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ABSTRACT

Generative Adversarial Networks (GANs) currently
achieve the state-of-the-art sound synthesis quality for
pitched musical instruments using a 2-channel spectro-
gram representation consisting of log magnitude and
instantaneous frequency (the "IFSpectrogram"). Many
other synthesis systems use representations derived from
the magnitude spectra, and then depend on a backend
component to invert the output magnitude spectrograms
that generally result in audible artefacts associated with
the inversion process. However, for signals that have
closely-spaced frequency components such as non-pitched
and other noisy sounds, training the GAN on the 2-channel
IFSpectrogram representation offers no advantage over the
magnitude spectra based representations. In this paper, we
propose that training GANs on single-channel magnitude
spectra, and using the Phase Gradient Heap Integration
(PGHI) inversion algorithm is a better comprehensive ap-
proach for audio synthesis modeling of diverse signals that
include pitched, non-pitched, and dynamically complex
sounds. We show that this method produces higher-quality
output for wideband and noisy sounds, such as pops and
chirps, compared to using the IFSpectrogram. Further-
more, the sound quality for pitched sounds is comparable
to using the IFSpectrogram, even while using a simpler
representation with half the memory requirements.

1. INTRODUCTION

In recent years, GANs have achieved the state-of-the-art
performance in neural audio synthesis, specifically for
pitched musical instrument sounds [1, 2]. Engel et al. [1]
showed that a progressively growing GAN [3] can out-
perform strong WaveNet [4] and WaveGAN [5] baselines
in the task of conditional musical instrument audio gen-
eration achieving comparable audio synthesis quality and
faster generation time. Nistal et al. [2] further showed that
a 2-channel input representation consisting of the magni-
tude and the instantaneous frequency (IF) of the Short-
Time Fourier Transform (STFT) achieves the best syn-
thesis results in this framework compared to other kinds
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of representations, such as Mel spectrogram, MFCC, and
Constant-Q Transform. The derivative of unwrapped phase
of a signal with respect to time is equal to the angular
difference between the frame stride and signal periodic-
ity, and is commonly referred to as the instantaneous fre-
quency (IF). Estimation of IF provides comprehensive in-
formation about the phase of the signal when the audio is
pitched, i.e. has components that are clearly separated in
frequency. Thus, a magnitude spectrogram combined with
the estimated IF results in high-quality reconstruction of
the signal for pitched signals such as musical instruments.
In broadband and noisy short duration signals, components
are not separated in frequency, and neighboring frequency
bins have complex and highly interdependent amplitude
and phase relationships that are necessary for reconstruc-
tion and the representation is very sensitive to IF estimation
errors.

DrumGAN [6] extended the work in [2] to various drum
sounds, however the authors have notably not used the
IF spectrogram that produce state-of-the-art quality for
pitched sounds, but instead, use spectrograms of the real
and imaginary parts from the STFT directly. They also use
a set of perceptually correlated features more appropriate
than pitch for conditioning the percussion sounds in the
target data set.

Průša et al. [7] proposed a non-iterative phase recon-
struction algorithm called Phase Gradient Heap Integration
(PGHI) that uses the mathematical relationship between
the magnitude of Gaussian windowed STFT and the phase
derivatives in time and frequency of the Fourier trans-
form to reconstruct the phase using only the magnitude
spectrogram. Marafioti et al. [8] compared three differ-
ent GAN architectures, and showed that for a dataset con-
sisting of spoken digits and piano music, the architecture
using PGHI produced audio of objectively and perceptu-
ally higher quality than the other representations they com-
pared based on an aggregate set of different signal types.
A direct comparison with GanSynth [1] which was being
published at about the same time was also not included in
their study.

In this paper, we study and compare the state-of-the-art
GanSynth with magnitude spectrogram+IF audio represen-
tation and reconstruction method and the PGHI method of
representation and reconstruction for a systematically or-
ganized collection of audio textures such as pitched musi-
cal instruments, noisy pops, and chirps, spanning a range
from pitched steady-state to broadband signals. We show
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that the PGHI method of reconstruction from GAN esti-
mates is more robust for synthetic spectrograms and esti-
mation errors for different kinds of input signals than the
state-of-the-art magnitude+IF representation. This study
contributes to the development of general and efficient rep-
resentations for training GANs for complex audio texture
synthesis.

2. AUDIO TEXTURES AND REPRESENTATIONS

2.1 Audio Representations and Inversion Techniques

Many algorithms learn to estimate the magnitude spectro-
gram and then use iterative methods such as Griffin-Lim
[9] to estimate the phase and reconstruct the time domain
signal. However, these traditional methods of phase esti-
mation and reconstruction are known to have perceptible
artifacts in the reconstructed signal. Estimation of phase
is difficult and prone to errors in part because artificial or
manipulated images may not produce a real-valued time
domain signal when inverted.

Another way of representing phase is with instantaneous
frequency. The estimate of magnitude spectrogram and IF
in frequency domain can be used to reconstruct a time do-
main signal by computing the unwrapped phase from the
cumulative sum of IF across time axis, and computing an
inverse Fourier transform. The state-of-the-art GANSynth
framework [1,2] estimates this 2-channel audio representa-
tion, i.e. log magnitude and IF, or IFSpectrogram. Engel et
al. hypothesized and showed that synthesized audio qual-
ity from the IFSpectrogram is robust to estimation errors
for the NSynth dataset of pitched musical instrument au-
dio while noting the importance of choosing analysis win-
dow sizes large enough to be primarily sensitive to a single
frequency component. However, to the best of our knowl-
edge, IFSpectrogram method has not been tested and com-
pared to other representations for non-pitched and noisy
sounds.

We observe that whether converting pitched instrument
or noisy transient audio into IFSpectrogram representation,
that resynthesizing produces a high quality audio output
for both the kinds of sounds. However, if we add a small
Gaussian noise to the IF channel (to simulate estimation
error in IF) and then resynthesize, the perceptual quality of
the pitched sounds is not affected as much as the quality of
the noisy pop sounds. Audio examples of this simulation
are presented in the companion website 1 . This indicates
that IFSpectrogram method may not be robust to manip-
ulated and synthetic spectrograms or estimation errors for
non-pitched and noisy sounds.

For a signal composed of sinusoidal components with
constant frequencies, the phase grows linearly in time for
all the frequency channels that have energy in the spec-
trogram. For these frequency channels, the IF is constant
and the local group delay (STFT phase derivative with re-
spect to frequency) is zero. However, in case of an im-
pulse train, the situation is reverse to that of sinusoidal
components, wherein the phase derivative with respect to

1 https://animatedsound.com/amt/listening_tes
t_samples/#simulation

frequency axis will have more information than the IF as
there is energy across almost all the frequency channels in
the spectrogram, but the change of phase with respect to
time exists only around the impulse events, and otherwise
it is zero. Furthermore, for signals that have fast moving or
closely spaced frequency components, IF does not capture
the variability in the frequency direction.

The Phase Gradient Heap Integration (PGHI) method [7]
is a non-iterative phase estimation method that exploits the
mathematical relationship between the time and frequency
derivatives of log magnitude spectrogram with the phase
gradients in frequency and time axes respectively. To pro-
vide a brief summary here, Průša et al. [7] proved math-
ematically and experimentally that the derivative of phase
along frequency axis 𝜑𝜔(𝑚,𝑛) and, the derivative of phase
along time axis 𝜑𝑡(𝑚,𝑛) can be estimated solely from the
time and frequency derivatives of log-magnitude of STFT
(slog𝑡, slog𝜔) respectively computed with a Gaussian win-
dow, as [10, 11],

𝜑𝜔(𝑚,𝑛) =
−𝛾

2𝑎𝑀
(slog𝑡(𝑚,𝑛))

𝜑𝑡(𝑚,𝑛) =
𝑎𝑀

2𝛾
(slog𝜔(𝑚,𝑛)) + 2𝜋𝑎𝑚/𝑀

(1)

where, 𝑀 is the number of frequency channels, 𝑎 is the
hop size, and 𝛾 is the time-frequency ratio of Gaussian
window, which is recommended to be 𝑎𝑀/𝐿, 𝐿 being the
length of the input signal in samples. Although the the-
ory behind the non-iterative method of phase reconstruc-
tion from the STFT magnitude holds for Gaussian contin-
uous window, Prusa et al [7] showed that the algorithm
works well for a discretised truncated Gaussian window,
however with the Gaussian approximation of other win-
dows such as Hann and Hamming windows, they found
significant signal degradation. Therefore in this work, we
have used the truncated Gaussian window function. Re-
dundancy between frames should be such that there is suf-
ficient dependency between the values of the STFT to fa-
cilitate magnitude-only reconstruction. The recommended
redundancy is 𝑀/𝑎 ≥ 4 [8].

This method also implements a numerical integration of
these phase gradients such that integration is first per-
formed along the prominent contours of the spectrogram in
order to reduce accumulation of the error, and so on. This
heap integration method to estimate phase from the phase
gradients helped to make the synthesis robust to estimation
errors and noise [7, 10].

In this work, our goal is to investigate the quality of audio
produced by a progressive GAN trained on a single channel
log magnitude spectrogram and using PGHI for inversion
of the estimated spectrogram to time domain signal and
compare it to using the two-channel IFSpectrogram repre-
sentation, for wideband, noisy, non-pitched or fast chang-
ing signals, as well as pitched instrument signals. With
this framework, we propose a general approach for audio
synthesis using the state-of-the-art GAN that works for a
variety of different sounds.
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2.2 Audio Textures

Audio synthesis finds practical applications in creative
sound design for music, film, and gaming, where creators
are looking for sound effects suited to specific scenar-
ios. Research in this field aims to learn a compact latent
space of audio such that adjustments to these latent vari-
ables would help the creator search through a known space
of sounds (eg. water drops and footsteps), parametrically
control (eg. rate of water dripping) as well as explore new
sounds in the spaces in between the known sounds [5].

Building upon generative adversarial image synthesis
techniques, researchers exploring GAN techniques for
neural audio synthesis have made significant progress in
building frameworks for conditional as well as uncondi-
tional synthesis of a wide range of musical instrument tim-
bres [1, 2]. These models are trained on NSynth dataset
[12] that consists of notes from musical instruments across
a range pitches, timbres, and volumes. Conditioning on
pitch allows the network to learn natural timbre variation
while providing musical control of notes for synthesis. The
NSynth dataset provides a comprehensive representation
of pitched sounds comprised primarily of well-separated
harmonics. There has been some work on audio texture
modeling for synthesis [13–15] including deep learning
approaches [16], but audio textures have received consid-
erably less attention than traditional musical sounds and
speech.

Sound textures [13, 17] have more timbral variation in-
cluding wideband or noisy components, such as footsteps
or motors, and a wide range of temporal structure not found
in pitched instruments. Furthermore, there can be very
fast-varying frequency components and pitches in sounds
such as water dripping, and chirps. Thus we examine the
performance of controlled audio synthesis techniques on
trained networks using three types of sounds - pitched in-
struments, noise burst pops, and frequency sweep chirps,
as shown in Figure 1. In this work, we conduct experi-
ments on pitched musical instruments and carefully con-
trolled synthetic non-pitched and dynamic textures. More
complex and natural textures are left for future study.

2.3 Conditional GAN architecture for audio synthesis

Parametrically controllable audio synthesis has also been
an active field of research in recent years. Hsu et al. [18]
used hierarchical variational autoencoders (VAEs) for con-
ditional or controlled speech generation. Similarly, Luo et
al. [19] learn separate latent distributions using VAEs to
control the pitch and timbre of musical instrument sounds.
Engel et al. [12] conditioned a WaveNet-style autoregres-
sive model to generate musical sounds, as well as inter-
polate between sounds to generate new sounds. The cur-
rent state-of-the-art performance in conditional synthesis
of audio is the GANSynth architecture [1] which intro-
duces a progressively growing Wasserstein GAN for con-
trolled music synthesis and is based on the IFSpectrogram
representation [2]. Thus, we adopt this architecture with
IFSpectrogram representation as our baseline.

3. EXPERIMENTAL DETAILS

3.1 Audio Datasets

3.1.1 Pitched Musical Instruments

We make use of the NSynth dataset [12], that consists of
approximately 300,000 single-note audios played by more
than 1,000 different instruments. It contains labels for
pitch, velocity, instrument type, acoustic qualities (acous-
tic or electronic), and more, although, for this particular
work, we only make use of the pitch information as the
conditional parameter. We use the same subset of this
dataset as was used by Nistal et al. [2]. It contains acoustic
instruments from the brass, flutes, guitars, keyboards, and
mallets families, and the audio samples are trimmed from 4
to 1 seconds and only consider samples with a MIDI pitch
range from 44 to 70 (103.83 - 466.16 Hz). This yields a
subset of approximately 22,000 audio files with balanced
instrument class distribution.

3.1.2 Noisy Pops

On the other end of the spectrum of sounds we tested are
pops. A pop is a burst of noise filtered by a bandpass fil-
ter. We generated the pop textures with three parameters
- rate (number of events per seconds), irregularity in the
temporal distribution (using a Gaussian distribution around
each evenly-spaced time value), and the center frequency
of the bandpass filter. Rate ranges from 2 to 16 pops per
second, center frequency ranges from 440 to 880 Hz (cor-
responding to midi pitch values 69 to 81), and irregularity
described by a Gaussian distribution with a standard de-
viation ranging from 0.04 to 0.4. We generate 21 values
for each of these three parameters, and five one-second
long audio clips of each combination, resulting in a total
of 46,305 (21 × 21 × 21 × 5) audio files.

3.1.3 Chirps

In between the quality of the pitched sounds with rel-
atively steady frequency components and the noisy pop
sounds with sharp broadband transients are chirps. A chirp
is a signal in which the frequency increases or decreases
quickly with time. The chirps were generated with two
frequency components space by an octave, and were con-
trolled with 5 parameters - irregularity in time (like the
pops), chirp rate (2 to 16 chirps per second, 9 samples),
frequency sweep range in octaves indicating steepness of
chirp ([-3. -1, 1, 3] where negative is descending and posi-
tive is ascending), event duration i.e. duration of each chirp
in seconds (5 linearly spaced samples in [.02, .2]), and cen-
ter frequency (9 linearly space samples in musical pitch
space between 440 and 880 Hz). We generate 5 varia-
tions of each parameter (different due to the statistical dis-
tribution of events in time) resulting in a total of 40,500
(5 × 9 × 4 × 5 × 9 × 5) audio files of 1 second each.

3.2 GAN architecture

We used the progressively growing Wasserstein GAN ar-
chitecture [1, 2] which consists of a generator G and a dis-
criminator D, where the input to G is a random vector 𝑧
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(a) Pitched Instrument (Piano) (b) Pops (c) Chirps

Figure 1. Examples of (a) a pitch instrument (piano), (b) Noise burst or pops, and (c) Frequency sweeps or chirps, with
their respective audio waveform (top row), log magnitude spectrogram (middle row), and instantaneous frequency of un-
wrapped phase (bottom row) plots. The audio examples presented are 1 second long at 16 kHz sampling rate. Spectrogram
computation is with window size 512 and hop size 128 samples.

with 128 components from a spherical Gaussian distribu-
tion along with a one-hot conditional vector 𝑐𝑖𝑛. Separate
models were trained for each data set with the only differ-
ence being the dimension of the one-hot pitch vector (27,
13, and 9 for NSynth, pops, and chirps, resp.) For each
dataset, we train two models as shown in Figure 2. Model
A uses a 2-channel audio representation consisting of the
log magnitude spectrogram and IF (Figure 2(a)) computed
from Short Time Fourier Transform (STFT) with Hanning
window, and Model B uses a single-channel log magni-
tude of Gabor transform (i.e. STFT with Gaussian win-
dow) audio representation (Figure 2(b)). During gener-
ation, Model A’s estimated IFSpectrogram is inverted to
a real time domain signal using Librosa’s inverse STFT
which uses Griffin-Lim iterative algorithm for synthesis
initialized by the estimated phase from IF. For model B,
we use phase gradient heap integration (PGHI) [7] 2 for
reconstruction of the audio signal from the log magnitude.
It reconstructs the phase only for the positive frequency co-
efficients and enforces conjugate symmetry to the negative
frequency coefficients in order to guarantee a real-valued
time domain signal.

The generator’s architecture consists of a Format block
and a stack of Scale blocks. The Format block turns the
1D input vector 𝑧 + one-hot conditional 𝑐𝑖𝑛, with 128 +
x dimensions (where x could be 27, 13, or 9) into a 4D
convolutional input consisting of [batch size, 128, 𝑤0, ℎ0],
where 𝑤0 and ℎ0 are the sizes of each dimension at the

2 https://github.com/andimarafioti/tifresi

(a)

(b)

Figure 2. GAN block diagram with (a) IF, and (b) PGHI.
𝑧𝑛𝑜𝑖𝑠𝑒 is the 128 dimensional latent vector, 𝑐𝑖𝑛 is the con-
ditional parameter one-hot vector. G is the generator, D is
the discriminator.
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input of the scale block.
The scale blocks are a stack of convolutional and box-up-

sampling blocks that transform the convolutional input to
the generated output signal progressively in 5 stages. The
discriminator D is composed of convolutional and down
sampling blocks, mirroring the configuration of the gener-
ator. D estimates the Wasserstein distance between the real
and generated distributions. For more details, please refer
to [2] 3 . Our code that implements the GAN architecture
with IF as well as PGHI methods (an extended version of
Nistal et al.’s code) is available here 4 .

3.2.1 Training

Training is divided into 5 stages, wherein each stage a new
layer, generating a higher-resolution output, is added to
the existing stack, which is the essence of the progressive-
GAN [1, 3]. The gradual blending in of the new layers
with a blending parameter alpha ensures minimum possi-
ble perturbation effects as well as stable training. We train
all the models for 1.2M iterations on batches of 8 samples:
200k iterations in each of the first three phases and 300k in
the last two. Adam optimization method is employed.

We tried multiple FFT sizes 512, 1024, and 2048 to com-
pute the time-frequency representations, that correspond to
window sizes of 32 ms, 64 ms, and 128 ms respectively
for a signal sampled at 16 kHz. For transient sounds, a
window size with higher time resolution is needed, i.e. a
shorter window and indeed we empirically found that FFT
size of 512 serves well for both the transient pop sounds
and the steady pitched sounds. Therefore, in the experi-
ments presented in this paper, we use FFT size of 512. We
tested the effect of redundancy between frames in recon-
struction, thus we trained two models, with hop sizes 64
and 128, i.e. 87.5% and 75% overlap between consecutive
frames. We train two types of models IF and PGHI, for
three kinds of audio textures, NSynth, pop, and chirp, for
each of the two hop sizes. All of the models took about 2.5
to 3 days to train on an Nvidia Tesla V100-32GB GPU.

3.3 Evaluation Metrics

Evaluation of generative models is challenging, especially
when the goal is to generate perceptually realistic audio
that may not be exactly same as any real audio in the
dataset. Previously, the inception score has been used as
the objective measure that evaluates the performance of
a model for a classification task such as pitch or instru-
ment inception score [1, 2]. However, in this work, we are
comparing signal representations and synthesis techniques,
while the GAN architecture remains the same. Since the
variety of sounds with respect to classification is not ex-
pected to change. Indeed, Nistal et al [2] noted that incep-
tion models are not robust to the particular artifacts of the
representations they were comparing, and therefore, it is
not a very reliable measure of the overall generation qual-
ity.

3 https://github.com/SonyCSLParis/Comparing-Re
presentations-for-Audio-Synthesis-using-GANs

4 https://github.com/lonce/sonyGanFork

Marafioti et al. [8] developed an interesting consistency
measure that estimates how close a magnitude spectrogram
is to the frequency transform of a real audio signal. How-
ever, it is not obvious how it could be used to compare
representations that include explicit phase representations.
Also, the perceptual quality of the generated audio signal
depends on other factors as well. For example, a real-
valued time domain signal of poor perceptual quality will
have a perfectly consistent magnitude spectrogram.

In this work, we performed listening tests for subjectively
evaluating the quality of the generated sounds, as well as
computed Fréchet Audio Distance (FAD) [20] as the ob-
jective evaluation metric.

3.3.1 Human Evaluation

To construct stimuli for listening experiments, three points
in the latent space are randomly chosen to generate three
audio signals of 1 second each per pitch class per trained
model, which were then stitched together with a 0.5 sec-
ond silence before each of the 3 segments) resulting in a
4.5 seconds duration audio clips that were presented in the
listening test. This provided variability within each clip so
that the listeners focus on the sound quality of the clips and
not on the instrument type or the rate of pops and chirps.
For reference, a similar set of audio clips was prepared
from the original or real audio data set as well.

The listening test was conducted by recruiting twenty
participants via Amazon’s Mechanical Turk (AMT) web-
site. In each assessment task, the participants were asked to
listen first to the reference, then to the two synthesized au-
dio clips, randomly ordered, and then to select the one they
felt was the closest in sound quality to the reference clip, or
if they were similar. Our task instructions were simplified
for the participants and included text like "Although the
synthetic clips may sound quite different from the original,
you will need to select a clip whose sound quality is most
similar to the sound quality of the original". The two audio
clips belonged to either IF or PGHI reconstruction tech-
niques for a hop size of 64 or 128 for each comparison.
Only same type of sounds were compared, i.e. NSynth_IF
to NSynth_PGHI, pop_IF to pop_PGHI etc. Moreover, the
two clips being compared had the same pitch or center fre-
quency. 20 random pitches from the NSynth dataset, 13
pitches from pops, and 9 pitches from chirps were selected
to build a sample size of 84 comparison trials (42 com-
parisons each for hop 64 and 128 reconstructions respec-
tively) and overall 1,680 ratings were collected. The tri-
als were loaded into AMT in a random sequence and were
completed by participants within 2 hours. The participants
were compensated at the rate of US$ 0.02 per comparison
trial.

3.3.2 Fréchet Audio Distance

The Frechet Audio Distance (FAD) [20] 5 is the distance
between the statistics (mean and covariance) of real and
fake data computed from an embedding layer of the pre-
trained VGGish model. The embedding layer is considered

5 https://github.com/google-research/google-re
search/tree/master/frechet_audio_distance
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to be a continuous multivariate Gaussian, where the mean
and covariance are estimated for real and fake data, and the
FAD between these is calculated as:

𝐹𝐴𝐷 = ||𝜇𝑟 − 𝜇𝑔||2 + 𝑡𝑟(Σ𝑟 + Σ𝑔 − 2
√︀

Σ𝑟Σ𝑔) (2)

where 𝜇𝑟,Σ𝑟 and 𝜇𝑔,Σ𝑔 are the mean and covariances of
real and fake probability distributions, respectively. Lower
FAD means smaller distances between synthetic and real
data distributions. The VGGish model is trained on 8M
Youtube music videos with 3K classes. The FAD metric
has been tested successfully specifically for the purpose
of reference-free evaluation metric for enhancement algo-
rithms. FAD performs well in terms of robustness against
noise, computational efficiency, and consistency with hu-
man judgments, and has been used by Nistal et al. [2]. FAD
has been found to have a high correlation (0.52) with hu-
man perceptual judgment compared to other measures such
as signal-to-distortion ratio, cosine distance or magnitude-
L2 distance [20].

4. RESULTS AND DISCUSSION

Qualitatively it is observed that with the IF method, the
sharp transients of the pop sounds get smeared in time,
whereas PGHI method produces clear and sharp transients.
This temporal smearing effect is also observed in the short
duration chirps generated from the IF method. This smear-
ing effect arises from the inability of IF to provide robust
information about phase when the signal contains closely
spaced wideband frequency components. For NSynth data,
however, the two methods sounded approximately equal in
quality. Examples of the synthesised audio presented for
listening tests are here 6 , and visual analysis of the gener-
ated spectrograms are provided here 7 .

Figure 3 (a) and (b) show results from the listening test
for reconstructions using hop sizes 64 and 128 respectively.
For both hop sizes, participants rated PGHI reconstructions
to be significantly better than IF for pop sounds, where they
rated in favour of PGHI 80.79% and 73.15% for hop sizes
128 and 64 respectively. This result clearly shows that
PGHI with GAN produces perceptually higher quality au-
dio for noisy signals. For chirp sounds, participants rated
PGHI somewhat better than IF. But for NSynth pitched in-
strument sounds, PGHI and IF are similarly rated for both
hop lengths. Furthermore, we observe that hop size 64
shows a clearer distinction in preference between IF and
PGHI for nsynth and chirp sounds, than hop size 128. This
indicates that a higher redundancy in the spectrogram rep-
resentation may help in better reconstruction with PGHI
method than IF method. However, comparison between
the two hop sizes for the same method has shown mixed
responses for the different datasets, which means that re-
dundancy of more than 4 may not have a significant impact
on the reconstructed audio quality of one method.This sys-
tematic study suggests that PGHI with GAN produces au-
dio quality perceived as roughly equal to the state-of-the-

6 https://animatedsound.com/amt/listening_tes
t_samples/#examples

7 https://animatedsound.com/amt/listening_tes
t_samples/#analysis

art IF method for pitched sounds, but significantly higher
as the complexity of the signal increases.
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Figure 3. Results from listening tests for comparing IF
and PGHI reconstructions from GAN using hop lengths of
(a) 64 and (b) 128 respectively. Across both hop lengths,
PGHI reconstructions of noise bursts or pops were rated
to be significantly better than IF. For chirps, PGHI recon-
structions were rated to be slightly better than IF and for
pitched instruments PGHI reconstructions were rated al-
most similar to IF.

To evaluate objectively, we computed the FAD metric, as
shown in Table 1. We observe that PGHI method generated
audio that consistently shows a smaller distance from ref-
erence audio compared to that generated from IF method,
although unlike the perceptual ratings, the two representa-
tions are closer for chirps than the other two signal types.
While this objective measure is broadly in line with the
higher ratings for the PGHI method, the systematic dis-
agreement between the user and objective measures across
pitched and chirp sounds demonstrate that there is more
work to be done to find an objective measure that corre-
lates with human judgements of quality.

The performance of the system, given all other settings
are the same (training steps, architecture, etc), is better
using the PGHI method than the IFSpectrogram method.
Convergence during learning, especially in stage 5 of the
progressive GAN differed between the two representations
depending on the signal. The IF method representation
converged better for NSynth, while PGHI representation
converged slightly better for the other signals. However,
in all cases, the quality of the synthesised audio was better
(Figure 3) using the PGHI method.

5. CONCLUSIONS

We present a general method of audio synthesis using
GAN that produces high quality audio output for a wide va-
riety of sounds, pitched instruments as well as non-pitched
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Audio Texture Hop Size IF PGHI
Pitched Instruments 128 1.500 1.001
Pitched Instruments 64 1.583 0.924
Pops 128 1.783 0.305
Pops 64 1.866 0.295
Chirps 128 1.395 1.031
Chirps 64 1.269 0.747

Table 1. FAD results of different GAN models with IF
and PGHI. A lower FAD means smaller distances between
synthetic and real data distributions.

and noisy pop and chirp sounds. We show that IFSpec-
trogram representation that currently produces the state-
of-the-art performance with GAN for pitched instruments
is not a robust representation for non-pitched and noisy
sounds. Moreover, through subjective and objective mea-
sures, we show that integrating the PGHI representation
and reconstruction technique in the GAN framework pro-
vides a reasonable solution to this problem, as it generates
better audio quality for noisy pops and chirps than when
using the IFSpectrogram method, and produces similar au-
dio quality for pitched instruments. Audio examples gen-
erated from our experiments are available here 8 , and our
code implementation is available here 9 .

A potential direction of improvement of the PGHI tech-
nique is to use the phase estimates from PGHI as a warm-
start for other iterative phase reconstruction algorithms
such as LeGLA, as shown by Prusa et al. [7]. Another
possibility is to include different explicit representations
of phase information in training that might outperform
magnitude-only reconstruction with PGHI. Marafioti [8]
used a representation with frequency derivatives for train-
ing which did not perform as well as the magnitude PGHI
reconstruction method, but indicates the potential that this
direction has to offer.

The method of training a GAN as a data-driven approach
to designing parametrically controlled synthesizers holds
a lot of promise for creative applications such sound de-
sign and music. A signal-independent representation for
training the networks is an important step towards the uni-
versality and usability of this approach.
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