There is a newer version of this record available.

Journal article Open Access

vrAIn: Deep Learning based Orchestration for Computing and Radio Resources in vRANs

Jose A. Ayala-Romero; Andres Garcia-Saavedra; Marco Gramaglia; Xavier Costa-Perez; Albert Banchs; Juan J. Alcaraz


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">RAN virtualization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">resource management</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">machine learning</subfield>
  </datafield>
  <controlfield tag="005">20211201105020.0</controlfield>
  <controlfield tag="001">5037024</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NEC Laboratories Europe GmbH</subfield>
    <subfield code="0">(orcid)0000-0003-2005-2222</subfield>
    <subfield code="a">Andres Garcia-Saavedra</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universidad Carlos III de Madrid</subfield>
    <subfield code="a">Marco Gramaglia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NEC Laboratories Europe GmbH</subfield>
    <subfield code="a">Xavier Costa-Perez</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universidad Carlos III de Madrid &amp; IMDEA Networks</subfield>
    <subfield code="a">Albert Banchs</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universidad Politecnica de Cartagena</subfield>
    <subfield code="a">Juan J. Alcaraz</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">7256930</subfield>
    <subfield code="z">md5:3150e50b07cdb3149e92613df8e7ce7c</subfield>
    <subfield code="u">https://zenodo.org/record/5037024/files/2021_ayala_tmc_vrain.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-01-15</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020daemon</subfield>
    <subfield code="o">oai:zenodo.org:5037024</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">IEEE Transactions on Mobile Computing</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Trinity College Dublin</subfield>
    <subfield code="a">Jose A. Ayala-Romero</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">vrAIn: Deep Learning based Orchestration for Computing and Radio Resources in vRANs</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020daemon</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">101017109</subfield>
    <subfield code="a">Network intelligence for aDAptive and sElf-Learning MObile Networks</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">856709</subfield>
    <subfield code="a">5G-enabled Growth in Vertical Industries</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">856950</subfield>
    <subfield code="a">SmarT mObility, media and e-health for toURists and citizenS</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The virtualization of radio access networks (vRAN) is the last milestone in the NFV revolution. However, the complex dependencies between computing and radio resources make vRAN resource control particularly daunting. We present vrAIn, a dynamic resource orchestrator for vRANs based on deep reinforcement learning. First, we use an autoencoder to project high-dimensional context data (traffic and channel quality patterns) into a latent representation. Then, we use a deep deterministic policy gradient (DDPG) algorithm based on an actor-critic neural network structure and a classifier to map contexts into resource control decisions. We have evaluated vrAIn experimentally, using an open-source LTE stack over different platforms, and via simulations over a production RAN. Our results show that: (i) vrAIn provides savings in computing capacity of up to 30% over CPU-agnostic methods; (ii) it improves the probability of meeting QoS targets by 25% over static policies; (iii) upon computing capacity under-provisioning, vrAIn improves throughput by 25% over state-of-the-art schemes; and (iv) it performs close to an optimal offline oracle. To our knowledge, this is the first work that thoroughly studies the computational behavior of vRANs and the first approach to a model-free solution that does not need to assume any particular platform or context.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isPreviousVersionOf</subfield>
    <subfield code="a">10.1109/TMC.2020.3043100</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5037023</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5037024</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
110
96
views
downloads
All versions This version
Views 11044
Downloads 9640
Data volume 697.9 MB290.3 MB
Unique views 9336
Unique downloads 8736

Share

Cite as