
Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

352

AUDIO PARAMETER MAPPING MADE EXPLICIT USING WEBAUDIOXML

Hans LINDETORP(hans.lindetorp@kmh.se)1,2 and Kjetil FALKENBERG(kjetil@kth.se)2

1Department of Music Production, KMH Royal College of Music, Stockholm, Sweden
2School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

ABSTRACT

Sonification using audio parameter mapping involves both
aesthetic and technical challenges and requires interdisci-
plinary skills on a high level to produce a successful re-
sult. With the aim to lower the barrier for students to enter
the field of sonification, we developed and presented We-
bAudioXML at SMC2020. Since then, more than 40 stu-
dent projects has successfully proven that the technology is
highly beneficial for non-programmers to learn how to cre-
ate interactive web audio applications. With this study, we
present new feature for WebAudioXML that also makes
advanced audio parameter mapping, data interpolation and
value conversion more accessible and easy to assess. Three
student projects act as base for the syntax definition and by
using an annotated portfolio and video recorded interviews
with experts from the sound and music computing commu-
nity, we present important insights from the project. The
participants contributed with critical feedback and ques-
tions that helped us to better understand the strengths and
weaknesses with the proposed syntax. We conclude that
the technology is robust and useful and present new ideas
that emerged from this study.

1. INTRODUCTION

Audio parameter mapping is a commonly used approach
in a wide range of applications spanning from data sonifi-
cation projects to physical, digital instruments with knobs
and sliders. Common for these applications is that vari-
ables, e.g., statistical data or the value of a knob on a syn-
thesizer, are used to shape or control the playback of a
sound.

Sonification using audio parameter mapping involves
both aesthetic and technical challenges and requires inter-
disciplinary skills on a high level to produce a successful
result. The process includes data preparation, sound syn-
thesis, mapping parameters and finally listening and tuning
the settings [1] to produce a meaningful result. It also re-
quires an understanding of auditory perception [2], sound
design, and musical composition. Studies show that the
relationship between the original data and the auditory do-
main is far from being a simple linear link [3] and even if
there have been attempts at trying to formalize ways of de-

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

scribing those relationships [4] there is still a great poten-
tial for further research. Various programming languages
have been developed aiming at meeting those needs, in-
cluding CSound [5] Max/MSP [6], Pure Data [7], Super-
Collider [8] and ChucK [9]. There are also tools avail-
able for creating sonifications like xSonify [10], Toolkit
for Sonification [11], SonifYer [12] and SoniPy [13] but
most available tools arguably requires both programming
and audio synthesis skills.

At The Royal College of Music (KMH) and the KTH
Royal Institute of Technology in Stockholm we teach soni-
fication, sound design and sound synthesis to both music
producers and engineers, which has led to the development
of the new coding environments WebAudioXML [14] and
iMusic [15], as well as an online sonification toolkit [16].
Our research projects are often tightly connected with the
pedagogical activities of ongoing courses [17] and point
out that there is a great potential for audio tools that are
easy to use in order for the students to express their cre-
ativity rather than stumbling on technical challenges [18].

Many of our courses are aimed at building bridges be-
tween art and technology as we want knowledge and prac-
tices to be shared between the disciplines. While most of
the students at KMH have no prior knowledge of program-
ming, we have been challenged to find ways for them to
get into coding as easy as possible. Most of our students
have a basic understanding of HTML and as the web has
become an increasingly important platform for sharing not
only static content but also interactive online audio appli-
cations, we have decided to explore Web Audio API [19]
as the platform for our experiments. We particularly ap-
preciate that web technology is open source and that the
applications we build are cross platform, online accessible
and require no installations for the end user.

During our sonification classes, we have also discovered
the potential for a standardized way of describing the var-
ious parameter mappings used in an application to en-
courage shared knowledge, flexible program architectures,
open plugin structures with common libraries of sounding
objects, mappings and data manipulations. We aim for
solutions that make configurations and mappings explicit
to encourage readability and easy assessment to avoid the
“black box”-phenomenon that often can be said about soni-
fication applications.

This study contributes to the community of sound and
music computing with a proposal for a descriptive XML
syntax for parameter mappings in audio applications in
general and for web audio applications in particular. We
have developed a working example and aim at a better un-



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

353

derstanding of the strengths and weaknesses of such a syn-
tax.

1.1 Background

Since the presentation of WebAudioXML [14], we have
supervised more than 40 student projects using the tech-
nology with promising results. WebAudioXML is a frame-
work that uses XML to abstract an audio configuration
for Web Audio API. The declarative syntax has proven to
make Web Audio application development accessible for
creators and opens up possibilities for students with little
or no prior programming experience to turn interactive, au-
dio application ideas into reality. We have also developed
WebAudioXML Sonification Toolkit [16] – an online tool
for exploring mappings between statistical data and audio
parameters – that has been tested by students with no prior
experience in either sonification, programming or audio
synthesis. The evaluation points towards the need for the
creators to access an audio configuration on a meta-level
rather than having to understand and control all low-level
parameters in a complex audio object.

The initial focus for WebAudioXML was to offer an
XML-syntax that described audio connections and con-
figurations. The first version supported mapping external
variables to audio parameter but the solution was limited
in many aspects. The mappings were defined individually
for all audio parameters, only one external variable could
control an audio parameter and the mapping was restricted
to one pair of in-values and out-values with only one set-
ting for interpolations. While the old version has proven to
inspire creativity, it has also indicated a great potential for
new features like the ones presented in this study.

1.2 Design Process

This study builds upon earlier experiences from the devel-
opment and evaluation of WebAudioXML. It covers a fur-
ther development of parameter mapping in the syntax and
introduces a new variable object that offers a standardized
way of specifying parameter mappings including scaling,
quantization and conversion of values. We use three cases
springing from student projects as a driving factor for the
design and document the process of developing the syntax.
The code is finally tested and published with online ex-
amples 1 and discussed with three technically experienced
music artists.

1.3 Design Goals

WebAudioXML offers a simple syntax with a hierarchical
structure that aims at shifting focus from the technological
to the artistic in the making of interactive audio appli-
cations. The intention with the current study is to stay
true to the same design goals while introducing more
complex and flexible parameter mapping solutions. It
shares the logical approach to parameter mappings with
graphical environments like Pure Data, it is readable
like a text based language as SuperCollider, and it uses

1 https://github.com/hanslindetorp/WebAudioXML/
wiki/Parameter-Mapping

a spreadsheet-like approach for data bindings to make
mappings more explicit. There are different approaches to
the use of XML: One is to use elements for encapsulating
all data and another is to use elements for the hierarchical
structure but store the data using attributes. In this study
we want to stay true to the path set out in WebAudioXML
where the audio nodes are represented by elements and
their parameter values are specified using attributes. This
arguably makes the code more compact and easy to write
even if attributes are less flexible than elements. We
are, for the continued development process, interested in
testing how snippets of code and logic for parameter map-
ping can blend with the current hierarchical structure for
audio routing in WebAudioXML. Before building a proto-
type we set out a few design rules to steer the development:

Platform:
The syntax shall integrate with and become a part of
WebAudioXML

Language:
The syntax shall use XML to declare variables and
mappings using elements and attributes

Flexibility:
The syntax shall allow for flexible mapping and conversion
of values

Readability:
The syntax shall be readable and comprehensible with
focus on hierarchical structures and dependencies

1.4 The spreadsheet approach

An important influence for the current project is the ap-
proach used in spreadsheet applications like Excel. We
value the affordances of spreadsheet applications for non-
programmers to create logic and visual representation of
data. The syntax proposed in this study borrows from that
approach by offering XML elements and attributes to de-
fine variables and formulas in a similar way to data and
formulas in a spreadsheet application. The difference is
that the result of the calculation causes an audio parameter
to change rather than a visual graph to update, see Fig. 1
and Listing. 1.

Figure 1. Spreadsheet formula and graph.

The example in Listing 1 shows how the new syntax pro-
posed in this study uses XML elements and attributes to
emulate a behaviour similar to the example from Excel in



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

354

Fig. 1. The syntax is explained to a greater detail in Section
2.

<var name="var1" value="0.5"></var>
<var name="var2" value="1.0"></var>
<var name="avg" value="($var1+$var2)/2"></var>

<OscillatorNode>
<frequency
value="$avg"
convert="Math.pow(10,x*3)">

</frequency>
</OscillatorNode>

Listing 1. Code example for the Spreadsheet approach.

2. DEVELOPMENT PROCESS

Our aim with this study, in addition to the software de-
velopment, is to gain more knowledge about strengths and
weaknesses of the proposed syntax. We defined three cases
as a starting point for the new specification and used an
annotated portfolio [20] to collect insights from the design
and development process. We also invited three experts
from the field of sound and music computing to discuss the
concept during the development process. Two participants
are PhD students and one is a Postdoc, and all have ex-
tensive experience of using audio programming languages
like Pure Data and SuperCollider in their artistic profes-
sions, and also in teaching the platforms at universities.
They were interviewed individually and gave their consent
for us to video record, analyse and use the results for re-
search purposes. The interviews were between 30 and 60
minutes long where the participants contributed with both
personal reflections and answers to prepared questions re-
garding clarity, strengths, weaknesses, potential, and chal-
lenges for the proposed syntax.

The three cases used as a starting point for this study
spring from artistic sonification ideas formulated in our
current student projects and act as a requirement specifi-
cation for the syntax development. Below is a description
of the three cases including the proposed syntax to solve
them.

2.1 Case 1 – The Meta Knob: One-to-Many

In the first case, we identified a need for a complex audio
configuration to be controlled on a meta level in a simi-
lar way as synthesizers can have a single knob for con-
trolling multiple parameters at the same time. This makes
it straightforward to build instrument plugins that can be
used in sonification applications by developers without
knowledge of how the instrument operates on a low-level.
The first case requests variable objects anywhere in the
XML-structure that can be read by multiple audio parame-
ters on a lower level, see Fig. 2.

The <var>-element is similar to a cell in a spreadsheet-
application. It can contain anything from simple data to
complex formulas and mapping definitions for calculat-
ing and converting its value according to external variables
(e.g. user interaction data) or other <var>-elements.

In Listing 2, the <var>-element named “param” contin-
uously follows “$relX” which is a global variable referring

frequency frequency * 2

$relX

in

out

2000

20
0 100

$param

OSC filter

Figure 2. Systematic sketch for Case 1 with one-to-many
mapping.

to the current horizontal position of the pointer. “$relX” is
mapped exponentially from a value between 0 and 100 to
a value between 20 and 2000 before it is stored in the vari-
able object “$param”. Finally, the Oscillator and Biquad-
Filter nodes continuously update their frequency using the
value of “$param” where the filter follows the same fre-
quency value as the oscillator but one octave above.

<Chain>
<var name="param"
value="$relX"
mapIn="0, 100"
mapOut="20, 2000"
curve="exp">

</var>

<OscillatorNode frequency="$param">
</OscillatorNode>

<BiquadFilterNode frequency="$param*2">
</BiquadFilterNode>

</Chain>

Listing 2. Code example for Case 1 (see Fig. 2).

2.2 Case 2 – The Flexible Scale: Many-to-One

A common strategy for mapping values to frequencies is
to quantize them to a musical scale, which is demonstrated
in the second case. In traditional music though, the scale
is rarely used without variation, and alterations typically
occur depending on the direction of a phrase or the cur-
rent harmony in the arrangement. The second case thus
requests a solution where the state of multiple variables af-
fect the frequency of an oscillator.

This case requires a new feature where an attribute of
a <var>-element can follow the value of another <var>-
element or external variable. Listing 3 illustrates how the
pointer direction on the X-axis (“$dirX”) is mapped to the
<var>-element “$third” causing it to have a value of either
3 or 4. This value is used in the <var>-element “$pitch”
and refers to the number of semitones above the root note
specified by the attribute “steps”. The variable “$pitch” is
here continuously following the pointers position on the X-
axis (“$relX”) and is mapped from values between 0 and



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

355

osc frequency

$relX

in

out

72

36
0 100

0

MIDI -> Frequency

$dirX

mapin -> mapout

steps

convert

2 5 7 9 113 
or 
4

12

$pitch$third

in

out

4

3
-1 +1

Figure 3. Systematic sketch for Case 2 with many-to-one
mapping.

100 to a value between 36 to 72. After being quantized to
a scale step (dynamically updated by “$dirX”), it is con-
verted to a frequency in Hertz before the value is used to
set the frequency of the OscillatorNode.
<var name="third" value="$dirX"
mapin="-1, 1" mapout="3, 4">

</var>

<var name="pitch" value="$relX"
mapin="0, 100" mapout="36, 72"
steps="0, 2, $third, 5, 7, 8, 10, 12"
convert="MIDI->frequency">

</var>

<OscillatorNode type="sine" frequency="$pitch">
</OscillatorNode>

Listing 3. Code example for Case 2 (see Fig. 3).

2.3 Case 3 – Complex Interpolation

In the third case we look for a non-limited way of defining
interpolation curves for mapping an input value to a desti-
nation value. The metaphor we apply is the “automation”-
feature typically found Digital Audio Workstations and
graphical animation tools. Typically, this feature would
map a time position to an audio or graphical parameter
value using defined interpolation curves, but it could as
well be used to describe any non-linear relationship be-
tween a variable and an audio parameter. To make this pos-
sible, the third case requires a syntax which supports mul-
tiple values for incoming values, outgoing values, curve
shapes, steps and conversion functions.

While this case opens up for very complex mapping con-
figurations, the addition to the WebAudioXML is fairly
simple. The new feature supports multiple values for all
attributes of a <var>-element or an audio parameter, see
Listing 4 including “mapin”, “mapout”, “curve”, “con-
vert” and “steps”. They can all be specified as one or
several comma separated values with a few exceptions
and restrictions: There has to be at least two “mapin”-
values and typically the same number of “mapout”-values.
More “mapout”-values will be ignored and fewer will be
repeated. The number of “curve” and “convert”-values
should be either a single or one less than the number of
“mapin”-values to specify the interpolation between two
values. If there are fewer “curve” or “convert”-value than

$time

in

out

0

-40
0s      10s      20s      30s      40s      50s     60s

gain

-30

-20

-10

dB->power

GainNode

Figure 4. Systematic sketch for Case 3 with interpolation
curves.

“mapin”-values, they will be repeated and used for multi-
ple interpolation ranges.

In addition to presets such as “lin” and “exp”, curves can
also be specified as a mathematical expression in javascript
like Math.pow(x, 2) where “x” is the mapped value
scaled to a range of 0–1. There is also an extensive list with
preset curves 2 with more intricate shapes including “ea-
seIn”, “easeInOut”, “easeInOutQuad” etc. inherited from
animation tools. These presets typically mimic behaviors
in the physical world and can make a parameter interpo-
late from a linear variable in a way that e.g. accelerates
in the lower part and retards in the upper. 3 While the
curve-attribute affects the value before it is mapped to the
mapout-value, the “convert”-attribute is the last step before
the value affects the audio parameter. It can, similar to
the curve-attribute take any javascript-expression to con-
vert the value between different domains and also offers
presets like “MIDI->frequency” and “dB->power”.

The following code illustrates how the gain parameter can
be controlled over time using different values and interpo-
lation curves. The “$time”-variable refers to a user vari-
able controlled from an external timer or slider using the
javascript API webAudioXML.setVariable(“time”,

x).
<GainNode>
<gain value="$time"

mapin="0, 10, 20, 30, 40, 50, 60"
mapout="-40, -30, 30, 0, -30, -30, -40"
curve="easeInOut,lin,lin,easeOut,lin,exp"
convert="dB->power">

</gain>
</GainNode>

Listing 4. Code example for Case 3 (see Fig. 4).

3. RESULTS AND IMPLICATIONS

We present the result organized according to the design
goals mentioned in Section 1.3. We also point out pos-
sible implications for further development related to each
design goal.

2 https://github.com/hanslindetorp/WebAudioXML/
wiki/Parameter-Mapping

3 https://easings.net/



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

356

3.1 Platform

The syntax shall integrate with and becoming a part
of WebAudioXML.

The first proper tests of the new features was success-
ful and proved the new syntax to be robust and straight-
forward to use with the WebAudioXML parser. The par-
ticipants responded very positively to the potential on how
Web Audio in general and WebAudioXML in particular
can make audio applications easy accessible. One of them
expressed that “it passes the grandma-test” when he real-
ized that he could send someone a URL to a project and
that it would run on any device without any installations.
They also pointed out that the low entry style without the
need for external classes makes it attractive for didactic and
pedagogical purposes.

3.2 Language

The syntax shall use XML to declare variables and
mappings using elements and attributes.

The first observation is that the new features merged into
the previous syntax easily, while the implementation of
them into the WebAudioXML-parser exposed some lim-
itations and mistakes in the code design. The participants’
response to the choice of XML for programming audio ap-
plications varied from being slightly surprised to heavily
questioning. One participant objected to the use of XML
for anything else but storing data and argued that the lan-
guage loses its main purpose (“the only thing XML is good
for”) when the data is written using attributes with long
strings rather than using the basic element tags. On the
other hand, they agreed on that the hierarchical structure in
XML is easy to understand as long as the configuration is
limited to the constrains it provides.

The critique is interesting and raises the question about
who the potential audience for a programming language
is. WebAudioXML is primarily targeted towards web de-
velopers and should by design appeal more to that audience
than to experts from the sound and music community. The
critique regarding using XML for anything else than stor-
ing data is important and questions where the line should
be drawn between storing data and logic. In this study we
have explored the potential of implementing parts of the
logic into the audio configuration model and to use the
same language and file format for both. It promotes the
building of reusable blocks in a similar way to that HTML
has taken with custom elements but might be further dis-
cussed in terms of usability. The discussion also points
towards a bigger question about what an application is and
how it should be built. Similar to a spreadsheet application,
WebAudioXML might not be the platform for a commer-
cial products but rather offers new ways for prototyping
ideas.

3.3 Flexibility

The syntax shall allow for flexible mapping and
conversion of values.

All challenges from the three cases were solved and tested
successfully. The new features also contributed to an up-
date of old features like the possibility to write formulas
directly into an attribute of an audio-element. The par-
ticipants recognized several similarities with the proposed
solution for parameter mapping to objects in other audio
programming environments. UGens in SuperCollider and
abstractions in PureData both offer similar functionality
with inlets, outlets and a way of processing the value in-
between. The experts perceived the platform as relatively
limited in terms of possibilities and suggested a way of ex-
tending the format with a plugin-structure for adding any
user-created audio object into the configuration.

Another idea that came up as a result of discussing flexi-
bility was to let small blocks of data (e.g., a series of num-
bers specifying a musical scale) to be stored in a separate
file. This would arguably make the code easier to read
and the data more reusable and might work extra well for
Case 3 above where the amount of data potentially could
grow large. One of the participants also mentioned sup-
port for the Open Sound Control protocol [21] to make the
platform even more flexible.

3.4 Readability

The syntax shall be readable and comprehensible
with focus on hierarchical structures and dependen-
cies.

The participants were in general very appreciative regard-
ing the accessibility and the descriptive language in We-
bAudioXML. They pointed out that the proposed naming
conventions and coding strategies were clear and easy to
understand. This being said, they were more skeptical re-
garding the use of long strings to express complex map-
pings. They argued that it shared similarities with old mu-
sic programming languages like CSound and that the long
strings used in attributes might be a bit scary for many de-
velopers. They also asked for contextual documentation as
they would expect from a coding environment. While they
expressed appreciation for the clear, hierarchical structure
and relations between objects, parameters, and variables,
they also pointed out the potential problem when audio sig-
nals and parameter mappings are set to break those struc-
tures and suggested a graphical interface to get a better
overview.

We find the discussion about a graphical interface espe-
cially intriguing; it is easy to lose flexibility in favor for
the usability a graphical interface can offer. One possible
compromise that both stays true to the text-based concept
of XML and offers contextual guidance in some XML ed-
itors is the use of a well-designed XSD-file. 4 One feature
that was discussed by all participants was case 3 and the
complex relation between multiple input and output val-
ues. Even if they thought the syntax was clear, all of them
mentioned that the feature was hard to visualize without a
graphical tool available.

4 https://www.w3.org/XML/Schema



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

357

3.5 Other observations

The annotated portfolio from the development process also
contributes to important insights. It was obvious that the
addition of the new features to the parser challenged sev-
eral design decisions made in the beginning of the WebAu-
dioXML development. Some of them were updated during
this process but there is still a need for a few new class def-
initions. The parser also contains some non-recommended
solutions like eval(expression) that work well for a
prototype but is a potential security risk if put into produc-
tion. Furthermore, the “value”-attribute replaced the old
“follow”-attribute. Its approach with any type of expres-
sion from a single target variable to a complex mathemat-
ical expression containing multiple variables proved to be
a more flexible way to receive data.

One feature we struggled with during the implementation
was the sequence of the mapping steps inside a variable
object. Even if the attributes themselves can be defined in
any order in the XML-element, we decided to make them
always operate in the following order, and if any attribute
is missing, that step will be bypassed.

value->mapin->curve->mapout->steps->convert

We also got new ideas for further development. One is
to implement the structure used in case 2 for all attributes
in a variable object, including mapout, curve and values in
a convert expression. Another is to add built-in features
for statistical evaluation in a variable and map the data ac-
cording to the result. This could e.g. make it easy to send
peak values to an audio parameter when the incoming data
is near the confidence limits of a normally distributed data-
set.

Finally, we think that it would be a great addition if the
variable object could have built-in support for derivative
and second order derivative which would be useful for ap-
plications aiming for physical interaction.

4. CONCLUSION AND FUTURE DIRECTION

The proposed syntax for audio parameter mapping has
been designed, discussed and implemented into the lat-
est version of WebAudioXML. The participating experts
pointed at several promising features of the development.
First, they confirm that the proposed solutions match the
design goals that were set out. Second, they confirm the di-
dactic and pedagogical value and potential of the WebAu-
dioXML framework. Third, we noticed that attitudes to-
wards XML would influence their immediate understand-
ing, both positively and negatively. It is quite clear that
the experts don’t regard themselves as primary users of the
framework, which is both expected and intentional. As
such, the ambition of creating this system and its scope
have been met.

We were particularly encouraged by the participants to be
consequent in naming variables and to find ways for con-
textual help with syntax explanation and suggestions. The
suggested need for and solution to case 3 was generally
more difficult for them to grasp than cases 1 and 2, and

would require a graphical interface to become useful. It
was stated that syntax and concepts borrowed from other
languages were easy to understand and that the concept of
external files with top-level parameters exposed to the par-
ent object was an expected feature relating to object ori-
ented programming in general and “abstractions” in Pure
Data in particular.

Forthcoming studies involving students in our courses
will target parameter mappings in particular. Then, both
the pedagogical potential and the syntax itself will be sys-
tematically evaluated with regards to what the students
choose to create and how they will use WebAudioXML
to accomplish their artistic goals.

Acknowledgments

Thanks to the participants for contributing with highly val-
ued insights and feedback.

5. REFERENCES

[1] B. J. Grond F., “Chapter 15: Parameter mapping soni-
fication,” in The Sonification Handbook, 2011, p. 366.

[2] M. A. Nees and B. N. Walker, “Listener, task, and au-
ditory graph: Toward a conceptual model of auditory
graph comprehension,” in International Conference on
Auditory Display. Georgia Institute of Technology,
2007.

[3] J. G. Neuhoff, J. Wayand, and G. Kramer, “Pitch and
loudness interact in auditory displays: Can the data get
lost in the map?” Journal of Experimental Psychology:
Applied, vol. 8, no. 1, p. 17, 2002.

[4] J. Rohrhuber, “S–introducing sonification variables,”
in In Proceedings of the Supercollider Symposium,
2010.

[5] B. Vercoe, Csound, 1985 (accessed May 28, 2021).
[Online]. Available: https://csound.com/

[6] M. Puckette, “Max at seventeen,” Computer Music
Journal, vol. 26, no. 4, pp. 31–43, 2002.

[7] M. S. Puckette, “Pure data,” in Proceedings: Inter-
national Computer Music Conference 1997, Thessa-
loniki, Hellas, 25-30 september 1997. The Interna-
tional Computer Music Association, 1997, pp. 224–
227.

[8] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[9] G. Wang, P. R. Cook et al., “Chuck: A concurrent, on-
the-fly, audio programming language,” in ICMC, 2003.

[10] R. M. Candey, A. M. Schertenleib, and
W. Diaz Merced, “Xsonify sonification tool for
space physics,” in International Conference on Au-
ditory Display. Georgia Institute of Technology,
2006.



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

358

[11] S. Pauletto and A. Hunt, “A toolkit for interactive soni-
fication,” in International Conference on Auditory Dis-
play. Georgia Institute of Technology, 2004.

[12] A. Schoon and F. Dombois, “Sonification in music,” in
International Conference on Auditory Display. Geor-
gia Institute of Technology, 2009.

[13] D. Worrall, M. Bylstra, S. Barrass, and R. Dean,
“Sonipy: The design of an extendable software frame-
work for sonification research and auditory display,” in
Proc. ICAD, 2007.

[14] H. Lindetorp and K. Falkenberg, “WebAudioXML:
Proposing a new standard for structuring web audio,”
in Sound and Music Computing Conference. Zenodo,
2020 (accessed May 28, 2021), pp. 25–31, qC
20200722. [Online]. Available: https://zenodo.org/
record/3898655#.X3HgbC0zLa4

[15] H. Lindetorp, iMusic: JavaScript framework for inter-
active music, 2016 (accessed May 28, 2021). [Online].
Available: https://github.com/hanslindetorp/imusic

[16] ——, WebAudioXML Sonification Toolkit, 2020 (ac-
cessed May 28, 2021). [Online]. Available:
https://github.com/hanslindetorp/SonificationToolkit

[17] K. F. Hansen, R. Bresin, A. Holzapfel, S. Pauletto,
T. Gulz, H. Lindetorp, O. Misgeld, and M. Sköld, “Stu-
dent involvement in sound and music research: Current
practices at KTH and KMH,” in Proceedings of the first
Nordic SMC. Zenodo, 2019, pp. 36–41.

[18] H. Lindetorp, “Immersive and interactive mu-
sic for everyone,” in Proceedings of the
Nordic Sound and Music Computing Conference 2019
(NSMC2019) and the Interactive Sonification Work-
shop 2019 (ISON2019) :, 2019, pp. 16–20. [On-
line]. Available: http://smcsweden.se/proceedings/
NordicSMC_ISon_2019_Proceedings.pdf

[19] P. Adenot and R. Toy, Web Audio API: W3C Candidate
Recommendation, 18 September 2018, 2018 (accessed
May 28, 2021). [Online]. Available: https://www.w3.
org/TR/2018/CR-webaudio-20180918/

[20] B. Gaver and J. Bowers, “Annotated portfolios,” inter-
actions, vol. 19, no. 4, pp. 40–49, 2012.

[21] A. Freed, “Open sound control: A new protocol for
communicating with sound synthesizers,” in Interna-
tional Computer Music Conference (ICMC), 1997.


