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Summary. We will outline the history of the numerical approach and trace back
the origins of the use of computers to carry out simulations in mathematics and
physics. We will then present the techniques used, by taking as example the finite-
difference method to solve PDEs and discuss the nature and impact of numerical
errors. Finally, we will argue that numerical simulation pertains more to experiment
than to theory.

‘Although this may seem a paradox,
all exact science is dominated
by the idea of approximation’

(Bertrand Russell, The Scientific Outlook, 1931)

1 Historical Sketch

The numerical approach goes back much further than the appearance of the
first computers. In a paper submitted in 1822 [1], Charles Babbage already
suggested using numerical machines to calculate astronomical tables. These
machines were made up of an ‘attic’, where data were stored, and of a ‘mill’,
where calculation took place. However, this consisted merely in numerically
evaluating some solutions, already known analytically, and not, in fact, per-
forming simulations in the modern sense. Numerical simulation is defined as
solving the equations that describe the physical laws governing the system
studied by using algorithms. One can trace its origin back to the year 1899,
with the development of the finite difference method by Sheppard [2]. It was
then developed by Richardson [3] who used it, from 1910 onwards to calculate
the stress exerted upon a dam. Richardson later had the idea of numerically
solving the equations of atmospheric dynamics in order to predict the weather.
He designed for this a finite difference scheme, which now bears his name, and
applied it to find out the atmospheric situation on May 20th 1910. After six
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weeks of hard work he had only managed to compute the state of the at-
mosphere for two vertical columns, and the values he was obtaining then,
for the wind and pressure fields, were already quite different from those ob-
served. He then realized that to perform this calculation by hand, at the same
speed as the current atmospheric evolution (which is the minimum required
to have prediction rather than ‘postdiction’), it would require 64,000 people
to get a new state of the atmosphere every 3 h using a computational grid of
200 × 200 km2 over the whole Earth. In a book published in 1922 [4] he went
as far as to imagine a city with a huge theater at its center where ‘a myriad
computers are at work upon the weather of the part of the map where each
sits, but each computer attends only the one equation or part of an equation’.
Each one at a grid point, under the leadership of one person in charge of syn-
chronizing the computation ‘like the conductor of an orchestra in which the
instruments are slide-rules and calculating machines!’. Such a project never
came to pass, which is just as well since O’Brien et al. [5] showed in 1950 that
Richardson’s scheme is unconditionally unstable. The mathematical justifica-
tion of the numerical approach was given by Courant, Friedrichs and Lewy
in a paper published in 1928 [6]. They proved that discrete equations actu-
ally constitute an approximation of continuous partial differential equations
(PDEs), as long as some stability conditions, known as ‘CFL conditions’, are
satisfied.

Numerical simulation, in its modern sense, implies the use of computers to
carry out calculations. Computers appeared at the beginning of the Forties.
The first were the Z2 and the Z3, built in Germany by Konrad Zusse in 1939
and 1941, respectively, but they were destroyed during the war. Independently
Turing at Cambridge, England, was developing calculators to decipher codes,
but unfortunately most of the information about his work is still classified. The
first computer built across the Atlantic was the Mark I, which was completed
by Aiken in 1944 at Harvard University, with the help of IBM. Meanwhile,
at the University of Pennsylvania, Mauchly and Eckert were designing the
ENIAC, which was installed in 1946 at the Ballistic Research Laboratories of
Aberdeen, Maryland. They then founded the company Univac, which in 1951
was the first to launch a computer on the market.

The first two people to have foreseen the impact that computers could have
in mathematics and physics were von Neumann and Ulam. The latter recounts
in his autobiography [7] that: ‘Almost immediately after the war Johny and
I also began to discuss the possibilities of using computers heuristically to
try to obtain insights into questions of pure mathematics. By producing ex-
amples and by observing the properties of special mathematical objects one
could hope to obtain clues as to the behavior of general statements which have
been tested on examples’. He went on to show, for the sake of example, how
numerical experiments could help study the regularity of some solutions to
PDEs, and concludes by explaining that: ‘In the following years in a number
of published papers, I have suggested – and in some cases solved – a variety
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of problems in pure mathematics by such experimenting or even merely ob-
serving’. Thus, right from the beginning, two of the essential contributions
of computers to research in mathematics and physics were already foreseen,
namely the possibility of experimenting with equations and of ‘seeing’ their
solutions. These two points will be illustrated in the third part.

During the Second World War, part of von Neumann’s research in Los
Alamos was about the development of numerical schemes and the definition
of a stability criterion, which bears his name, allowing one to choose opti-
mal space and time steps when discretising parabolic equations with a finite
difference scheme. Von Neumann never published this work (which can, nev-
ertheless, be consulted in his complete works [8]); indeed, he deemed it too
approximate, since it did not take into account, either the nonlinear terms, or
the boundary conditions. Nonetheless, such a method is still widely used and
is being developed, yielding very general extensions where the discretization
of the boundary conditions plays a role. In 1949 von Neumann and Richtmyer
conceived a numerical technique to calculate the shocks which appear in com-
pressible flows [9]; at the time, the problem was still out of reach analytically
due to the presence of singularities. The method which they adopted consisted
in introducing some dissipative terms in the equations to spread the shocks
and creates boundary layers that were at least of the size of the computation
in order to smooth out any singularities. The technique is still very much in
use today. Von Neumann then set out, along with Charney and Fjörtoft, to
integrate numerically an atmospheric barotropic circulation model, i.e. which
neglects the temperature variations along the isobar surfaces. This model
used the vorticity equation instead of the primitive equations with pressure–
velocity form, and suppressed the flow to be quasi-geostrophic – i.e. with a
stable horizontal stratification – and nondivergent, i.e. supposing the fluid
to be incompressible. The computational grid was of 15 times 18 grid points
and only covered the US, which corresponded to a space resolution of 736 km.
The numerical resolution, carried out in 1950 on the ENIAC of Aberdeen,
made it possible to calculate a 24 h meteorological evolution on the 5th, the
30th and the 31st of January, and of the 13th of February 1949. In their ar-
ticle [10], the authors made the following remark: ‘It may be of interest to
remark that the computation time for a 24-h forecast was about 24 h, that
is, we were just able to keep pace with the weather. However, much of this
time was consumed by manual and I.B.M. operations, namely by reading,
printing, reproducing, sorting, and interfiling of punch cards. In the course
of the four 24-h forecasts about 100,000 standard I.B.M. punch cards were
produced and 1,000,000 multiplications and divisions were performed’. The
authors then compared the predicted fields with those obtained and endeav-
oured to account for the prevision errors that were observed. According to
them, they were due to too coarse a computational grid and to the fact that
the baroclinic effects (i.e. the pressure variations) had been disregarded. This
first numerical simulation, performed in collaboration with Smagorinsky from
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the US Weather Bureau and Mrs. von Neumann who was programming the
ENIAC, is at the origin of the present dynamical models used to study me-
teorology and climatology, e.g. general circulation model (GCM) which take
into account the whole planet.

In the beginning of the 1950s John von Neumann completed his computer,
called EDVAC, at the Institute for Advanced Studies in Princeton and then
built a second one, which was installed by Metropolis in Los Alamos where
it remained in use until 1971. On this latter machine, von Neumann and
Fermi undertook the simulations of the first hydrogen bomb, and particularly
the study of hydrodynamic instabilities such as the Rayleigh–Taylor instabil-
ity [11], as well as the calculation of neutron cross-sections. On this occasion
Ulam proposed the Monte-Carlo method, for which, in order to solve prob-
lems involving a large number of particles, one chooses a subset of statistical
samples instead of studying all possible configurations. This technique, which
is widely used nowadays, does not give an exact solution, but merely an esti-
mation for a given error, and it allows the resolution of problems that would
otherwise remain unsolved.

From very early on, Fermi has foreseen the use of computers and he un-
dertook, along with Pasta and Ulam, to study numerically the evolution of a
system of interacting particles that was marginally nonlinear. To their great
surprise, they discovered that, instead of leading to energy equipartition, on
the contrary, the system presented quasi-periodical solutions, which contra-
dicted the ergodic hypothesis of statistic mechanics [12]. At the beginning of
the 1960s, Kruskal and Zabusky took over the same research program but
considered a quadratic rather than a cubic nonlinear interaction; they showed
that the system was described by the Korteveg-de Vries equation. They inte-
grated it numerically and found wavelike solutions, whose behaviour recalled
that of the particles (since they preserve their shape and their velocity after
interaction). They called them ‘solitons’ [13–15]. These numerical experiments
paved the way for a whole row of new problems concerning nonergodic dy-
namical systems where are still at the frontier of statistical physics.

To conclude this first part, in which we have tried to cast light upon
some of the works grounding the numerical approach, we would like to quote
Ulam once more. His vision of mathematics is after all couched in a language
that does somehow recall that of Thom [7]: ‘The recent study of the math-
ematics of morphogenesis and the possibility of studying experimentally on
the computer the dynamics of competitions and conflicts between different
geometrical configurations, on the model of life’s struggle, could lead to new
mathematical concepts. [ . . . ] The use of the computer seems, not only prac-
tical, but absolutely essential for such experiments which require to follow
those games and fights over a large number of stages and steps. I believe that
the experience gained by following the evolution of such processes will have a
fundamental influence that may, one day, finally generalise, or even replace,
in mathematics the exclusive immersion in formal axiomatics we presently
have’.
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2 Simulation or Simulacrum?

In a footnote from his book ‘Stabilité Structurelle et Morphogénèse’, René
Thom remarks: ‘classical Euclidian geometry can be considered as magic. At
the price of a minimal distortion of appearances (the point with no extension,
the straight line without any thickness), the formal language of geometry ad-
equately describes spatial reality. In this sense one could say that geometry
is successful magic’. We believe that numerical simulation can also be con-
sidered as ‘successful magic’, at the cost, this time, of a minute distortion
of the equations, this distortion being exerted the other way around. Indeed,
this method consists in replacing the differential equations by discretized alge-
braic equations; and one notices – here comes the magic – that their numerical
processing allows to reach solutions which adequately describe the physical
reality. However, such an astonishment is not so much the lot of the sole nu-
merical approach as that of the entire physics: ‘The most incomprehensible
thing of the world is that it is comprehensible’(Einstein).

A numerical simulation unfolds in five stages:

1. Defining the problem. The phenomenon (e.g. physical, biological, econom-
ical) to be studied is defined and the questions the numerical simulation
aims to answer are stipulated.

2. Choosing the mathematical model. The problem is typically, but not al-
ways, described using a system of integro-differential equations defined in
space and time, with suitable initial and/or boundary conditions chosen
to ensure that the problem is well posed, i.e. such that solution depends
continuously on them. In practice, many problems are actually ill-posed,
e.g. inverse problems such as deconvolution or tomography using Radon
transform, and require adhoc procedure to deal with.

3. Discretizing of the continuous equations. The continuous variables are re-
placed by a set of discrete and finite values, given only for a subset of
points, evenly distributed in space and time, which defines the compu-
tational grid. Moreover, each integro-differential equation is replaced by
a finite set of algebraic equations which are verified at each point of the
computational grid. This procedure corresponds to the finite-difference
method, although there exist other methods based on a similar princi-
ple. For instance, spectral methods decompose each continuous variables
into an infinite series of orthogonal functions, chosen according to the
problem and its geometry; the series is then truncated to a finite number
of terms, and the norm of the discarded terms evaluates the truncation
error.

4. Choosing of the numerical algorithm. The algebraic equations are solved
using a numerical algorithm chosen according to its computational ef-
ficiency, memory requirement and numerical precision on the computer
one uses, which could be of different types (scalar, vectorial, parallel, or a
combination of these).
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5. Programming the computational code. One selects the programming lan-
guage, according to his preference and practice, and then the most efficient
compiler available on his computer. These choices should be made in order
to maximize computational performances, but also to guarantee readabil-
ity and portability of the code, keeping in mind that several people will
have to use it, modify it and implement it on different computers having
different compilers, which both evolve on very short time scales.

6. Testing the code. After having written down the computer program, one
checks the convergence of the numerical scheme by reducing the space
and time steps until the solution does not change anymore. The code is
then used to solve a known case or, should such ‘test case’ be missing, at
least verify that the structural consistency (the conservation of symmetries
and invariants) of the numerical scheme is correct. These tests are also
important to estimate the observed numerical errors and compare them
to their theoretical values predicted by numerical analysis theorems.

7. Analysing and visualizing the results. Present computers perform num-
ber crunching at a tremendous rate (up to several teraflops, i.e. trillions
floating point operations per second) and therefore generate huge datasets
which have then to be analyzed and represented. A numerical simulation
then requires signal processing (e.g. statistical analysis, filtering, denois-
ing) and visualization as a laboratory experiment does.

By describing the nature of the numerical errors, we would like to eval-
uate the risk of simulation being a simulacrum, i.e. the risk that one might
be misled by a fake representation of the phenomena. For the sake of exam-
ple, we will confine ourselves to studying numerical errors encountered in the
finite-difference method, and will briefly tackle the case of the Monte-Carlo
method. This discussion boils down to the following problems: existence and
uniqueness of the solution (are the equations well-posed?), consistency (is the
phenomenon under study akin to that predicted by the simulation), stability
(does the numerical code amplify errors and diverge?) and convergence (does
the approximate solution remain sufficiently close to the exact solution?).

2.1 Existence and Uniqueness

Regarding the mathematical formulation of the phenomenon one wishes to
simulate, the first question to arise deals with the existence and, for evolu-
tion problems, the uniqueness of the solutions of the equations, for the chosen
boundary conditions. Typically, the problems solved by using numerical meth-
ods are two-fold:

– Initial value problems (Cauchy problems), where the computation is per-
formed from an initial state, considering appropriate boundary conditions,
by solving PDEs, which could be, either elliptic (e.g. diffusion equation),
parabolic (e.g. transport equations), or hyperbolic (e.g. wave equation),
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– Boundary value problems, where there is no time evolution and the values
inside the computational domain should only satisfy the boundary condi-
tions; they are also called, figuratively, ‘jury problems’, since the values
inside the computational domain should ‘agree’ with those at the bound-
ary. Elliptic equations (e.g. Poisson’s or Laplace’s equations) in general
belong to this category.

If the equations are linear, one can generally rest assured that one solu-
tion does exist, insofar as one has a sufficient number of boundary conditions
to close the system and that one only studies the evolution forward in time.
Nonetheless, one of the most useful applications of the numerical approach is
the treatment of nonlinear problems, which are described by nonlinear equa-
tions for which there seldom exist theorems proving existence and uniqueness
of their solutions, neither analytical methods to solve them. Let us take, for the
sake of the example, the case of fluid dynamics, whose fundamental equation
are the so-called ‘Navier–Stokes equations’. One can guarantee the existence
and uniqueness of their solutions, but only for Reynolds numbers (defined
as the ratio between the nonlinear and the linear terms of Navier–Stokes
equations) below order one [17]. Conversely, for large Reynolds numbers, if
existence of the solutions (in the weak sense) is well established [18, 19], it is
not the case for their uniqueness, except in dimension two [20, 21]. Indeed,
beyond a critical value, which corresponds to the transition laminar and tur-
bulent regimes, uniqueness has not yet been proven in dimension three, since
one then does not know any longer how to control the nonlinear terms [22]
without increasing dissipativity (e.g. the power of the Laplacian which takes
care of viscous damping) [23, 24]. As for Euler equation (which corresponds
to zero viscosity), the problem of existence and uniqueness for all times has
been solved in dimension two, but not yet in dimension three [25].

When there is no uniqueness of the solutions, then, the problem is ill posed
(in Hadamard’s sense), i.e. there is no continuity between the solution and the
data. In most cases uniqueness is intimately linked to the regularity for all
times. Nowadays, computers play an important heuristic role to study such
properties, either by studying Taylor expansions of the solution, or, thanks
to direct numerical simulations (DNS), by estimating when a singularity may
intersect the real axis [26] which would result in finite-time blow-up of the
solution.

2.2 Consistency and Precision

When one discretizes a differential equation one must wonder whether the
algebraic approximation is indeed consistent, i.e. is the discretized equation
equivalent to the differential equation which one is trying to integrate? The
idea of consistency spans the two following properties:

– The discretized equation must tend towards the continuous equation when
the space and time steps tend towards zero.
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– The discretized equation must preserve the structure (e.g. Hamiltonian,
sympletic) structure and the symmetries of the differential equations, or,
more precisely, its invariance group must be a subgroup (as large as pos-
sible) of that of the original differential equation.

If we consider as example finite-difference schemes, it is of much impor-
tance that the first property should be verified, and it is, indeed, the case of
the most known discretization schemes. As for the second property, on the
other hand, it is only verified for centred finite differences, there, unknown
values at grid points are expressed in terms of an even number of values at
neighbouring points.

In practice, of course, one uses time and space steps that are not equal to
zero. Therefore, even if a discretization scheme is consistent, it will nonethe-
less introduce errors, which are called truncation errors. The precision of the
numerical results depends on both:

– The round-off error, which stems from the limited size of the memory
words (usually 32 or 64 bits) of the computer which is used

– The truncation error, which is directly linked to the order of the discretiza-
tion scheme (i.e. to the order of the neglected terms in the Taylor’s series
expansion of the differential operators).

Typically, for first-order schemes the truncation error has a diffusive effect
on the solutions, which thus smooth the gradients. For second-order schemes
the truncation error does have, conversely, a dispersive effect that is character-
ized by the appearance and spreading of spurious oscillations in high gradient
regions (e.g. shocks, fronts) [27]. The behaviour of the truncation error varies
according to the order of the discretization scheme, but its amplitude, on the
other hand, does only depend on the space step. Therefore, it is always pos-
sible to limit the truncation error by reducing the size of the computational
grid. As for the round-off error, however, it does not depend on the discretiza-
tion scheme but on the precision of the computer one uses. In practice, this
error is always negligible in comparison to the truncation error.

2.3 Stability and Convergence

Once it is verified that the chosen discretization scheme really is an approxi-
mation of the PDEs problem, one should raise two questions:

– Is the calculation process stable, that is to say, does not it amplify the
round-off errors at the risk of diverging?

– If it is stable, does the numerical solution converges towards that of the
PDEs problem when space and time steps are tending towards zero?

Lax’s [28] equivalence theorem does state that: ‘Given a properly posed
initial-value problem and a finite-difference approximation to it that satisfies
the consistency condition, stability is the necessary and sufficient condition
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for convergence’. Thus, insofar as one has already answered affirmatively to
the questions of paragraphs II.1. and II.2., the problem of stability and of
convergence does come to one sole and only question: is the numerical scheme
converges?

Generally one studies the stability of a scheme by carrying out the har-
monic analysis of a perturbed solution. One checks that the frequencies’ am-
plitudes in the power spectrum remain bounded when the number of time
steps increases, so as to prevent the round-off errors from increasing and the
computation from diverging. This is the principle of von Neumann’s analysis.
It shows that the explicit schemes (i.e. those for which the unknowns are ex-
plicitly expressed in terms of the values computed at the previous time step)
are unstable or conditionally stable, whereas the implicit schemes (i.e. those
for which the unknowns are implicitly expressed in terms of both previous
values and unknown values at the neighbouring points) are unconditionally
stable [27]. Von Neumann’s analysis thus allows us to estimate, depending on
each case, the maximal time step able to preserve the stability of the solu-
tions, i.e. a time step that is sufficiently small for the computation to follow
the flow evolution [27]. (To draw an analogy, one can think of the focusing
of the obturation time of a camera lense in function of the speed at which
the photographed object moves). If one adopts the viewpoint of stability, the
analogy between the numerical experience and the laboratory experience al-
lows us, for a given price, to reach a certain spatial and temporal resolution,
just as the resolution and the dynamical behaviour of a numerical simulation
depend on the chosen grid size and consequently on the available computation
resources.

Nevertheless, von Neumann’s criterion does merely apply to the simplest
linear problems, since it does take into account neither nonlinear effects, nor
incidence on stability of the discretized boundary conditions. In view of the
impossibility in which the numerical analysts are to establish stability criteria
that are adapted to the numerical treatment of nonlinear equations, we are
suggesting to resort to a more physical analysis, that some may condemn
as a rather too intuitive one. This approach draws upon the analogy there
is between the mechanisms which govern the physical problem (e.g. physical
instability) and those which ensure numerical stability. It proceeds from the
following principle: ‘To obtain numerical stability there must be hydrodynamic
stability at the scale of the computational mesh’ [27]. The hydrodynamic
stability is conditioned by the balance which exists, at a certain scale, called
the dissipation scale (Kolmogorov’s scale built upon the molecular viscosity),
between the advective forces governed by the nonlinear terms and the diffusive
forces described by the linear terms of the Navier–Stokes equation. One incurs
the risk that instabilities may develop if the nonlinear terms take over the
linear terms, i.e. when, the advective forces dominate the diffusive forces.
Similarly, numerical instabilities appear in a simulation when, on the scale of
the computational mesh, the nonlinear advective terms take over the linear
diffusive terms; in this case the smallest perturbation, introduced for instance
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by the discretization of the boundary conditions or by truncation errors, is
amplified by the nonlinear terms before having had time to be damped by
diffusion, and the calculation diverges. Thus, to guarantee numerical stability,
one must choose a computational mesh which is sufficiently fine for diffusion
to dominate at the smallest scale. This is further expressed by saying that
the grid Reynolds number (ratio of the advective terms upon the diffusive
terms at the scale of the grid) must always remain inferior to 1. In practice,
the destabilizing effect of the nonlinear terms cannot really be felt below a
Reynolds of 4 [29].

Until now, we had only been dealing with models built according to the
equations that govern the physics of the phenomena which we are studying:
the computer is used to integrate these equations and, given the numerical
errors, the link between the underlying theory and reality solely hinges upon
the adequation of underlying theory and reality. There is a second category
of numerical models for which this link is much more questionable, namely
Monte-Carlo methods, that we have already mentioned in the first part. In-
deed, these models are based on stochastic processes, which seem to have no
relation a priori to the phenomenon under study but whose statistical behav-
iour proves to be similar as long as one chooses adequate statistical samples.
In this case, the computer is used as a random number generator and, among
all realizations thus obtained, one only keeps those having enough physical
‘realizability’, e.g. which verify the conservation and symmetry properties of
the phenomenon one wishes to simulate. The relevance of such models to
reality rests upon the partial isomorphism which exists between stochastic
processes and differential equations. This approach turns out to be highly
heuristic, and in practice there are only two ways in which to test these mod-
els: either by comparing them to laboratory experiences, or by performing a
large number of simulations and check that the variance of the set of solutions
is sufficiently small value; unfortunately this is usually is too costly in terms
of computation time to be done thoroughly.

To conclude, we think that the question ‘simulation or simulacrum of the
phenomena?’ is not specific to the numerical approach, but to the entire field
of physics. The study of the phenomena with the help of numerical simulation
does not seem to us to be more ‘artificial’ than this very study carried out
thanks to experiments as complex as those used in physics nowadays: the risk
of simulacrum is not greater when one studies the behaviour of dynamical
systems thanks to computers than when one observes that of the particles
thanks to accelerators or that of galaxies thanks to telescopes. Indeed, the
distance between the phenomena and their observation is such that one always
needs theoretical principles to discern what one holds as true from the rest of
the artifacts.

The terms ‘simulacrum’ and ‘simulation’ have a pejorative connotation
and mean, for the first, ‘image, idol, representation of false gods’ but also
‘action faked to mislead’, and for the latter, ‘disguise, fiction’ [30]. Such a
terminology may well hide some symbolic meaning, where one finds again
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the opposition between ideas and idols [31], laws and observables, where one
encounters both the risk of an illusory fascination exerted by the computer
and the original dependency which links that same computer to the military-
industrial nomenclature. But, to answer the question, we had rather avoid
using both terms, ‘simulation’ or ‘simulacrum’, and use instead the word
‘experimentation’, which corresponds a lot better to what simulation is used
for in mathematics and physics, that is to say, the possibility to experiment
with the equations or with the principles governing the phenomena under
study.

3 Numerical Experiment

We would like to illustrate the role played by the computer in physics by
choosing, for the sake of the example, the study of turbulence, that is to say,
the study of dynamical systems having a chaotic behaviour. The turbulence is
a rather beautiful source of ‘formless forms’, which is the first type of unsta-
ble morphologies according to Thom’s classification, who gives the following
description: ‘Certain forms are shapeless because they present an extremely
complicated structure; being chaotic, they offer to analysis only little or no
element to identify’ [16]. It is precisely that type of morphologies which is
encountered in the two-dimensional turbulent flows (see the figure earlier).
The study of turbulent flows has a distinctive status from the epistemological
viewpoint, insofar as the Navier–Stokes equations governing the fluid dynam-
ics have always been unanimously admitted and only their integration poses
problem. In an unpublished (but available in his complete works) article from
1946, written in collaboration with Goldstine [32], von Neumann emphasized
the originality of this field in comparison with the rest of physics: ‘The phe-
nomenon of turbulence was discovered physically and is still largely unexplored
by mathematical techniques. At the same time, it is noteworthy that physical
experimentation which leads to these and similar discoveries is a quite peculiar
form of experimentation; it is very different from what is characteristic in other
parts of physics. Indeed, to a great extent, experimentation in fluid dynamics
id carried out under conditions where the underlying physical principles are
not in doubt, where the quantities to be observed are completely determined
by known equations. The purpose of the experiment is not to verify a proposed
theory but to replace a computation from an unquestioned theory by direct
measurements. Thus wind tunnels are, for example, used at present, at least
in large part, as computing devices of the so-called analogy type to integrate
the nonlinear partial differential equations of fluid dynamics. Thus it was to
a considerable extent a somewhat recondite form of computation which pro-
vided, and is still providing, the decisive mathematical ideas in the field of
fluid dynamics. It is an analogy method, to be sure. It seems clear, however,
that digital devices have more flexibility and more accuracy, and could be
made much faster under present conditions. We believe, therefore, that it is
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now time to concentrate on effecting the transition to such devices, and that
this will increaser the power of the approach in question to an unprecedented
extent’. Thus, with a stunning intuition given the possibilities of computers
in 1946, von Neumann was suggesting to replace laboratory experiments by
numerical experiments in order to study fluid mechanics problems, and espe-
cially turbulence. Such foreknowledge/insight was even rather optimistic when
one thinks that the idea to replace wind tunnel experiments by numerical ex-
periments was revived by NASA in 1978 (‘Numerical Wind Tunnel’ project of
NASF) but had to be postponed sine die since the performances of the most
powerful computers are still insufficient to numerically compute, without any
adhoc turbulence model, flows with large Reynolds around complex three-
dimensional geometries [33]. However, the progresses that have been made
over the last thirty years, regarding as much the computers as the algorithms,
are hardly imaginable. One example will be sufficient to illustrate this: to
compute the flow past an airplane wing using Reynolds equations (averaged
Navier–Stokes equations with first-order closure), one needs less than half an
hour nowadays, whereas the same simulation tried forty years ago with the
algorithms and computers then available would have been 10,000 times more
expensive and the calculation of only one realization of the flow would have
taken about 30 years [34]. But the advantage of numerical experimentation is
not to replace laboratory experimentation, which would be, really, a danger-
ously illusory program insofar as simulation, just as theory, needs laboratory
experiment to confirm or infirm its predictions, at least on a few test cases.
No, the advantage of numerical approach is to open up new fields of exper-
imentation that are out of reach in a laboratory: numerical experimentation
should not replace laboratory experimentation but complement it.

The study of the two-dimensional turbulence is a particularly interesting
case to illustrate the originality of the numerical approach in physics (see
Fig. 1). Indeed, two-dimensional turbulence is practically out of reach in labo-
ratory since it is encountered in large scale atmospheric and oceanic flows (and
even then, this is a mere approximation). To study it, one needs to consider
planetary scale, which is why simulation is the only method left in this case
to actually experiment rather than observe. The numerical approach repre-
sents a break from the traditional scheme Thom had in mind when he wrote:
‘From the epistemologist’s point of view two types of morphological disciplines
can be distinguished. Some disciplines are experimental: man can create the
morphology under study (in physics, chemistry), or intervene, more or less
brutally to say the least, in its development (as in biology). Other disciplines
on the other hand are solely observational: no experimentation is possible ei-
ther because of spatial distance (astronomy) or temporal distance (geology,
paleontology, ethnography, history) or finally for ethical reasons (psychological
and social phenomena)’ [35]. This classification may indeed be widened since,
some purely observational sciences could now be considered as numerically ex-
perimental sciences; for instance it is the case of paleoclimatology, the study
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Fig. 1. Vorticity field computed by direct numerical simulation of a two-dimensional
turbulent flow using a pseudo-spectral method [39]

of planetary atmospheres or that of galaxies’ evolution. Numerical simulation
thus allows us to turn purely observational sciences into experimental ones.

Numerical simulation is half-way between theory and experiment without
replacing either, since theory, simulation and experiment are all interrelated.
Just as an experiment requires a theory to be interpreted, and a theory re-
quires an experiment to be refuted (or, as some would say, ‘falsified’), a nu-
merical simulation equally requires a theoretical model for its formulation,
and also experimental results for its validation. In return, it can enrich the
intuition of theoreticians and allow them to solve problems out of reach ana-
lytically, to imagine a larger number of cases, and to present the results in a
graphical form which represents information in a more concise way. A numer-
ical simulation allows the experimentalist to study the behaviour of a system
by varying one parameter independently of the others, to know the value of
the fields at all points in a given domain and to visualize phenomena which are
too fine, too fast or too remote to be observed through conventional means.
We think that numerical simulation reintroduces in physics the traditional
notion of ‘thought experiment’ (‘Gedankenexperiment’), now on a new scale,
just as the thought experiments of Lucretius, Bruno, Galileo, Einstein or Bohr
once did: by reasoning on the basis of an ‘imaginary’ experiment, one tries to
predict a behaviour that might challenge theory at its very foundations. For
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instance, the numerical experiment of Fermi-Pasta-Ulam has questioned the
ergodic hypothesis on which all statistical mechanics is based. The numerical
approach could also reveal the phenomenology hidden in fundamental equa-
tions, and hence improve the validation of simplified models: for example the
numerical solution of Newton’s equation to go beyond the three-body prob-
lem and study the formation of galaxies, the solar system’s stability or any
other n-body problems (for n larger than 3). Likewise, numerical experiments
allow us to solve the Navier–Stokes equation for a large number of degrees of
freedom in order to better understand turbulence in fluids and plasmas.

Numerical experiment is thus a third way whose specificity is the heuristic
use of computers. This new approach is quite distinct, by its methods and its
requirements (in particular in terms of academic curriculum), from both the-
ory and experiment. Kenneth Wilson [36] recounts that: ‘In the Sixties most
scientists believed that a good theorist seated in front of a computer could
instantly produce good science. It was overlooked that before gaining any de-
cent results a long and difficult training period was necessary to overcome
the very strict constraints dictated by computers (whatever their power). A
large scale numerical experiment is as difficult to succeed as a proper ex-
periment or an analytical calculation leading to good results [ . . . ] For three
centuries students have been trained to perform experiment and theory; the
best are selected and only those can continue; a similar system should now
be implemented for numerical simulation. This would not be easy, students
and teachers alike will have to carry out many unsuccessful simulations before
the training effort bears fruit’. The numerical approach has its own practice,
one which is indeed difficult to transmit. Zabusky [37] alludes to ‘synergetic
computational style’ and he goes on to write: ‘I have found it difficult to re-
late this mode of working via lectures. Perhaps this mode is still an art form
understood by committed practitioners in benign computer environments and
learned only by apprenticeship’. This impression is confirmed by Roache who,
in the introduction to his classic book on numerical simulation, ‘Computa-
tional Fluid Dynamics’ [29], stipulates that: ‘the newcomer to computational
fluid dynamics is forecast in this field there is at least as much artistiry as
science’. Similarly, Turkel, in his review published in 1983 in ‘Progresses in
Numerical Physics’ [38], states that: ‘the coding of large scale problems is as
much art as it is science with a large reliance on intuition and folklore’.

Should we regard this as an indiscretion of youth or is it intrinsic to the
numerical approach? Is the fact that numerical simulation is still perceived as
‘amateur practice’ due to its youth or is intrinsic to its methodology? Is this
not always the case for any research domain too young to have become ossi-
fied? We believe that theoreticians, experimentalists and numericians will bet-
ter contribute to their common enterpriser, namely the evolution of concepts
and the explanation of phenomena, by keeping and affirming their singular
identity, while yet engaging in vigorous core interaction on the foundations.
As a matter of fact, this ‘differentiation of the species’ should not surprise us,
since the distinction between theoreticians and experimentalists, just as that



Numerical Experimentation: A Third Wayto Study Nature 29

drawn between mathematicians and physicists, is quite recent in our history.
Should the choice of the numerical approach not ultimately be, as elsewhere,
a matter of taste, of personal sensitivity, and, indeed, why not, of vocation?

‘One cannot escape the feeling that these
mathematical formulae have an independent
existence and an intelligence of their own, that
they are wiser even than their discoverers,
that we get more out of them than was originally
put into them’.

(Heinrich Hertz)

Acknowledgements

Most material of this text has been translated from a conference given on
September 1983 at Cerisy for the 70th birthday of the French mathematician
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