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Abstract 
 

 

It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor 

cell interactions with the tumor microenvironment (TME) is crucial in epithelial-mesenchymal 

transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells 

and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting 

immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor 
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associated macrophages (TAMs) are main immune cell types which further enhance chronic 

inflammation. Chronic inflammation nurture tumor-initiating/cancer stem-like cells (CSCs) induce 

both EMT and MDR leading to tumor relapses. Pro-thrombotic microenvironment created by 

inflammatory cytokines and chemokines from TAMs, MDSCs and CAFs is also involved in EMT 

and MDR. MDSCs are the most common mediators of immunosuppression and are also involved 

in resistance to targeted therapies, e.g. BRAF inhibitors and oncolytic viruses-based therapies. 

Expansion of both cancer and stroma cells causes hypoxia by hypoxia-inducible transcription 

factors (e.g. HIF-1α) resulting in drug resistance. TME factors induce the expression of 

transcriptional EMT factors, MDR and metabolic adaptation of cancer cells. Promoters of several 

ATP-binding cassette (ABC) transporter genes contain binding sites for canonical EMT 

transcription factors, e.g. ZEB, TWIST and SNAIL. Changes in glycolysis, oxidative 

phosphorylation and autophagy during EMT also promote MDR. Conclusively, EMT signaling 

simultaneously increases MDR.   

Owing to the multifactorial nature of MDR, targeting one mechanism seems to be non-sufficient 

to overcome resistance. Targeting inflammatory processes by immune modulatory compounds 

such as mTOR inhibitors, demethylating agents, low-dosed histone deacetylase inhibitors may 

decrease MDR. Targeting EMT and metabolic adaptation by small molecular inhibitors might also 

reverse MDR. In this review, we summarize evidence for TME components as causative factors of 

EMT and anticancer drug resistance.  

 

Abbreviations:5-FU, 5-fluorouracil; ABC, ATP-binding cassette; ABCA2/3, ABC transporter, 

subfamily A 2/3; ABCB1, ABC transporter, subfamily B 1 (MDR1, P-gp); ABCC1/4/5/10, ABC 

transporter, subfamily C 1/4/5/10; AKT, Akt serine/threonine kinase; AMPK, AMP-activated 

protein kinase; AXIN 2, axin 1-like (or axis inhibition protein 2); BCNU, bis-chlorethyl-nitroso-

urea (carmustin); BCRP, breast cancer resistance protein; BMP2, bone morphogenetic protein 2; 

BRAF, B-Raf proto-oncogene, serine/threonine kinase; BSO, buthionine sulfoximine; CAF, 

cancer-associated fibroblast; Cav-1/2, caveolin-1/2; CCL, chemokine (C-C motif) ligand; 

CCL1/2/5/11/15, C-C motif chemokine 1/2/511/15; CCR1, CC chemokine Receptor 1; CD8, 

cluster of differentiation 8; cDDP, cisplatin; CHK1, checkpoint kinase 1; CIC, cancer-initiating 

cell; CNT3, concentrative nucleoside transporter; COX2, cyclooxygenase 2; CRC, colorectal 

cancer; CSC, cancer stem-like cell; CSF-1R, colony stimulating factor 1 receptor, CXCL1, 
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chemokine (C-X-C motif) ligand 1; CXCR4/14, C-X-C chemokine receptor type 4/14; DM, 

double minute; EGF, epidermal growth factor; EGFL7, epidermal growth factor-like domain 7; 

EGFR, EGF receptor; EMT, epithelial-mesenchymal transition; EMT-TFs, EMT transcription 

factors; ENT1, equilibrative nucleoside transporter; ERK, extracellular regulated protein kinase; 

ETC1, MYB-like transcription factor; FGF, fibroblast growth factor; FOXC2/F2/M1, forkhead 

box transcription factors C2/F2/M1; G-CSF, granulocyte colony-stimulating factor; GLUT1; 

glucose transporter 1; GPER, G protein-coupled estrogen receptor; Hbx, hepatitis B virus X 

protein; HDM2/HDMX, aliases for MDM2, mouse double minute 2 homologue; HES1; hairy and 

enhancer of split 1; HGF, hepatocyte growth factor; HIF-1α, hypoxia-induced factor 1 alpha; 

HK2, hexokinase 2; HMBG1, extracellular high mobility group box 1; HNSCC, head and neck 

squamous cell carcinoma; HPOC, hybrid protein oxygen carrier; HSR, homogeneously stained 

region; IFN-β, interferon beta; IL-6/10/17A, interleukin 6/10/17A; IGF, insulin-like growth 

factor; JNK, c-jun N-terminal kinase; KLF5/8, Krüppel-like factor 5/8; KRAS, Kirsten Ras proto-

oncogene; MAPK, mitogen-activated protein kinase; MCP1, monocyte chemotactic protein-1; M-

CSF, macrophage colony stimulating factor; MDR, multidrug resistance; MDR1, multidrug 

resistance gene 1; MDSCs, myeloid-derived suppressor cells; MEK, mitogen-activated kinase 

kinase; MFG-E8, milk fat globule-epidermal growth factor 8 protein; miRNA/miR, microRNA; 

M-MDSC, monocytic MDSC; MRP1, multidrug resistance-related protein 1; mTOR, mammalian 

target of rapamycin; MYC; Myc proto-oncogene; basic helix-loop-helix transcription factor; 

NMSCs, human mesenchymal stem/stromal cells; NF-κB, nuclear factor kappa B cells; NOTCH, 

Notch homologue, translocation-associated (Drosophila); NOX1, NADPH oxidase 1; NSCLC, 

non-small cell lung cancer; oxidative phsphorylation (OXPHOS), oxidative phosphorylation 

protein; PAK1, p21 (RAC1) activated kinase 1; PDAC, pancreatic ductal adenocarcinoma; 

PDCD4, programmed cell death 4; PDGF, platelet-derived growth factor; PGE2, prostaglandin 

E2; P-gp, P-glycoprotein; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PMN-MDSC 

polymorphonuclear MDSC; pS6, phospho ribosomal protein S6; pSTAT3, phospho-signal 

transducer and activator of transcription 3; RNAi, RNA interference; RTK, receptor tyrosine 

kinase; SASP, senescence-associated secretory phenotype; SDF-1α, stromal cell-derived factor-1 

alpha; shRNA, small hairpin RNA; siRNA, small interfering RNA; SIRT1, sirtuin 1; SLUG, 

Snail 2 zinc finger transcription factor; SMAD, human homology of Mad and Sma; SNAIL1, 

Snail 1 zinc finger transcription factor; SOX2, Sry-related high mobility group (HMG) box 2; 
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STAT1/3, signal transducer and activator of transcription 1/3; TAM, tumor-associated 

macrophages; TGF-β, tumor growth factor β; TIAM, T-lymphoma invasion and metastasis-

inducing protein 1; TKI, tyrosine kinase inhibitor; TME, tumor microenviroment; TNBC, triple 

negative breast cancer; TNF-α, tumor necrosis factor α; TRAIL, tumour necrosis factor (TNF)-α-

related apoptosis-inducing ligand; TWIST1, class A basic helix-loop-helix transcription factor 1; 

UCB, urothelial cancer of the bladder; VEGF, vascular endothelial growth factor; VEGFR, 

VEGF receptor; WNT1, wingless Int-1 signal transducer; ZEB1, zinc finger E-box binding 

homeobox 1. 

Key words: Chemotherapy; Hypoxia; Inflammation; Microenvironment, Multidrug resistance; 

Small molecules; Targeted therapy,  
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1 Introduction 

Activation of the epithelial-mesenchymal transition (EMT) program in cancer cells results in 

increased invasive and metastatic properties as well as multidrug resistance (MDR). Factors 

provided by the tumor microenvironment (TME) play a major role in EMT, metastasis and MDR 

phenotype. MDR due to EMT and metastasis could be caused by (1) transmembrane pumps 

belonging to the ATP-binding cassette (ABC transporter) family (2) mechanisms independent of 

ABC transporters. Owing to the multifactorial nature of MDR, targeting one mechanism is not 

sufficient to overcome the resistance (Assaraf et al., 2019; Cui et al., 2018; Gacche and Assaraf, 

2018; Gonen and Assaraf, 2012; Li et al., 2016b; Livney and Assaraf, 2013; Milman et al., 2019; 

Niewerth et al., 2015; Shapira et al., 2011; Vasconcelos et al., 2019; Wijdeven et al., 2016; 

Zhitomirsky and Assaraf, 2016; Zhong and Virshup, 2020). Although ABC transporters have 

been extensively reported as a clinically relevant mechanism of MDR (Assaraf, 2006; Gottesman 

et al., 2002; Li et al., 2016b; Robey et al., 2007), the effectiveness of combination therapy with 

ABC transporter inhibitors in clinical trials were limited (Linn et al., 1995; Middleton et al., 

2013; Weroha et al., 2011). Hence other drug-resistance mechanisms also have to be taken into  

account to overcome therapeutic failure in cancer patients. There is mounting evidence 

demonstrating a significant role of factors originating from tumor microenviroment (TME) for 

both responsiveness or resistance to various structurally and mechanistically unrelated anticancer 

drugs. The persistent production of inflammatory factors has been reported in TME-mediated 

EMT, metastasis and chemotherapy resistance (Acharyya et al., 2012; Bunt et al., 2006; 

Hartmann et al., 2005) (Gao et al., 2020; Krchniakova et al., 2020; Shaked, 2019). This may be 

due to inflammation-induced expansion and recruitment of macrophages and CD11b+/Gr-1+ 

myeloid-derived suppressor cells (MDSCs) (Szebeni et al., 2017; Xu et al., 2017) as well cancer-
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associated fibroblasts (CAFs) (Bharti et al., 2016). Specifically, inflammatory cytokines such as 

tumor growth factor β (TGF-β) and interleukin 6 (IL-6) as well as chemokines that directly or 

indirectly induce EMT and metastasis are also involved in MDR (Bharti et al., 2016; Ghandadi 

and Sahebkar, 2016).  

In the first part of the review, we therefore discuss the role of tumor-associated macrophages 

(TAMs), MDSCs and CAFs on MDR. In the second part of the review, we discuss the mechanisms 

of EMT-related drug resistance at the cellular and transcriptional level. We summarize the findings 

on the transcriptional factors and cell metabolism changes that are causative of EMT and which 

sustain the MDR phenotype in cancer cells. Finally, we focus on the indirect mechanisms of 

hypoxia-induced MDR and the relevance of ABC efflux transporters in this context. 

 

2 Tumor-associated macrophages  (Shapira et al., 2011) 

2.1 Function of tumor-associated macophages 

TAMs are derived from circulating monocytes recruited within the TME by chemokines such as 

(C–C motif) ligand-2 (CCL-2), CCL-3, CCL-4, CCL-5, CCL-7, CCL-8, CXCL-12 and cytokines, 

including vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), 

macrophage colony-stimulating factor (M-CSF), and interleukin (IL)-10 (Allavena et al., 2008; 

Cassetta et al., 2019; Chen et al., 2019; Condeelis and Pollard, 2006; Dudas et al., 2020; Li et al., 

2020; Li et al., 2019; Lin et al., 2019; Mantovani et al., 2004; Murdoch et al., 2008; Sarode et al., 

2020; Yamaguchi and Perkins, 2020; Zhang et al., 2020; Zins and Abraham, 2020). Macrophages 

are actively recruited to the TME from the bone marrow (Dalton et al., 2017). TAMs are abundant 

components of the TME and are highly plastic in nature. Macrophage phenotypes present in the 

TME represent a continuum and cannot be satisfactorily captured with the M1–M2 dichotomy, as 

previously reviewed in detail (Ginhoux et al., 2016; Hsieh and Wang, 2018). Similarly, the tumor-

promoting role of TAMs has been extensively described (De Palma and Lewis, 2013; Li et al., 

2020; Lin et al., 2019; Ruffell et al., 2012; Sarode et al., 2020; Zins and Abraham, 2020). Emerging 

evidence demonstrates that TAMs are also important components of microenvironment-related 

drug resistance. 

Resistance to chemotherapy. Platinum-containing chemotherapy induced differentiation of 

monocytes into M2-like macrophages by enhancing the secretion of IL-6 and prostaglandin E2 

(PGE2) from cervical and ovarian cancer cell lines, thus indirectly inducing chemoresistance 
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(Dijkgraaf et al., 2013). Accordingly, the prevention of TAM infiltration by an antibody against 

placental growth factor enhanced the efficacy of chemotherapy (Fischer et al., 2007).  

Resistance to targeted therapies and immunotherapy. Receptor tyrosine kinase inhibitor (TKI) 

sorafenib induces recruitment of TAMs, which leads to drug resistance. Depletion of TAMs by 

zoledronic acid significantly enhanced the anti-tumor effect of sorafenib (Zhang et al., 2010). The 

macrophage levels within the tumor tissue increased with the emergence of resistance towards anti-

VEGF therapy and depletion of macrophages restored sensitivity of tumors that were initially 

resistant to anti-VEGF therapy (Dalton et al., 2017). Similarly, TAM depletion restored T cell 

migration and infiltration into tumor islets. It also improved the efficacy of anti–PD-1 

immunotherapy demonstrating that TAMs are responsible for intrinsic resistance to 

immunotherapy (Peranzoni et al., 2018). 

 

2.2 Mechanisms of TAM-related drug resistance 

Role of IL-6. Several cytokines, chemokines and growth factors secreted by TAMs are likely to 

mediate MDR. The pro-inflammatory cytokine IL-6 was secreted by TAMs (Xu et al., 2014) and 

induced signal transducer and activator of transcription 3 (STAT3) activation in cancer cells, 

leading to therapeutic resistance (Borsellino et al., 1995; Gritsko et al., 2006; Wu et al., 2013) 

(Diesendruck and Benhar, 2017; Kon and Benhar, 2019; Yin et al., 2019; Yin et al., 2017). IL-6 

contributed markedly to poor therapeutic outcome, tumor relapse and aggressive tumor growth 

(Chang et al., 2013; Ghandadi and Sahebkar, 2016; Grivennikov and Karin, 2008; Kumari et al., 

2016; Wu et al., 2013). Specifically, IL-6 induced immunosuppression in patients with advanced 

cancers (Bromberg and Wang, 2009; Grivennikov et al., 2010) and conferred therapeutic resistance 

in patients with prostate cancer (Culig and Puhr, 2012; Wu et al., 2013). IL-6-induced resistance 

was also due to increased cancer stem cell populations, which are mainly responsible for tumor 

refractoriness (Bharti et al., 2016). IL-6 was a potent inducer of resistance against TKIs directed 

against epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) (Yao et 

al., 2010) due to STAT3 activation (Yu et al., 2014; Zhong et al., 1994). Similarly, stromal cell-

derived factor 1α (SDF-1α)-induced IL-6 upregulation mediated chemoresistance and apoptosis in 

multiple myeloma cells (Liu et al., 2019b). A neutralizing antibody for IL-6 increased the 

effectiveness of chemotherapy and gefitinib in various tumor models, including trastuzumab-

resistant tumors (Zhong et al., 2016).  

Jo
ur

na
l P

re
-p

ro
of



8 

 

 

TAMs and cancer stem cells. Heterogeneous signals from the TME nurture tumor-

initiating/cancer stem-like cells (CSCs), which are responsible for therapy resistance and tumor 

relapses  (Chen et al., 2018; Colak and Medema, 2014; Paldino et al., 2014; Rycaj and Tang, 2014; 

Wang et al., 2014) (Assaraf et al., 2019; Leonetti et al., 2019b). TGF-β is one of the master players 

of stemness and is highly expressed in TAMs (Chen et al., 2018; Fan et al., 2014). It may also 

contribute to TAM-induced resistance towards anti-angiogenic treatments (Qin et al., 2015; Rolny 

et al., 2011). TAMs activated CSC properties in hepatocellular carcinoma by TGF-β1-induced 

EMT (Fan et al., 2014), which may led to resistance towards chemo- and targeted therapies (Dal 

Bo et al., 2020). For instance, TGF-β is primarily involved in erlotinib resistance, EMT and 

increased activation of the IL-6 axis in drug resistant bronchoalveolar metastatic carcinoma H1650 

cells (Yao et al., 2010). Inhibition of the TGF-β activity using shRNA and TGF-β inhibitors 

increased the efficiency of sorafenib (Kang et al., 2017) in hepatocellular carcinoma. Silencing of 

TGF-β1 enhanced sensitivity of A549/DDP cells to cisplatin through the reversal of EMT (Wang 

et al., 2018).TAMs also provide survival signals to CSCs. Specifically, TAMs release milk fat 

globule-epidermal growth factor 8 protein (MFG-E8), which protected lung and colon CSCs from 

the cytotoxic effects of cisplatin. Similar to IL-6, MFG-E8 activated STAT3 in CSCs, enhancing 

their drug resistance (Jinushi et al., 2011). In accordance, TAM depletion also improved antitumor 

T cell responses and the efficacy of chemotherapy in a pancreatic cancer model (Mitchem et al., 

2013). 

 

Growth factors secreted by TAMs. Growth factors secreted by TAMs may also lead to MDR. 

Specifically, TAMs are a significant source of the epidermal growth factor (EGF) and insulin-like 

growth factor (IGF) in tumor tissues (Ireland et al., 2018; Vlaicu et al., 2013). EGF-triggered 

resistance to sunitinib, vandetanib, and sorafenib by transducing bypass survival signaling through 

ERK and AKT via activation EGFR in lung cancer cells (Chang et al., 2017) (Leonetti et al., 2019a; 

Leonetti et al., 2019b). In addition, blocking of IGF increased the efficacy of paclitaxel, a 

chemotherapeutic agent commonly used for the treatment of invasive breast cancer (Ireland et al., 

2018). VEGF, a pro-angiogenic growth factor, is highly expressed in TAMs (Colegio et al., 2014; 

Qian and Pollard, 2010). Anti-VEGF therapy with bevacizumab (Cohen et al., 2009; Friedman et 

al., 2009; Lu-Emerson et al., 2015) or multiple RTK inhibitor sunitinib failed to improve survival 
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in patients with recurrent glioblastoma multiforme (Grisanti et al., 2019). This is likely due to M2-

like macrophages, which promoted tumor angiogenesis and vascular abnormalization (Mazzieri et 

al., 2011; Qin et al., 2015; Rolny et al., 2011). TAMs, resistant to anti-VEGF therapy, showed 

increased secretion of alternative pro-angiogenic cytokines and chemokines, including platelet-

derived growth factor (PDGF) and granulocyte-colony stimulating factor (G-CSF). The expression 

of VEGFR in macrophages was lower in patients who did not respond to anti-VEGF therapy 

compared to responders. Hence, VEGFR expression in macrophages may be a predictor of 

response to anti-angiogenic therapy (Dalton et al., 2017). Hence, increased expression of PDGF 

and G-CSF in macrophages is likely to be involved in drug resistance.  

 

Other factors involved in drug resistance. TAMs induced gefitinib resistance in head and neck 

squamous carcinoma cells (HNSCC) by releasing chemokine (C-C motif) ligand 15 (CCL-15), a 

chemokine mainly expressed in the intestine and liver (Li et al., 2016d). Specifically, chemokine 

CCL-15 decreased the sensitivity to gefitinib through CC chemokine receptor 1 (CCR1) and NF-

κB pathway signaling. Furthermore, serum CCL-15 levels in HNSCC patients were significantly 

correlated with patient prognosis (Yin et al., 2019).  

TAMs mediated the suppression of T cells in vitro and in vivo in FVB PyMT mice (DeNardo et 

al., 2011). In addition, TAMs were responsible for the T cell-excluded tumor phenotype. 

Specifically, TAMs prevented migration and invasion of tumor nests containing CD8+ T cells 

(Peranzoni et al., 2018), which are required for the efficiency of immunotherapy. Defective T cell 

migration into and within tumors was a determinant of resistance to cancer immunotherapy (Melero 

et al., 2014). Melanoma tumors of patients, who responded well to treatment with anti–PD-1 

antibodies were characterized by the presence of CD8+ T cells in the core of the tumor in contact 

with malignant cells (Herbst et al., 2014). Conversely, tumors of patients, who did not respond to 

anti–PD-1 antibodies either were devoid of T cells or contained T cells preferentially located 

around tumor cell regions (Herbst et al., 2014). Macrophage depletion by PLX3397 in tumor-

bearing mice increased the infiltration of tumor nests with CD8+ T enhancing anti-tumoral effects 

of anti–PD-1 treatment (Peranzoni et al., 2018). 

In conclusion, TAMs represent an important component of TME-related drug resistance as 

illustrated in Figure 1. Therefore, strategies to deplete TAMs or block cancer-induced M2-like 

macrophage programming, bear the potential to increase treatment efficiency and to decrease 
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resistance to anti-cancer agents (Coussens et al., 2013; Hagemann et al., 2008; Jaiswal et al., 2010). 

Spesifically combination of TAM depletion with dendritic cell immunotherapy generated robust 

and durable antitumor immunity. Depletion of TAMs using  colony stimulating factor 1 receptor 

(CSF-1R) kinase inhibitor PLX3397 (pexidartinib) alone, however, did not improve survival. 

These results demonstrated that decreasing local TAM-mediated immune suppression was only 

effective in the presence of immune activation (Dammeijer et al., 2017). Given the fact that the 

phenotype of TAMs varied and that under certain conditions TAMs cooperated with T cells to 

promote tumor regression (Saha et al., 2017; Thoreau et al., 2015), the complete depletion of 

macrophages may exert unwanted consequences. Several alternative approaches were under 

evaluation, e.g. reprogramming macrophages toward an antitumor phenotypic state (Schultze, 

2016). Nevertheless, clinical studies are in progress in several solid tumor types, where 

macrophages are targeted by CSF-1R inhibitors (Cannarile et al., 2017). It can be expected that 

these clinical studies will yield better approaches targeting TAMs to reverse MDR and tumor 

progression. 

 

3 Myeloid-derived suppressor cells in the tumor microenvironment  

3.1 Function of myeloid-derived suppressor cells 

Tumor-infiltrating myeloid-derived suppressor cells (MDSCs) are the most common mediators of 

immunosuppression in tumors. They orignate from immature myeloid cells that fail to differentiate 

into granulocytes, macrophages, or dendritic cells. MDSCs co-express Gr-1 and CD11b myeloid 

lineage differentiation markers in mouse as well as either or both of the common myeloid markers 

CD33 or CD11b in cancer patients (Gabrilovich et al., 2012; Talmadge and Gabrilovich, 2013) 

(Hsu et al., 2019; Zhang et al., 2018b). MDSCs consist of two large groups of cells: granulocytic 

or polymorphonuclear (PMN-MDSCs) and monocytic MDSCs (M-MDSCs). PMN-MDSCs are 

phenotypically and morphologically similar to neutrophils, whereas M-MDSCs are more similar 

to monocytes (Gabrilovich et al., 2007; Gabrilovich et al., 2012; Sasidharan Nair et al., 2020). Both 

the monocytic and the granulocytic subsets display immunosuppressive activity in tumors (Di Mitri 

et al., 2015). The existence of a third small population of MDSCs represented by cells with colony 

forming activity was demonstrated in human studies (Dumitru et al., 2012).  

Inflammatory cytokines and chemokines mediate the recruitment and expansion of MDSCs. 

Specifically IL-6, CXCL1, CCL5, CCL2/monocyte chemotactic protein-1 and CXCL12 caused 
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accumulation and expansion of MDSCs (Acharyya et al., 2012; Blattner et al., 2018; Gabrilovich 

et al., 2012; Hartmann et al., 2005; Hawila et al., 2017; Hsu et al., 2015; Huang et al., 2007; Panka 

et al., 2013; Schlecker et al., 2012; Veglia et al., 2018; Xu et al., 2017; Zhang et al., 2013). Among 

the other chemokines/receptors, CXCR2 and CX3CR1 (the cognate receptor for CX3CL1) 

activation mediated granulocytic MDSC trafficking into tumors (Hart et al., 2014). Among the 

chemokine receptors, CCR5 expressed on MDSCs in melanoma patients played an important role 

for their recruitment to the TME by CCR5 ligands (CCL3, CCL4 and CCL5) ((Blattner et al., 2018; 

Hawila et al., 2017). CCR5+ MDSCs displayed higher immunosuppressive potential than their 

CCR5− counterpart (Blattner et al., 2018), pointing to the heterogeneous nature of MDSCs. MDSCs 

suppressed both innate and adaptive immunity in various cancer types (Kumar et al., 2016; 

Ostrand-Rosenberg and Fenselau, 2018; Parker et al., 2015; Tcyganov et al., 2018; Umansky and 

Sevko, 2012). Hence, MDSCs hindered the anti-cancer activity of immunotherapies including 

immune checkpoint inhibitors (Weber et al., 2018). Growing evidence also demonstrated, however, 

that MDSCs were involved in resistance to therapeutic approaches other than immunotherapies as 

explained below. Factors involved in the expansion and recruitment of MDSCs as well as 

inflammatory factors secreted by MDSCs were likely to mediate chronic inflammation (Meyer et 

al., 2011) and consequently MDR.  

 

Resistance to anti-angiogenic therapy. The frequent emergence of resistance to anti-angiogenic 

therapy is a major hindrance towards curative cancer therapy (El Alaoui-Lasmaili and Faivre, 2018; 

Gacche and Assaraf, 2018; Haibe et al., 2020). Inherent anti-VEGF refractoriness was associated 

with infiltration of the tumor tissue by CD11b+Gr1+ myeloid cells. Specifically, combining anti-

VEGF treatment with a monoclonal antibody that targets myeloid cells inhibited growth of 

refractory tumors more effectively than anti-VEGF therapy alone (Shojaei et al., 2007a). Similarly, 

increased MDSCs and related inflammatory chemokines within the TME enhanced angiogenesis 

and metastasis and were involved in resistance to small molecule inhibitors of VEGFR2 (Ebos et 

al., 2009; Shojaei et al., 2007b; Yang et al., 2004; Yang et al., 2008). Inhibition of SDF-1 

production with the HDM2/HDMX antagonist MI-319 prevented the emergence of resistance to 

small molecular inhibitors of VEGFR2 in renal cell carcinoma xenograft tumors and inhibited the 

influx of MDSCs (Panka et al., 2013). 
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Resistance to targeted therapies. MDSCs also mediated resistance to targeted therapies such as 

BRAF inhibitors (vemurafenib and dabrafenib) in melanoma (Steinberg et al., 2017). Classically, 

reactivation of the MAPK pathway is involved in tumor resistance to BRAF inhibitors ((Johnson 

et al., 2015). However, acquired resistance to BRAF inhibitors still developed in the presence of 

MEK inhibitors (Long et al., 2014). Resistance to therapy was, in part, due to extrinsic factors 

present in the TME, including chemokines such as CCL2. This chemokine is also referred to as 

monocyte chemotactic protein-1 (MCP-1) ((Knight et al., 2013), which recruits MDSCs (Steinberg 

et al., 2017). CCL2 was also associated with anti-PD-1 resistance (Hugo et al., 2016; Peng et al., 

2016) and was connected to increased tumorigenesis in different tumor types (Yao et al., 2012; 

Zollo et al., 2012). 

 

Resistance to oncolytic viruses-based therapies. MDSCs are critical determinants of resistance 

to oncolytic viruses-related therapies (Hou et al., 2016). Oncolytic viruses are vectors designed to 

selectively replicate in, and destroy cancer cells. Various treatments based on oncolytic viruses are 

currently undergoing clinical testing (Andtbacka et al., 2016; Heo et al., 2013). TME was also 

involved in the anti-tumoral effects of oncolytic viruses, since oncolytic virus-mediated 

immunotherapeutic activity was more important than oncolytic virus-related cytotoxicity (Hou et 

al., 2016). COX2-mediated production of prostaglandin E2 (PGE2) is one of the key determinant 

of MDSC tumor infiltration (Fujita et al., 2011; Kalinski, 2012; Obermajer et al., 2011; Rodriguez 

et al., 2005). In accordance, inhibiting PGE2, the main product of cyclooxygenases in myeloid and 

stromal cells, reduced MDSC within TME and re-sensitized resistant tumors to therapy with 

oncolytic viruses (Hou et al., 2016).  

 

Resistance to chemotherapy. Although many studies documented an indirect contribution of 

MDSCs to drug resistance (see below), a recent study demonstrated the direct contribution of 

MDSCs to chemoresistance. Spesifically,  depletion of MDSC by administration of an anti-Gr-1 

antibody sensitized 5-fluorouracil-resistant H22 hepatoma to chemotherapy in immunocompetent 

C57BL/6N mice(Xu et al., 2017) (Xu et al., 2017). 

 

3.2 Mechanisms of MDSC-related drug resistance  
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Granulocyte colony-stimulating factor (G-CSF), a well-known hematopoietic cytokine regulating 

granulopoiesis, is required for progenitor cells to differentiate into granulocytic lineage, such as 

neutrophils, eosinophils and basophils (Natori et al., 2002). G-CSF and its receptor (G-CSFR) were 

aberrantly expressed in various human tumors including gastric and colon (Morris et al., 2014), 

bladder (Chakraborty and Guha, 2007), pancreatic (Liongue et al., 2009), ovarian and cervical 

cancers (Savarese et al., 2001). G-CSF production was associated with poor clinical outcome and 

MDR (Kawano et al., 2015; Kowanetz et al., 2010; Shojaei et al., 2009). As shown in tumor cell 

lines, in vivo models, and clinical samples of cervical carcinoma, G-CSF expression was 

significantly associated with increased number of MDSCs, decreased survival, and 

chemoresistance. The depletion of MDSC by splenectomy or the administration of anti-Gr-1 

antibody, sensitized G-CSF-producing cervical cancer cells to cisplatin (Kawano et al., 2015). 

Similarly, in a colitis-associated cancer, G-CSF promoted MDSCs survival and activation through 

the STAT3 signaling pathway. Inhibition of G-CSF activity with monoclonal antibody treatment 

reduced MDSC accumulation and decreased size and number of the tumors (Li et al., 2016c).  

 

Increased coagulation: A pro-thrombotic microenvironment revealed enhanced inflammatory 

responses (Levi et al., 2004; Vendramini-Costa and Carvalho, 2012) and induced chemoresistance 

(Nierodzik and Karpatkin, 2006), as observed following cytotoxic treatment by cisplatin and 

cyclophosphamide (Alexander et al., 2015; Alexander et al., 2016; Swystun et al., 2011). A cross-

talk between coagulation system and an inflammatory microenvironment further heightened the 

inflammatory activity (Danckwardt et al., 2011; Levi et al., 2004). Thrombin increased TGF-β 

release and activation (Alexander et al., 2015) leading to chronic inflammation, accumulation and 

expansion of MDSCs (Bunt et al., 2006; Levi and van der Poll, 2010). Accordingly, dabigatran 

etexilate, a direct thrombin inhibitor and cisplatin co-treatment exhibited significantly greater anti-

tumor efficacy than cisplatin alone. In a murine ovarian cancer model, co-treatment decreased 

MDSCs and pro-tumorigenic cytokines leading to a concomitant increase in CD8+ effector T-cell 

activity (Levi and van der Poll, 2010).  Similarly, in breast cancer, dabigatran etexilate and 

cyclophosphamide co-treatment reduced the accumulation of immunosuppressive MDSCs and 

TGF-β and induced markedly more potent anti-tumor and anti-metastatic effects (Alexander et al., 

2016).  
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Transforming growth factor β1 (TGF-β1). MDSCs are an abundant source of TGF-β1 

production within TME (Bierie and Moses, 2010). TGF-β1 secreted by MDSCs (Colak and Ten 

Dijke, 2017; Oshimori et al., 2015) may facilitate resistance to a wide range of anti-cancer agents. 

TGF-β1 inhibited antigen-specific CD8+ T-cell effector functions as demonstrated in melanoma 

(Ahmadzadeh and Rosenberg, 2005) and increased the number and immunosuppressive capacity 

of regulatory T cells (Hu et al., 2018; Huber et al., 2004; Marie et al., 2005; Polanczyk et al., 2019). 

TGF-β also abolished T cell activation by inhibiting the DC maturation processes (Weber et al., 

2005), which thus impeded anti-tumor immune response. In addition, TGF-β-induced EMT and 

enrichment of CSCs as well as immune suppression were likely to be responsible for drug-

resistance and metastasis ((Daroqui et al., 2012; Erin et al., 2018a; Kajiyama et al., 2007; Liu et 

al., 2017a; Mallini et al., 2014; Singh and Settleman, 2010; Wang et al., 2018). These effects of 

TGF-β1 play a significant role in resistance to targeted therapies such as TKI (Huang et al., 2012; 

Kang et al., 2017; Weber et al., 2018) and to cytotoxic agents (Kajiyama et al., 2007; Mallini et al., 

2014; Singh and Settleman, 2010). Hence, MDSCs by secreting TGF-β were involved in MDR. 

Reciprocally, TGF-β may mediate MDSCs-induced resistance to immune-check point inhibitors 

(Weber et al., 2018). 

 

Other factors: In a hepatocellular carcinoma model, cancer cell-derived IL-6 activated MDSCs-

mediated chemoresistance, which was prevented by an IL-6-neutralizing antibody or by depleting 

MDSCs(Xu et al., 2017) (Xu et al., 2017). MDSC were also a source for the production of the EF-

hand calcium-binding proteins S100A8 and S100A9 (Sade-Feldman et al., 2013; Turovskaya et 

al., 2008). S100A8 and S100A9 are pro-inflammatory factors, which were associated with 

chemoresistance (Wang et al., 2013; Yang et al., 2014). Besides certain chemotherapeutic and 

targeted therapies, commonly used adjuvants (i.e. corticosteroids) also induced MDSCs (Varga et 

al., 2008). These results explained the faster progression of tumors in patients treated with 

glucocorticoids for prolonged periods (Karagas et al., 2001).  

 

3.3 Therapeutic approaches targeting MDSCs 

Therapies targeting MDSCs, and inflammatory factors activating MDSCs or secreted from MDSCs 

(Weber et al., 2018) are warranted as adjunct therapy to directly treat malignant tumors. Certain 

cytotoxic agents such as paclitaxel (Sevko et al., 2013) or gemcitabine (Eriksson et al., 2016), 
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decreased MDSC frequency and increased therapeutic efficiency. Inhibiting STAT3, a main 

regulator of MDSC immunosuppressive activity (Condamine and Gabrilovich, 2011; Kumar et al., 

2016; Vasquez-Dunddel et al., 2013), may also prevent or attenuate the development of drug 

resistance.  

PGE2 is a main product of cyclooxygenases in myeloid and stromal cells and is one of the key 

mediators of immunopathology in cancer (Kalinski, 2012). PGE2 was shown to be necessary for 

the development of suppressive TAMs (Heusinkveld et al., 2011; Stolina et al., 2000)) and MDSC 

(Fujita et al., 2011; Obermajer et al., 2011; Sinha et al., 2007). In addition, MDSCs expressed high 

levels of COX2 and were a major source of PGE2 secretion in human cancer (Obermajer et al., 

2011). Hence, inhibition of PGE2 production using non-selective or COX2-selective blockers as 

well as selective antagonists of PGE2 receptors (Ganesh et al., 2018; Markovic et al., 2017) is 

likely to prevent MDSC-related MDR. 

Lenalidomide, an immune modulatory compound, was included in several current regimens to treat 

myeloma due to its beneficial efficacy and safety profile (Bartlett et al., 2004; Rollig et al., 2015). 

Lenalidomide alone decreased the number of systemic MDSCs and regulatory T cell in tumor-

bearing but not in naive mice (Sakamaki et al., 2014). Lenalidomide also induced strong anti-

inflammatory effects (Yamamoto et al., 2019), which may have been responsible for the 

suppression of MDSCs, since inhibition of inflammation using CD200 mimetics also decreased 

MDSCs (Erin et al., 2015; Erin et al., 2018b) and increased the therapeutic potential of doxorubicin 

(Erin et al., 2020). 

Inhibition of mTOR activity with everolimus is a relatively new therapeutic approach for various 

carcinomas, including breast, prostate, neuroendocrine tumors and renal cell carcinoma (Deniz et 

al., 2019; George et al., 2019; Huijts et al., 2019; Larouche et al., 2019; Schmid et al., 2019; Wen 

et al., 2019). Everolimus in combination with metronomic cyclophosphamide led to a reduction in 

MDSCs and a sustained level of the CD8+ T-cell population in patients with prostate cancer. This 

result further demonstrated that inhibition of MDSC activity also enhanced the efficacy of 

cytotoxic chemotherapy (Huijts et al., 2019). 

Decitabine, a demethylating agent with immunoregulatory effects, depleted MDSCs in vivo by 

inducing apoptosis at relatively low doses (Zhou et al., 2017) and inhibited myeloma growth in 

vivo (Zhou et al., 2019). Histone deacetylase inhibitors are another class of drugs for various 

carcinomas, including hematological malignancies as well as common solid tumors (lung, breast 
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and prostate cancer) (Halsall and Turner, 2016). Histone deacetylase inhibitors decreased 

accumulation of MDSCs in the spleen, blood and tumor bed and increased the proportion of 

cytotoxic T cells in Balb-c mice with 4T1 mammary tumors (Wang et al., 2017a). This result 

demonstrated that these group of drugs may also enhance anti-tumor effects of chemotherapeutics 

in tumors abundantly infiltrated with MDSCs. The role of MDSCs in MDR is illustrated in Figure 

2. 

 

4 Cancer-associated fibroblasts 

4.1. The functions of cancer-associated fibroblasts 

Apart from the tumor itself, the TME is a heterogeneous population of different cells. The tumor 

recruits endogenous stromal cells in its neighbourhood (Bussard et al., 2016; Cammarota and 

Laukkanen, 2016). These cells promoted extracellular matrix remodelling, angiogenesis, cellular 

migration, invasion and drug resistance. Furthermore, these cells generated an environment, which 

was capable of evading the immunosurveillance through production and secretion of various 

chemokines, cytokines and growth factors (Liu et al., 2019b). Tumor-associated stromal cells arose 

from at least six distinct cellular origins: fibroblasts, pericytes, bone marrow-derived mesenchymal 

stem cells (MSCs), adipocytes, endothelial cells that underwent EMT, or tumor cells that 

underwent EMT. The transition of these cells occurs by soluble factors, microRNAs (miRNAs) or 

exosomes, and results in the formation of the different cell subtypes: CAFs, cancer-associated 

adipocytes, or cancer-associated endothelial cells. 

  

4.2 Correlation of cancer-associated fibroblasts with multidrug resistance and metastasis  

There is mounting evidence for the role of CAFs in tumor drug resistance and metastasis (Chen 

and Song, 2019; Fiori et al., 2019; Kadel et al., 2019; Liu et al., 2019b)The concept of EMT has 

gained tremendous attention in cancer research. Here, we are discussing the evidence showing the 

role of CAFs and related events, as well as possible key molecules, which are important for both, 

drug resistance and metastasis. These molecules are either produced by CAFs directly or secreted 

from tumor cells influencing further CAFs or other cells in the stroma, which reprogram them to 

become supporters of tumor growth and progeression (Kadel et al., 2019). For example, cell-free 

medium collected from CAF cultures induced EMT in human head and neck carcinoma cells 

enhancing their viability as well as decreasing their sensitivity to cisplatin treatment (Steinbichler 
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et al., 2016). Activated gastric CAFs correlated with poor prognosis of cancer patients and 

contributed to the malignant phenotype and the development of resistance to 5-fluorouracil by 

paracrine signalling in gastric cancer (Ma et al., 2018).  

There are different types of molecules that are involved in chemoresistance and promotion of 

metastasis including chemokines, cytokines, membrane proteins, and chromatin proteins (Figure 

3). Caveolin-1 (Cav-1) plays a role in tumorigenesis via its various functions in lipid transport, 

membrane trafficking, gene regulation, and signal transduction (Koleske et al., 1995) (Ketteler and 

Klein, 2018; Lamaze and Torrino, 2015). It is down-regulated in CAFs from human breast cancer 

compared to normal fibroblasts isolated from the same patient (Mercier et al., 2008). Breast cancer 

patients lacking stromal Cav-1 benefit from tamoxifen therapy, since Cav-1 acts as a tumor 

suppressor in the stromal environment. More specifically, loss of Cav-1 in CAFs predicted early 

tumor recurrence, lymph node metastasis, and tamoxifen-resistance (Witkiewicz et al., 2009). In 

addition, Cav-1-deficient stromal fibroblasts contribute to tumor growth and angiogenesis by 

providing energy-rich metabolites in a paracrine fashion. This phenomenon has been termed 

reverse Warburg effect (Pavlides et al., 2009) (Martinez-Outschoorn et al., 2014; Wilde et al., 

2017). A two-component human tumor xenograft model system, was established in nude mice, in 

which the animals were co-injected with human MDA-MB-231 breast cancer cells and wild-type 

versus Cav-1(-/-) deficient stromal fibroblasts. These mice were treated with glycolysis inhibitors, 

which were functionally blocking the positive effects of Cav-1-deficient stromal fibroblasts on 

breast cancer growth. Thus, pharmacologically induced metabolic restriction (by treatment with 

glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancers that lack 

stromal Cav-1 expression (Bonuccelli et al., 2010). Furthermore, CAFs of MCF-7 breast cancer 

lacking caveolin-2 (Cav-2) better induced EMT, indicating that CAFs contributed to a more 

malignant phenotype. Their role in therapy resistance should therefore be considered for breast 

cancer treatment (Soon et al., 2013). A possible role of another membrane located protein, β1-

integrin, in anti-hormone therapy response in breast cancer patients was suggested too. G protein-

coupled estrogen receptor (GPER) and epidermal growth factor receptor/extracellular regulated 

protein kinase (EGFR/ERK) signalling upregulated β1-integrin expression and activated 

downstream kinases, which contributed to CAF-induced cell migration and EMT in tamoxifen-

resistant MCF-7R cells. GPER contributed to tamoxifen resistance by interaction with the TME in 

a β1-integrin-dependent pattern ((Yuan et al., 2015).  
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Conditioned media collected from CAFs isolated from human breast cancer tissues significantly 

induced migration of MDA-MB-231 breast cancer cells and protected them from doxorubicin-

induced cell death probably by extracellular high mobility group box 1 (HMBG1) protein released 

from dying cancer cells (Amornsupak et al., 2014). Furthermore, lung fibroblasts reduced 

melanoma sensitivity to the BRAF inhibitor vemurafenib. In the presence of fibroblasts, the 

melanoma cells acquired a de-differentiated mesenchymal-like phenotype. Upon drug treatment, 

melanoma cells maintained high levels of phosphorylated ribosomal protein S6 (pS6), i.e. active 

mammalian target of rapamycin (mTOR) signalling, which was suppressed in vemurafenib-

sensitive cells without stromal contacts (Seip et al., 2016).  

Tumors recruited human MSCs and induced their conversion into CAFs (Jung et al., 2013; Mishra 

et al., 2008). The cross-talk between stromal cells and TRAIL-sensitive cancer cells reduced 

metastatic features of triple-negative MDA-MB-231 breast cancer cells (Yoon et al., 2016). T-

lymphoma invasion and metastasis-inducing protein 1 (TIAM1) mediated resistance to 

chemotherapeutic agents via enhancement of stemness. Clinical data supported the importance of 

TIAM1 in colorectal cancer drug resistance. Furthermore, CAFs induced TIAM1 overexpression 

in colorectal cancer cells and enhanced drug resistance (Izumi et al., 2019). 

miRNAs are involved in the regulation of gene expression at the posttranscriptional level by 

degrading their target mRNAs and/or inhibiting their translation. They are important molecules 

affecting tumor drug resistance and metastasis (Brozovic, 2017; Si et al., 2019)(Leonetti et al., 

2019a; Naser Al Deen et al., 2019). Oncogenic miR-21 was overexpressed in most solid tumors 

(Feng and Tsao, 2016). This miRNA protected colorectal cancer cells from oxaliplatin-induced cell 

death. Ectopic stromal miR-21 expression increased cell invasiveness (Bullock et al., 2013). 

Gemcitabine-resistant pancreatic ductal adenocarcinoma (PDAC) patients displayed higher miR-

21 levels and more activated CAFs. CAFs with high miR-21 expression had elevated MMP-3, 

MMP-9, PDGF, and CCL7 expression and promoted the invasiveness of PDAC tumor cell lines. 

MiR-21 overexpression also contributed to the activation of CAFs by regulating the programmed 

cell death 4 (PDCD4) gene (Zhang et al., 2018a). By secreting stromal cell-derived factor-1/ 

chemokine (C-X-C motif) ligand 12 (SDF-1/CXCL12), which was regulated by miR-1, CAFs 

enhanced cell proliferation and cisplatin resistance in lung cancer A549 and 95D cells by the C-X-

C chemokine receptor type 4 (CXCR4)-mediated signalling pathway (Li et al., 2016a). CXCL1 

was expressed in human urothelial bladder cancer, especially in high-grade and late-stage tumors 
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and was secreted into the stromal area or bloodstream. The disruption of signalling of this 

chemokine may represent a promising therapeutic approach for bladder cancer (Miyake et al., 

2016). Down-regulation of miR-29b in CAFs promoted cell growth and metastasis of SK-BR-3 

and MCF-7 breast cancer cells by activating p38-STAT1 (signal transducer and activator of 

transcription 1), which regulated CXCL11 and CXCL14 (Liu et al., 2017b). The importance of 

chemokines was further confirmed by results showing that CAFs-derived CXCL12 activated 

CXCR4 in MDA-MB-231 cells and, thereby, significantly enhanced cell proliferation (Ham et al., 

2018).  

Interestingly, chemotherapy itself activated CAFs, which further promoted self-renewal of 

colorectal cancer-initiating cells (CIC; characterized by intrinsic drug resistance). Moreover, 

chemotherapy induced cancer growth in vivo associated with the secretion of different chemokines 

and cytokines such as interleukin-17A (IL-17A). As CICs contributed to tumor invasion and 

metastasis, the exogenous IL-17A nearly doubled the CIC migration rate (Lotti et al., 2013). IL-6 

as an upstream regulator played an important role in increasing CXCR7 expression as a major 

inducer of tumor cell proliferation and drug resistance (Qiao et al., 2018). After docetaxel therapy, 

MDA-MB-231 cells co-cultured with primary CAFs displayed increased adhesive, invasive and 

proliferative properties as compared with MDA-MB-231 cells without CAFs co-culture. 

Additionally, 35 differentially expressed genes were identified among CAFs before and after 

chemotherapy (Rong et al., 2013). Gemcitabine-resistant CAFs expressed a pro-inflammatory 

senescence-associated secretory phenotype with enhanced migration capacity, viability and drug 

resistance of human MiaPaCa-2 and PANC-1 pancreatic ductal adenocarcinoma cells. Signalling 

pathways controlling senescence-associated secretory phenotype induction after chemotherapy, 

including stress-associated MAPK activation, represent potential therapeutic targets to enhance the 

efficacy of chemotherapeutic regimens (Toste et al., 2016). A recent review paper reported a 

detailed analysis about the interplay between tumor cells and CAFs (Fiori et al., 2019). In 

conclusion, CAFs and other TME factors represent important regulators of tumor behavior and 

additional in vivo studies should be performed to explore possibilities for therapeutic intervention 

that could be translated to clinical practice. 

 

5 Role of the EMT transcription factors and EMT-related metabolic 

adaptations in MDR 
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5.1 Micronenvironmental signals involved in activation of EMT 

EMT is the differentiation program necessary for tissue morphogenesis during embryonic 

development, in which cells lose some of their epithelial characteristics and acquire mesenchymal 

migratory properties. Activation of EMT in cancer cells results in increased invasive and metastatic 

potential as well as drug resistance. EMT is regulated by a limited number of transcription factors, 

mainly from the SNAIL, TWIST and ZEB family (De Craene and Berx, 2013; Dongre and 

Weinberg, 2019; Ribatti et al., 2020; Wilson et al., 2020; Yang and Weinberg, 2008). Various 

molecules in the extracellular microenvironment derived from CAFs, tumor-infiltrating immune 

cells and vessels – TGF-β, FGF, EGF, HGF, IGF-1 as well as members of the Hedgehog, Notch 

and Wnt signaling pathway – can induce EMT. Here, we briefly mention environmental signals 

directly inducing the expression of EMT transcription factors (EMT-TFs) that contribute to MDR 

to set the stage for reviewing the role of EMT-TFs in multidrug resistance.  

 

Transforming growth factor β1 (TGF-β1).  

Induction of EMT by TGF-β is regulated through SMAD-dependent and SMAD-independent 

transcriptional regulation of transcription factors of the SNAIL, TWIST and ZEB family as well 

as miRNAs (e.g. miR-34, miR200) (Moustakas and Heldin, 2012; Xu et al., 2009). TGF-β and FGF 

cooperated in the induction of SNAIL expression (Peinado et al., 2003), and TGF-β induced 

SNAIL in both cancer cells and CAFs, which led to EMT and fibroblast activation, respectively 

(Lambies et al., 2019). Adult fibroblasts did not express SNAIL, but SNAIL was found in 

fibroblasts of malignant tumors. In colorectal cancer, SNAIL overexpressing CAFs induced 

chemoresistance of colon cancer cells to 5-FU and paclitaxel in vitro and in vivo. This resistance 

was mediated by CAF-derived CCL1 and TGF-β (Li et al., 2018a). Perivascular TGF-β could also 

promote the survival of carcinoma progenitor cells, by reprogramming glutathione metabolism, 

thus increasing porgenitor cell drug resistance and cancer recurrence (Oshimori et al., 2015). In 

gastric cancer, the TGF-β/ZEB axis played a role in trastuzumab resistance (Zhou et al., 2018). 

 

Additional factors. 

Various receptor tyrosine kinases (RTKs) promoted EMT through ERK, JNK and MAPK signaling 

pathway induction of EMT transcription factors (Gonzalez and Medici, 2014). Hepatocyte growth 

factor (HGF) induced EMT by induction of SNAIL and SLUG (Grotegut et al., 2006; Savagner et 
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al., 1997), insulin-like growth factor 1 (IGF-1) by induction of SNAIL and ZEB1 (Graham et al., 

2008; Kim et al., 2007) and epidermal growth factor (EGF) by induction of TWIST (Lo et al., 

2007).  

WNT ligands and WNT/β catenin signaling pathway promoted EMT on several levels (Gonzalez 

and Medici, 2014). In terms of induction of EMT transcription factors, the WNT/GSK-3β/AXIN 2 

axis stabilized SNAIL (Yook et al., 2006; Zhou et al., 2004), and WNT1 upregulated TWIST 

expression (Howe et al., 2003). SLUG and SNAIL were also induced by NOTCH (Leong et al., 

2007) and Hedgehog signaling (Li et al., 2005), respectively. 

 

5.2 Role of EMT transcription factors in multidrug resistance 

It has long been postulated that EMT-TFs contribute to phenotypic acquired resistance (Goossens 

et al., 2017). Most recently, it has been shown by single cell sequencing that a subpopulation with 

the upregulated EMT and stemness genes with a predisposition to drug resistance was also present 

in the parental drug-naive cancer cell population (Prieto-Vila et al., 2019). The promoters of many 

ABC transporter genes contain binding sites for EMT-TFs, hence, EMT program activation 

simultaneously increased drug resistance (Saxena et al., 2011; Xin et al., 2013). EMT-TFs also 

induced drug resistance independently of ABC transporters by increasing cellular resistance to 

drug-induced apoptosis (Li et al., 2018a; Tomono et al., 2017). It has even been suggested that the 

expression of EMT-TFs in tumor biopsies may serve as predictive marker for therapy-sensitive or 

-resistant subgroups (Goossens et al., 2017). Here, we focus on the major EMT-TFs implicated in 

the MDR phenotype. 

 

SNAIL (SNAIL1) and SLUG (SNAIL2) are zinc-finger transcriptional repressors, which induce 

EMT by epithelial gene repression (i.e. repressing the E-cadherin, occludin, and claudin genes). 

SNAIL induced both expression of P-glycoprotein/MDR1 (Li et al., 2011) and BCRP (Chen et al., 

2010) as well as P-glycoprotein (P-gp) drug efflux activity (Tomono et al., 2017). SNAIL and 

SLUG also induced chemoresistance independently of ABC transporters. SNAIL repressed cyclin 

D2 transcription, thus impairing cell cycle progression and conferring resistance to both intrinsic 

and extrinsic apoptotic pathways (Vega et al., 2004). In cancer, this contributed to drug resistance 

by repression of apoptosis mediated by the DNA-damage response pathway (Haslehurst et al., 

2012; Kajita et al., 2004), antagonism of p53-induced apoptosis and promotion of the CSC 
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phenotype (Kurrey et al., 2009). Concomitantly with EMT, SNAIL overexpression also induced 

metabolic reprogramming in cancer cells, i.e. increased glucose uptake and lactate production as 

well as reduced mitochondrial respiration (Kim et al., 2017; Lee et al., 2012; Liu et al., 2019a; 

Thoreau et al., 2015), thus enhancing chemoresistance (see the section on the metabolic rewiring 

in EMT). 

 

TWIST1 and TWIST2 are basic helix-loop-helix TFs that are major regulators of the 

mesenchymal phenotype during embryonic development. They are highly upregulated in multiple 

cancers and are associated with poor prognosis and invasive potential. TWIST1 conferred 

increased resistance to both P-gp and non-P-gp substrate drugs (Li et al., 2009). It regulated P-gp 

(MDR1/ABCB1) expression and drug efflux activity (Deng et al., 2016; Li et al., 2018a; Zhu et 

al., 2012), as well as expression of other ABC transporters: MRP1 (ABCC1) (Liu et al., 2017c), 

ABCA2, ABCA3, ABCC5 and ABCC10 (Saxena et al., 2011). TWIST and SNAIL both 

suppressed the expression of nucleoside transporters, thus inducing chemoresistance to nucleoside 

analogues (Zheng et al., 2015). In a PDAC mouse model with genetic deletion of TWIST1 or 

SNAIL1, equilibrative nucleoside transporter 1(ENT1) and concentrative nucleoside transporter 3 

(CNT3) were significantly upregulated. This contributed to response to gemcitabine (Zheng et al., 

2015). TWIST/TWIST and SNAIL/SNAIL were frequently co-expressed in human cancers. In 

breast cancer, SNAIL2 (SLUG) expression was directly dependent on TWIST1. TWIST1 also 

increased the expression of the proto-oncogene AKT serine/threonine kinase 2 (AKT2), and 

decreased chemosensitivity to paclitaxel by increased cell survival signaling (Cheng et al., 2007). 

Given the role of SLUG in conferring resistance to programmed cell death (Kajita et al., 2004), the 

TWIST/SLUG/SNAIL axis strongly contributes to MDR (Shen et al., 2017; Tomono et al., 2017). 

ZEB1 is a zinc-finger E-box binding homeobox 1 transcription factor that induces EMT mostly by 

transcriptional upregulation. ZEB1 induced resistance to conventional chemotherapeutic drugs 

with divergent mechanisms of action (Arumugam et al., 2009; Lazarova and Bordonaro, 2017; 

Siebzehnrubl et al., 2013). ZEB1 increased the expression of multiple ABC transporters (MRP1, 

BCRP, ABCC4 and ABCC5) in several breast cancer cell lines in vitro (Saxena et al., 2011). ZEB1 

also protected cells from genotoxic stress caused by chemotherapy by checkpoint kinase 1 (CHK1) 

and promotion of recombinant-dependent DNA repair (Zhang et al., 2014) in radioresistant human 
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breast cancer cells. In non-small lung cancer model, ZEB1 contributed to acquired resistance to 

EGFR inhibitors (e.g. erlotinib) as well (Yoshida et al., 2016).  

 

Other TFs. 

There is ample evidence that other EMT-related transcription factors also promote 

chemoresistance. Several members of the FOX transcription factor superfamily promoted drug 

resistance through induction of EMT: FOXC2 (Zhou et al., 2015), FOXM1 (Chiu et al., 2015; Hou 

et al., 2017) and FOXF2 (Cai et al., 2015). SOX2, a transcription factor important for the 

maintenance of embryonic stem cell characteristics and represents a cancer stem cell marker (Chen 

et al., 2012; Leis et al., 2012). It regulated the expression of BCRP and SNAIL, thus contributing 

to chemoresistance (Lee et al., 2014). Overexpression of hairy and enhancer of split 1 (HES1) , a 

transcription factor that triggers EMT (Wang et al., 2015), increased the expression of P-gp, MRP1 

and BCRP (Sun et al., 2017). Colon cancer cells with HES1 overxpression were resistant to 5-FU. 

Whole-genome cDNA microarray analyses showed that pathways related to drug metabolism were 

up-regulated (including ABC transporters), whereas pathways associated with adherens junctions, 

focal adhesions and actin cytoskeleton, were down-regulated (Sun et al., 2017).  

 

5.3 Targeting of EMT-TFs as a potential therapeutic approach 

The correlation between EMT, CSCs, and drug resistance provides a rationale for therapeutic 

targeting of EMT in combination with chemotherapy in solid tumors. Targeting TFs themselves 

might be technically challenging, although a number of small molecule inhibitors of EMT have 

been proposed to target drug resistance: curcumin, mocetinostat, palbociclib, icaritin, zerumbone 

etc. (reviewed in (Du and Shim, 2016). Mocetinostat is an HDAC inhibitor that interferes with 

ZEB1 function and restores sensitivity to chemotherapy by epigenetic regulation; this has been 

shown for gemcitabine in highly resistant PANC1 cell line and freshly-established patient-derived 

PDAC cells, as well as for docetaxel in docetaxel-resistant DU145-DR prostate cancer cells 

(Meidhof et al., 2015). The anti-diabetic drug metformin also modulated EMT; it caused 

transcriptional reprogramming and decreased ZEB1, TWIST1 and SLUG, thus decreasing EMT, 

stemness and drug resistance in four genetically different breast cancer models (Hirsch et al., 2009; 

Vazquez-Martin et al., 2010). Metformin down-regulated the expression of P-gp and MRP1, as 

well as HIF1α through the AMPK/mTOR pathway and sensitized cells to 5-FU in 5-FU-resistant 

Jo
ur

na
l P

re
-p

ro
of



24 

 

hepatocellular carcinoma cells in vitro (Ling et al., 2014). Metformin reversed acquired resistance 

to 5-FU in 5-FU resistant MCF7-FU breast cancer cells (Qu et al., 2014), to doxorubicin in MCF7-

ADR cells (Kim et al., 2011) and increased the sensitivity of radiation- and 5-FU-resistant rectal 

cancer cells via attenuation of anti-apoptotic gene expression and inhibition of EMT (Park et al., 

2019). Small chemical inhibitors of SNAIL-p53 interaction (Lee et al., 2010) or of the zinc finger-

binding domain have been similarly proposed as anti-EMT agents and chemosensitizers. For 

example, screening of a small molecule library of over 500 compounds yielded specific inhibitors 

of the SNAIL-p53 interaction, which activated p53 in a KRAS-dependent manner and induced 

apoptosis in both p53-wt and p53-mutated (one allele) pancreatic and breast cancer cell lines (Lee 

et al., 2010). This makes these inhibitors of potential interest for the overcoming of MDR. On the 

other hand, oligonucleotide-conjugated Co (III) complexes prevented SLUG and SNAIL from 

binding to their DNA targets (Harney et al., 2009). Thus, inactivation of their transcriptional 

activity may be used in combating MDR. 

 

5.4 Effects of metabolic rewiring in EMT on MDR  

Metabolic rewiring towards increased anaerobic glycolysis (Warburg effect) and mitochondrial 

dysfunction have a seminal role in tumor progression (Kang et al., 2019). During EMT, cancer 

cells acquire an enhanced glycolytic phenotype, maintained by increased glucose uptake and lactate 

secretion, which drive an undifferentiated cellular state (Li and Li, 2015; Liu et al., 2016). Increased 

extracellular lactate levels activated SNAIL and maintained the EMT phenotype (Li et al., 2018b). 

SNAIL caused a range of metabolic adaptations during EMT depending on the cellular context: 

mitochondrial repression (Lee et al., 2012; Liu et al., 2019a), concomitant elevation of intracellular 

ATP levels and oxygen consumption (Jiang et al., 2015) as well as a switch in glucose flux towards 

the pentose phosphate pathway (Kim and Lee, 2017). Nevertheless, all these adaptations that 

maintain EMT can at the same time sustain the MDR phenotype.  

Increased intracellular ATP production represents an extraordinary determinant of chemoresistance 

(Zhou et al., 2012). In oxaliplatin-resistant colon cancer cells with increased glycolytic capacity 

and increased expression of glucose transporter (GLUT1) and hexokinase (HK2), depletion of 

intracellular ATP resulted in partial reversal of MDR and increased sensitivity to oxaliplatin and 

5-FU (Zhou et al., 2012). In addition to increased production, cancer cells also took up ATP by 

macropinocytosis (Qian et al., 2014), which led to resistance to both standard chemotherapy and 
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targeted kinase inhibitors. Elevated extracellular ATP levels increased resistance to sunitinib, 

sorafenib, gefitinib, erlotinib, imatinib, paclitaxel, doxorubicin and cisplatin in lung, liver, breast, 

colon and pancreatic cancer cell lines (Wang et al., 2017b).  In a model system with sunitinib 

(which binds to the ATP-binding site of receptor tyrosine kinases) in mice xenografted with A549 

tumors, macropinocytosis of ATP enhanced resistance. The macropinocytosis inhibitor IPA3 and 

siRNA against serine/threonine-protein kinase PAK1, an enzyme involved in macropinocytosis, 

both mitigated this effect (Wang et al., 2017b). In another study, inhibition of macropinocytosis 

with EIPA (Author: Spell out EIPA) reduced intracellular ATP in A549 cells and reduced the 

efficacy of sunitinib and pazopanib (Qian et al., 2014). Extracellular ATP also increased ABC 

transporter drug efflux and increased the transcript levels of P-gp and MRP1 (Wang et al., 2017b). 

Taken together, increased ATP levels fuel ABC efflux transporters, increase their expression, 

compete with TKI inhibitors for binding sites and increase phosphorylation of growth factor 

receptors (Wang et al., 2017b), thus contributing to MDR towards both conventional and targeted 

therapeutics. 

EMT, metabolic reprogramming, and MDR are molecularly intertwined and are 

summarized in Figure 4. Consequently, biochemical overexpression of ABC transporters in cancer 

cells influences cellular metabolism: MDR efflux transporters increased the glycolytic rate and 

glutathione consumtion and decreased the pentose phosphate pathway and the oxidative 

phosphorylation rate (Lopes-Rodrigues et al., 2017). One should keep in mind that the genetic 

landscape of the cancer cell and the TME (e.g. mutational status of proto-oncogenes such are 

KRAS, BRAF or p53, hypoxia, and stromal cells) strongly influence the outcome of metabolic 

alterations on the MDR phenotype. For example, increased OXPHOS in metastasis contributed to 

reduced expression of ABCB1, ABCC1, ABCC5 and ABCG2 in wild-type p53-expressing cells 

and to increased expression of the same transporters in mutated or null p53-expressing cells 

(Belkahla et al., 2017). The interplay between EMT, MDR and autophagy, another cellular process 

hijacked during the metabolic adaptation in cancer cells, is also two-sided. Autophagy protected 

cells from nutrient deprivation and recycled damaged cellular components. Early during tumor 

progression, autophagy restricted EMT by selective degradation of specific EMT proteins. 

However, during the metastatic dissemination, EMT induced autophagy to enable cell survival 

under conditions of low oxygen and nutrient deprivation (reviewed in (Gugnoni et al., 2016)). 

Autophagy acted in a pro-survival manner in the context of MDR (Ajabnoor et al., 2012; Bao et 
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al., 2015; Liang et al., 2016; Sui et al., 2013; Sun et al., 2011). By contrast, it also enhanced the 

anti-cancer efficacy of drugs by inducing autophagic cell death (Li et al., 2017; Sotelo et al., 2006; 

Sui et al., 2013) depending on the underlying cellular conditions. For example, in cisplatin- or 

vincristine-resistant ovarian cancer cells autophagy had  cytoprotective role, and its inhibition by 

chloroquine or 3-methyladenine re-sensitized cells and potentiated apoptosis (Bao et al., 2015; 

Liang et al., 2016). Furthermore, autophagy was also cytoprotective and induced resistance to 

epirubicin and paclitaxel in MCF7 cells (Ajabnoor et al., 2012; Sun et al., 2011). Inhibition of 

autophagy in triple-negative breast cancer (TNBC) in vitro and in vivo significantly improved drug 

response of both anthracycline-sensitive and -resistant TNBC (Chittaranjan et al., 2014). Adding 

the autophagy inhibitor chloroquine to standard chemotherapy in glioblastoma multiforme patients 

increased mid-term survival (Sotelo et al., 2006). On the other hand, induction of autophagy led to 

autophagic cell death in cells with altered apoptotic pathways. For example, in cisplatin-resistant 

urothelial cancer cells the activation of autophagic flux with dual PI3K and mTOR inhibitor 

induced cytotoxicity (Li et al., 2013). Plant alkaloids that potentiated autophagy induced 

autophagic cell death in drug-resistant cells (Donadelli et al., 2011; Meschini et al., 2008). 

Tumor cells have a deregulated oxidative mitochondrial machinery that supplies ATP (via 

OXPHOS), but still enables catabolism of glucose and glutamine (DeBerardinis and Chandel, 

2016) for the supply of precursors for DNA, protein and lipid synthesis (Ahn and Metallo, 2015). 

Down-regulation of mitochondrial genes was strongly correlated with EMT across 20 different 

cancer types (Gaude and Frezza, 2016). The depletion of mitochondrial DNA provided survival 

advantages though AKT2 signaling and anoikis resistance (Moro et al., 2009), thus decreasing 

chemosensitivity. On the other hand, disseminating cancer cells displayed increased OXPHOS 

(LeBleu et al., 2014), and one of the emerging mechanisms of chemotherapy-induced drug 

resistance induced a switch from glycolysis to OXPHOS (Vellinga et al., 2015). For example, in 

samples from liver metastases of colon cancer patients that were exposed to chemotherapy before 

surgery, genes that are involved in oxidative phosphorylation were upregulated compared to the 

samples from untreated patients. 5-FU and oxaliplatin caused an upregulation of sirtuin-1 (SIRT1) 

(Vellinga et al., 2015). SIRT1 is a protein deacetylase, known to regulate multiple physiological 

functions by deacetylating different protein substrates. Cumulative studies revealed key roles of 

SIRT1 in different aspects of cancers including genomic instability, metabolism, cell proliferation, 

and drug resistance (Farcas et al., 2019). SIRT1 was activated in response to DNA damage and 
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initiated mitochondrial biogenesis (Knight and Milner, 2012). Therefore, mitochondria acted as a 

hub between metabolism and cell signaling, with temporally defined metabolic adaptations along 

EMT route, where increased mitochondrial metabolism promoted resistance to apoptosis, whereas 

mitochondrial dysfunction favored metastasis (reviewed in (Porporato et al., 2016).  

EMT-related changes in protein glycosylation patterns also influenced the MDR phenotype. 

Incomplete glycosylation of ABC transporters prevented their proper membrane localization and, 

thus, decreased their efficacy as drug efflux pumps ((da Fonseca et al., 2016; Wojtowicz et al., 

2015). EMT was also accompanied with a change in lipid metabolism providing alternative energy 

sources(Sanchez-Martinez et al., 2015) (Sánchez-Martínez et al., 2015) and reorganization of lipid 

rafts and increased migration ((Babina et al., 2014; Luo et al., 2017). Composition of the membrane 

lipids and membrane recycling contributed to resistance in MDR cells: altered lipid composition 

limited drug entry across the plasma membrane and altered kinetics of internalization preventing 

drug accumulation (Omran et al., 2017). 

 

5.5 Targeting metabolic adaptations in EMT as a potential therapeutic approach 

Control over the metabolic adaptation may be an effective modality to overcome drug resistance. 

It remains to be explored, whether targeting glycolysis, autophagy or OXPHOS may serve as 

promising therapeutic strategies against MDR tumors. For example, inhibition of glycolysis in 

MDR cells with activated AKT/mTOR/MYC pathway restored sensitivity to doxorubicin (Zhang 

et al., 2017). The glycolysis inhibitor, 3-bromopyruvate, sensitized MDR cells (Zhou et al., 2012). 

The specific lactate dehydrogenase-A inhibitor, oxamate, sensitized paclitaxel-resistant cells (Zhou 

et al., 2010). The antidiabetic drug metformin, a dual AMPK activator and mitochondrial electron 

transport chain complex I inhibitor (Wheaton et al., 2014), decreased glucose oxidation (Fendt et 

al., 2013), modulated autophagy (Kim and You, 2017) and eradicated CSCs when combined with 

chemotherapy (Hirsch et al., 2009). 

 

6 Role of hypoxia in metastasis and drug resistance 

6.1 Hypoxia in tumor progression 

During tumor progression, the velocity of proliferation exceeds the tumor’s capacity to supply 

enough oxygen and nutrients by passive diffusion from the sourrounding normal tissues. This 

situation results in hypoxia, a hallmark of most solid tumors. The role of the TME, which consists 
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not only of the tumor cells themselves, but also of immune cells, CAFs, endothelial cells, adipocites 

etc., cannot be underestimated for invasion, metastasis and development of drug resistance 

(Almeida et al., 2019). Tumors have the capacity to adapt to hypoxic stress by several mechanisms 

such as the induction of neoangiogenesis, the metabolic shift and apoptosis resistance (Kim and 

Lee, 2017). These mechanisms are orchestrated by hypoxia-inducible factors (HIF), which act as 

transcription factors for a plethora of genes involved in tumor progression and metastasis (Bhattarai 

et al., 2018; Tong et al., 2018). EMT also contributes to chemoresistance(Sui et al., 2014). Stem-

like cancer cells are not only crucial for EMT, but are also drug- and radiation-resistant at the same 

time. Hypoxia can mediate resistance either directly or indirectly. Direct resistance due to hypoxia 

occurs to radiation and some anticancer drugs (Raz et al., 2014), which need oxygen for full 

activity, while indirect modes of hypoxia-mediated resistance represent alterations of cellular 

signaling or increased genetic instability (Teicher, 1994; Kim and Lee, 2017; Salem et al., 2018). 

Here, we focus on indirect mechanisms of hypoxia-induced MDR and the relevance of ABC 

transporters in this context. 

 

6.2 Coexpression of HIF-1α and P-glycoprotein in clinical tumor biopsies 

Hints that hypoxia may be relevant for the development of resistance to chemotherapy response 

emreged from investigations with clinical tumor biopsies. Interestingly, in diverse tumor types 

statistically significant correlations have been observed between the expression of HIF-1α and P-

gp, including common epithelial tumors (carcinomas of the breast, lung, larynx or colon) and 

hematological malignancies (multiple myeloma) as well as rare tumors (such as chordoma) (Table 

1). This was not only true for primary tumors but also for lymph node metastases (Badowska-

Kozakiewicz et al., 2017; Lu et al., 2016). In chordoma, HIF-1α expression did, however, not 

correlate with MRP1 expression – a result that deserves verification in other tumor types. There is 

also a clue from advanced colon carcinoma that the simultaneous expression of HIF-1α and P-gp 

has clinical impact, since tumors with co-expression of these two proteins poorly responded to 

chemotherapy when compared to those devoid of co-expression (Chen et al., 2014). 

 

Table 1: Expression of HIF-1α and P-glycoprotein in clinical tumor samples. 

 
Tumor type Biomarker expression Reference 
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Breast cancer and 

lymph node metastases  

Significant correlation between HIF-1α  and P-gp 

expression 

Badowska-

Kozakiewicz et al., 

2017 

Multiple myeloma Significant correlation between HIF-1α  and P-gp 

expression 

Muz et al., 2017 

Lymph node metastaes 

of non-small cell lung 

cancer 

Significant correlation between HIF-1α  and P-gp 

expression 

Lu et al., 2016 

Advanced colon 

carcinoma patients 

Patients with HIF-1α and P-gp co-expression were 

more resistant to chemotherapy than those lacking 

expression 

Chen et al., 2014 

Laryngeal squamous 

cell carcinoma  

Significant correlation between HIF-1α  and P-gp 

expression 

Xie et al., 2013 

Chordoma  Significant correlation between HIF-1α and P-gp 

expression, but not MRP1 expression 

Ji et al., 2010 

Colon carcinoma Significant correlation between HIF-1α  and P-gp 

expression 

Ding et al., 2010 

 
 

6.3 Molecular modes of action of hypoxia-induced MDR 

The statistically significant co-expression of HIF-1α and P-gp supported the hypothesis that HIF-

1α may regulate the expression of ABC transporter genes and thereby induce resistance to 

anticancer drugs. Numerous authors investigated this hypothesis, and it turned out that hypoxia 

seems to induce drug resistance by both ABC-transporter dependent and -independent mechanisms 

in cancer and also in normal tissues (Table 2).  

A considerable portion of papers reported on the hypoxia-induced activation of HIF-1α leading to 

transcriptional activation of the ABCB1 promoter and expression of ABCB1 mRNA and P-gp, 

which in turn caused resistance to typical drug substrates of P-gp such as doxorubicin (Table 2). 

While the majority of papers focused on P-gp, a few authors also analyzed other ABC transporters 

such as MRP1, BCRP, and ABCB5. A similar trend as with P-gp was found, i.e. hypoxia caused 

overexpression of these drug efflux pumps. In addition to HIF-1α, the tightly related HIF-2α seems 

to play a role for these ABC transporters.  

While the vast majority of authors found HIF-1α-mediated ABC transporter overexpression, some 

papers reported on P-gp overexpression as a consequence of amplification of the gene encoding 

for the murine, rodent and human P-gp (Assaraf and Borgnia, 1994; Assaraf et al., 1989; Genovese 

et al., 2017; Luk et al., 1990; Sharma et al., 1991). Hypoxia was shown to induce fragile sites in 

the genome, which favor genomic rearrangements. Breaks at these fragle sites initiate DNA 

amplifications and the generation of intrachromosomally localized gene amplifications 
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(cytogenetically visible as homogenously stained regions, HSR) or extrachromosomally organized 

elements (double minutes, DMs) (Coquelle et al., 1998). 

In some cases, resistance to anticancer drugs which are known to be non-ABC transporter 

substrates was also observed, e.g. BCNU, ifosfamide and methotrexate (Takeshita et al., 1996; 

Harrison and Schwartz, 2017; Nikolova et al., 2017). This result is a clue that ABC transporters 

may be overexpressed under hypoxic conditions, but that resistance to these non-MDR drugs may 

occur via additional P-gp-independent mechanisms. Indeed, a number of investigations came to the 

conclusion that hypoxia-mediated drug resistance can occur in an ABC transporter-independent 

manner (Table 2). These authors searched for alternative mechanisms and suggested cell cycle 

related effects (up-regulation of cell cycle inhibitors and down-regulation of cyclins) or regulation 

of genes that affect drug response by their modes of actions (e.g. KLF8, KFL8, NOX1, EGFL7 

etc.). 

Hypoxia-mediated resistance is not restricted to cancer cells, but has also been observed in normal 

tissues and cells (Table 2). Here, hypoxia also induced HIF-1α activation followed by P-gp or 

BCRP overexpression or other mechanisms. This may have important implications for healthy 

organisms, which have to cope with a plethora of xenobiotic and partwise harmful compounds 

from the environment. Tissue hypoxia may support the detoxicifaction of xenobiotics taken up with 

food or breathing air. While hypoxia-induced resistance can cause chemotherapy failure with fatal 

outcome in cancer patients, it may contribute to salutogenesis in healthy subjects by keeping them 

off from the detrimental effects of harmful exogenous compounds.  

 

Table 2: Role of hypoxia and hypoxia-inducible factors (HIF-1α, HIF-2α) for the expression of ABC 

transporters (P-gp, MRP1, BCRP, ABCB5) in tumor cells and normal cells and tissues.  

 
Model Mechanism Reference 

ABC-transporter-dependent drug resistance by hypoxia:  

OVCAR-3 S and 

CAOV-3 S ovarina 

cancer cells 

Hypoxia induced HIF-1α, HIF-2α expression and doxorubicin 

resistance. HIF-1α knockdown sensitizied to and HIF-1α 

overexpression induced resistance to doxorubicin. HIF-2α directly 

promoted transcription/expression of BCRP 

He et al., 2019 

SKOV3 ovarian cancer 

cells 

Hypoxia induced P-gp and MRP1 expression Cai et al., 2018 

 Hypoxia induced HIF-1α and P-gp expression and P-gp 

internalization, lysosomal doxorubicin accumulation, and 

doxorubicin resistance 

Al-Akra et al., 

2018 

Multiple myeloma Hypoxia induced P-gp expression and resistance to carfilzomib and 

bortezomib 

Muz et al., 2017 
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HT-29 colon cancer 

cells 

Hypoxia induced HIF-1α, P-gp and BCRP expression Pinzón-Daza et 

al., 2017 

A549/DDP non-small 

lung cancer cells 

Hypoxia induced P-gp and EGFL7 expression and drug resistance Shen et al., 2017 

CH27, CH27/DOX, 

A549, H1299, H460 

lung cancer cell lines 

Hypoxia-induced inhibition of MRP1 and P-gp expression in a HIF-

1α-dependent manner and DOX resistance  

Chen et al., 2016 

Laryngeal cancer cells Hypoxia-induced P-gp expression was dowregulated by ABCB1 

RNAi leading to chemosensitization and increased drug 

accumulation 

Li et al., 2016 

LoVo colon cancer cells Chemical hypoxia by cobalt chloride induced HIF-1α, P-gp and 

MRP1 expression and decreased intracellular doxorubicin retention 

Yang et al., 2016 

Colon cancer cells Chemical hypoxia by cobalt chloride induced HIF-1α, P-gp and 

MRP1 expression. HIF-1α bound to ABCC1 promoter 

Lv et al., 2015 

Melanoma cells Hypoxia-mediated downregulation of miR-340-5p induced 

upregulation of ABCB5 regulation 

Wozniak et al., 

2015 

Gastric cancer cells Hypoxia-induced KLF8 and HIF-1α expression, KFL8-mediated 

ABCB1 promoter activation and P-gp expression 

Zhang et al., 

2014 

LoVo colon cancer cells Hypoxia-induced HIF-1α and P-gp expression, HIF-1α silencing 

reduced P-gp expression and sensitized celld to four drugs, HIF-1α 

bound to the ABCB1 promoter 

Chen et al., 2014 

Osteosarcoma cells HIF-1α induced P-gp expression and doxorubicin efflux Roncuzzi et al., 

2014 

Hep-2 lanyngeal 

squamous carcinoma 

cells 

Hypoxia induced HIF-1α and P-gp expression, HIF-1α 

downregulation also inhibited P-gp expression in hypoxic cells 

Xie et al., 2013 

HT-29 colon cancer 

cells 

Digoxin increased intracellular [Ca2+] and activated calmodulin 

kinase II, which activated HIF-1α and P-gp expression 

Riganti et al., 

2009 

SGC7901/VCR gastric 

cancer cells 

Hypoxia induced doxorubicin efflux, HIF1A siRNA reversed this 

effect, HIF-1α overexpression induced P-gp and MRP1 expression 

Liu et al., 2008 

 Hepatitis-B-virus X protein (HBx) increased ABCB1 activity 

through transcriptional activation by HIF-1α activation 

Han et al., 2007 

Colon cancer cells Hypoxia alone had no effect, but together with acidosis the P-gp 

expression increased 

Lotz et al., 2007 

Oral squamous cell 

carcinoma cells 

HIF-1α knockdown decreased P-gp expression and increased 

intracellular drug concentrations 

Sasabe et al., 

2007 

A549 lung cancer cells HIF-1α transfection increased P-gp expression and 5-fluorouracil 

expression 

Zhang et al., 

2006 

A549 lung cancer cells Hypoxia induced HIF-1α  and P-gp expression and doxorubicin 

resistance 

Xia et al., 2005 

DU-145 prostate tumor 

spheroids 

NOX-1-induced ROS generation reduced HIF-1α and P-gp 

expression and increased intracellular doxorubicin retention. Free 

radical scavengers (vitamin C and E) reversed this effect on the 

protein but not mRNA level 

Wartenberg et al., 

2005 

 Hypoxia activated JNK activity and P-gp protein and ABCB1 

mRNA expression. JNK inhibition reversed this effect. Hypoxia-

induced HIF-1α signaling depended on JNK activation 

Comerford et al., 

2004 

DU-145 prostate cancer 

spheroids, Hepa1 

hepatoma spheroids  

Hypoxia and chemical hypoxia (by cobalt chloride or 

desferroxamine) induced HIF-1α  and P-gp expression. Prooxidants 

Wartenberg et al., 

2003 
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(H2O2, BSO) upregulated and antioxidants (N-acetylcysteine, 

vitamin E) upregulated HIF-1α  and P-gp 

Murine KHT-LP1 cells Hypoxia induced mdr1a gene amplification in the presence of 

doxorubicin 

Luk et al., 1990 

ABC-transporter-independent drug resistance by hypoxia:  

Non-small cell lung 

cancer cells 

Hypoxia induced KLF5 expression. KLF5 knockdown suppressed 

hypoxia-induced cisplatin resistance and HIF-1α-dependent 

glycolysis  

Gong et al., 2018 

A549/DDP non-small 

lung cancer cells 

Hypoxia induced P-gp and EGFL7 expression and drug resistance Shen et al., 2017 

Gallbladder cancer cells NOX1-induced ROS generation and HIF-1α/P-gp pathway 

activation 

Zhan et al., 2015 

Oal suamous cell 

carcinoma cells 

Hypoxia induced resistance to 5-fluorouracil by G1/S transition 

through upregulation of cell cycle inhibitors (p21, p27) and 

downregulation of cyclin D 

Yoshiba et al., 

2009 

MIA PaCa-2, PANC-1, 

BxPC-3 pancreas cancer 

cells 

Hypoxia did not induce ABCB1 expression Lo et al., 2009 

R3327-AT1 prostate 

cancer cells 

Hypoxia mildly increased P-gp expression, but decreased MRP1 

expression 

Thews et al., 

2008 

MCF-7 and SW1573 

breast cancer cells  

Hypoxia induced resistance to mitoxantrone, but not doxorubicin. 

No changes in P-gp, MRP1 or BCRP expression under hypoxia 

Greijer et al., 

2005 

Neuroblastoma cells Hypoxia induced ABCB1 downregulation Jögi et al., 2004 

Testicular germ cell 

tumors 

Hypoxia induced resistance to cisplatin, etoposide, bleomycin, 4-

OOH-ifosfamide, carboplatin, paclitaxel, gemcitabine, oxaliplatin, 

irinotecan, and mitomycin C  

Koch et al., 2003 

MCF-7 and MCF-7/VP 

breast cancer cells 

Hypoxia reduced 99mTc-sestamibi and 99mTc-tetrofosmin 

radiotracer uptake independent of MRP1 function 

Kinuya et al., 

2003 

U373 MG and PFAT-

MT glioma cells 

Hypoxia induced resistance to BCNU and cisplatin without change 

in drug resistance genes 

Liang et al., 1996 

MDA-468 and MCF-

7/Adr  

Hypoxia did not induce doxorubicin resistance and doxorubicin 

response was not increaed by the P-gp inhibior verapamil 

Kalra et al., 1993 

Murine EMT6/Ro cells  Hypoxia induced resistance to doxorubicin, 5-fluorouracil and 

actinomycin D, but not to colchicine, vincristine or cisplatin. 

Hypoxia did not induce ABCB1 mRNA expression 

Sakata et al., 

1991 

Hypoxia effects in normal tissues and cells:  

Human placenta Hypoxia increased P-gp and ABCB1 mRNA expression, but not 

BCRP expression 

Javam et al., 

2014 

Rats Hypoxia increased P-gp protein expression but not ABCB1 mRNA 

expression 

Fradette et al., 

2007 

Murine stem progenitor 

cells 

Hypoxia induced HIF-1α-mediated BCRP expression Krishnamurthy et 

al., 2004 

Nontransformed, 

primary human 

microvascular 

endothelial cells 

Hypoxia induced HIF-1α-mediated P-gp protein and ABCB1 mRNA 

expression 

Comerford et al., 

2002 

Chinese hamster lung 

fibroblasts  

Hypoxia induced dodoxubicin resistance, which was not reversible 

with verapamil 

Kalra et al., 1993 
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6.4 Approaches to overcome hypoxia-induced MDR 

Given that many (though not all) forms of hypoxia-induced drug resistance are based on the HIF-

1α mediated induction of P-gp overexpression, it is worthwhile to search for strategies to overcome 

resistance by targeting the HIF-1α/P-gp axis (Table 3). This has been attempted by the application 

of ribonucleotide drugs (siRNA, shRNA or RNAi against HIF1A) with or without encapsulation in 

nanoparticles. Remarkably, this approach led not only to down-regulation of HIF-1α, but also of 

P-gp, which can be taken as further evidence that P-gp overexpression is driven by HIF-1α under 

hypoxic conditions. Furthermore, nanoparticles have been used to encapsulate the anticancer drug 

doxorubicin with other drugs (i.e. metformin, chlorin E6) resulting in down-regulation of HIF-1α 

and P-gp as well as in increased doxorubicin concentrations in tumor cells. HIF-1α inhibitors (YC-

1, 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole) and other synthetic compounds (Buthionine 

sulfoximine and thiosemicarbazones) exhibited comparable effects in overcoming hypoxia-

mediated drug resistance. Interestingly, hypoxia-induced and P-glycoprotein-mediated MDR has 

not only been reversed by synthetic compounds and nanoparticles, but also by natural products 

such as the dipeptide L-carnosin and phytochemicals. Epigallocatechin-3-gallate is a polyphenolic 

catechin and a major consistuent of green tea (Camelia sinenis), and hispulidin is a flavone found 

in plants of the genus Artemisia and Salvia and others.   

 

Table 3: Strategies to overcome hypoxia-induced multidrug resistance by nanoparticles, synthetic 

compounds and phytochemicals. 

 
Model Compound Mode of action Reference 

Ribonucleotide drugs with or without nanoparticle encaspulation:  

 HIF1A siRNA 

nanoparticle 

Expression of HIF-1α and P-gp↓, drug efflux↓ Huang et al., 

2019 

PC3 prostate 

cancer cells 

HIF1A siRNA 

nanoparticle 

ABCB1 expression↓, sensitization to 

doxorubicin 

Liu et al., 2012 

HT-29 colon 

cancer cells 

HIF1A shRNA Expression of HIF-1α and P-gp expression in 

vitro and in vivo↓ 

Zhang et al., 

2017 

MCF-7 breast 

cancer spheroids 

HIF1A siRNA P-gp expression↓, intracellular doxorubicin 

accumulation↑ 

Doublier et al., 

2015 

MCF-7 breast 

cancer cells 

HIF1A siRNA  Li et al., 2006 

SPCA1 and 

A549 non-small 

lung cancer cells 

HIF1A RNAi Expression of HIF-1α↓, doxorubicin and 

cisplatin resistance↓, but P-gp was not 

increased under hypoxia 

Song et al., 2006 

Chemical drug-containing nanoparticles:   
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MCF-7/Adr 

breast cancer 

cells 

Doxorubicin-metformin 

cationic liposomes 

Hypoxic stress↓, expression of HIF-1α and P-

gp↓ 

Li et al., 2019 

 Encapsuled doxorubicin 

and chlorin e6 in tumor-

targeted hybrid protein 

oxygen carriers  

Expression of HIF-1α and P-gp↓, drug efflux↓ Luo et al., 2018 

Synthetic compounds:   

Glioblastoma 

xenograft tumors 

YC-1 (HIF-1α inhibitor) ABCB1 expression↓, survival rate to BCNU 

therapy↑ 

Chou et al., 

2012 

HepG2 liver 

cancer spheroids 

YC-1 (HIF-1α inhibitor) Doxorubicin accumulation↑ Liu et al., 2017 

MCF-7 breast 

cancer spheroids 

3-(5'-hydroxymethyl-2'-

furyl)-1-benzylindazole 

(HIF-1α inhibitor) 

P-gp expression↓, intracellular doxorubicin 

accumulation↑ 

Doublier et al., 

2015 

 Lysosomal targeted 

thiosemicarbazones 

Hypoxia-induced doxorubicin resistance↓ Al-Akra et al., 

2018 

HepG2 liver 

cancer cells 

BSO HIF-1α and P-gp expression↓ Jin et al., 2011 

Natural 

products: 

   

HT-29 colon 

cancer cells 

L-carnosine Cell viability↓, HIF-1α and P-gp expression↓ Iovine et al., 

2016 

Gallbladder 

cancer cells 

Hispidulin HIF-1α protein expression, but not mRNA↓, 

AMPK signaling↑, HIF-1α/P-gp signaling↓, 

sensitization to gemcitabine and 5-fluorouracil 

Gao et al., 2015 

PANC-1 

pancreas cancer 

cells 

Epigallocatechin-3-

gallate  

HIF-1α expression↓, P-gp protein and ABCB1 

mRNA↓, cell proliferation↓ 

Zhu et al., 2012 

 

 

7 Conclusions and perspectives 

It is known that tumor drug resistance is frequently multifactorial(Kadioglu et al., 2016). However, 

nowadays it becomes evident that drug resistance is much more complex than initially thought 

some decades ago. A plethora of distinct yet intertwined mechanisms contribute to drug resistance. 

Many cancer patients succumb to the metastastatic disease that is typically non-responsive to 

therapeutic interventions. Hence, the metastatic process and the development of drugresistance are 

seemingly interconnected by common molecular modes of action.  

This situation may explain, at least in part, why drug resistance phenomena dogged oncology 

during the past 7 decades. This situation underscores, how complex drug resistance really is in the 

clinical context. The more we understand the individual factors contributing to the entire 

phenomenon of therapy failure, the more we have tools to develop sophisticated individualized 
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strategies to surmount drug resistance, which ultimately would improve the survival rates of cancer 

patients.  

The emerging questions that arise are: how should we cope with the complexity of drug resistance 

and would it be ever possible to develop efficient strategies to overcome and reverse 

chemoresistance? With the expansion of the integrative research fields of genomics, 

transcriptomics, proteomics, interactomics, and metabolomics of tumors in the past decade, a large 

amount of information was generated. We are yet to grasp and consolidate the impact of these new 

findings in the context of MDR. The future of cancer therapy will be revolutionized by cutting-

edge technologies to handle big data such as artificial intelligence. The future of drug resistance 

research lies in the bioinformatic handling of big data from experimental and clinical settings, in 

order to develop personalized, patient-tailored protocols that will hopefully overcome drug 

resistance in each individual tumor (Efferth et al., 2017; Efferth and Volm, 2005; Volm and Efferth, 

2015).   

To come closer to this final goal, a first step is to develop a hierarchy of mechanisms of drug 

resistance. This is still non-sufficiently understood, i.e. which mechanisms contribute more to drug 

resistance than others in well defined tumors. Based on experimental results in vitro and in vivo, 

the clinial relevance of the prioritized mechanisms should be verified in translational settings. 

While the entire field of drug resistance becomes increasingly complex, the chances and 

opportunities to fight tumor refractoriness also increase, which presents a hope for novel treatment 

strategies for cancer patients worldwide.   
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Figure 1.  Factors involved in MDR due to TAMs.  Factors originating from cancer cell and TME 

such as CCL-2 to 8, CXCL-12, VEGF, PDGF and M-CSF induce the formation of macrophages 

from monocytes. Factors secreted from TAMs (IL-6, TGF-β, MFG-E8, PDGF, G-CSF, EGF, IGF, 

VEGF, and CCL15) or from cancer cells (e.g. IL-6 and PGE2) that were exposed to chemotherapy 

are involved in MDR as described in detail in the text. 
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Figure 2.  Factors involved in MDR due to MDSCs. Factors originating from cancer cell and 

TME such as CCL-2 and 5, CXCL-12, IL-6 and G-CSF induce the formation of MDSCs from 

immature myeloid cells. MDSCs expressing certain chemokine receptors (CX3CR1, CCR5 and 

CXCR2) are effectively recruited to TME and involved in MDR partly by secreting TGF-β, 

S100A8, S100A9 and PGE2. Targeting MDSCs and chronic inflammation with various therapeutic 

approaches may overcome MDR, as described in detail in the text.  
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Figure 3. A mutual play between fibroblasts, CAFs and tumor cells resulting in metastatic 

drug-resistant tumors. Loss of Cav-1 or Cav-2, downregulation of miR-29b, upregulation of β1-

integrin, TIAM1 or miR-21 in CAFs are involved in the formation of metastatic drug-resistant 

tumors. Dying tumor cells release HMGB1, which activates stromal fibroblasts and further 

development of metastatic drug-resistant tumors.  
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Figure 4. EMT transcription factors contribute to the MDR phenotype through ABC transporter-

dependent and -independent mechanisms; among the latter is the metabolic rewiring in cancer 

cells. 
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