained by the channel flow and eventually breaks down,
resulting in a burst that leads to the production of turbulence. A new vortex is
formed after each burst, and the cycle repeats quasi-periodically. The current
bursting vortex has been the subject of previous studies of the buildup of the
turbulence due to the bursting [1, 2, 3], however previous measurements were
not well resolved simultaneously in time and space.

We measure the velocity field in a plane perpendicular to the vortex by
particle image velocimetry and calculate the vorticity component perpendicu-
lar to the plane, shown in Fig. 1 (a). The current measurements are sufficiently
well resolved in time and space to allow us to study the transient buildup.

2 Why Wavelets?

The vortex under study is a quasi-stationary coherent structure which moves
in space before bursting. After bursting the evolution of the remaining pieces
which have been spread in space is highly nonlinear. As a result the measured
signal is inhomogeneous and non-stationary. It is therefore more natural to
analyze this flow using a spatially localized set of basis functions rather than a
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Fourier basis. Wavelets consist of translations and dilations of a compact func-
tion localized in both physical and spectral space. A wavelet basis is a better
choice to analyze signals that contain features well localized in physical space
and non-stationary in time [4]. Indeed, it has been found in simulation [5]
and laboratory experiment [6] that the dynamics of turbulent flows are domi-
nated by the contribution of a relatively small fraction of wavelet coefficients
corresponding to the coherent structures.

3 The Orthogonal and Continuous Wavelet Transforms

The orthogonal wavelet transform (OWT) permits a signal to be decomposed
into independent contributions, which can be separately reconstructed, possi-
bly after filtering out some coefficients. To insure orthogonality the transform
should be performed with discrete values of translation and dilation corre-
sponding to a dyadic grid in wavelet space. A loss of translation invariance
results which makes it difficult to read the OWT coefficients. In contrast, the
continuous wavelet transform (CWT) permits the dilations and translations
to vary continuously, making the coefficients in wavelet space easy to read
and interpret [4]. The CWT unfolds signals in space and scale (and possibly
direction), allowing one to study how energy is distributed in space and scale
by reading the modulus of complex-valued wavelet cofficients. However this
also results in a redundancy of the wavelet coefficients and in a correlation
between neighboring coefficients which hinders interpretation.

4 Results

We use the OWT to separate the measured vorticity field into a coherent
and an incoherent component [shown in Fig. 1 (b) and (c)], following refer-
ence [5]. The coherent field retains the dynamical and statistical properties of
the total field, such as the evolution of the non-Gaussian PDF and large-scale

Fig. 1. (a) Close-up of a vortex prior to bursting and a 1D cut of the vorticity field
along its center. The velocity field is superimposed on the vorticity field. The largest
velocity (vorticity) value corresponds to 0.37 m/s (200 s7*). (b) Time evolution of
the coherent and (c) incoherent fields during bursting at 0.33 second intervals
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Fig. 2. Isosurfaces of the modulus of the CWT coefficients of three snapshots of the
coherent vorticity field during bursting [corresponding to Fig. 1 (b)]. The hortional
axes correspond to physical space and vertical axis corresponds to the scale of the
transform, with smaller scales at the top

energy spectrum. It is efficiently captured by a small percentage of the large
amplitude wavelet coefficients. In contrast, the incoherent field, correspond-
ing to the remaining small amplitude wavelet coeflicients, is uncorrelated and
featureless with quasi-Gaussian statistics.

We calculate the CWT of the coherent vorticity field, shown in Fig. 2, using
a complex-valued Morlet wavelet. The square modulus of the coeflicients is
thus the local enstrophy density in space and scale. We use the coefficients of
the CWT to calculate the evolution of the local intermittency factor, i.e. the
deviation from the mean energy spectrum at each location in space [4]. We can
thus identify which locations actively contribute to the nonlinear cascade in
the inertial range, and which locations are dominated by viscous dissipation.

5 Conclusion

Orthogonal wavelets were used to separate the flow field into a coherent com-
ponent, capturing the nonlinear dynamics and statistics of the bursting, and
an incoherent component void of structure and with quasi-Gaussian statis-
tics. The CWT has allowed us to visualize the wavelet coefficients and track
the time evolution of the coherent enstrophy in space and scale. This gives
us better insight to interprete the nonlinear cascade of turbulent flows. Each
transform has its advantages, thus we recommend that a mixture of the two
analyses should be used, each one complementing the other.
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