Journal article Open Access

Machine Learnable Fold Space Representation based on Residue Cluster Classes

Corral-Corral, Ricardo; Del Rio, Gabriel; Chavez, Edgar


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Computational Biology</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Protein Structure</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CATH</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">SCOP</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Protein Fold Space</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Sperner Family</subfield>
  </datafield>
  <controlfield tag="005">20200120151031.0</controlfield>
  <controlfield tag="001">50192</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Biochemistry and Structural Biology, Instituto de Fisiologa Celular, Universidad Nacional Autónoma de México, México D. F., México</subfield>
    <subfield code="a">Del Rio, Gabriel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centro de Investigación Científica y de Educación Superior de Ensenada, México</subfield>
    <subfield code="a">Chavez, Edgar</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1362765</subfield>
    <subfield code="z">md5:00205c1cdf9195587b001eead40573ed</subfield>
    <subfield code="u">https://zenodo.org/record/50192/files/MachineLearnableFoldSpaceRepresentationbasedonRCC_.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2015-12-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:50192</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1-7</subfield>
    <subfield code="p">Computational Biology and Chemistry</subfield>
    <subfield code="v">59</subfield>
    <subfield code="y">2015</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Biochemistry and Structural Biology, Instituto de Fisiologa Celular, Universidad Nacional Autónoma de México, México D. F., México</subfield>
    <subfield code="a">Corral-Corral, Ricardo</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Machine Learnable Fold Space Representation based on Residue Cluster Classes</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Motivation&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Protein fold space is a conceptual framework where all possible protein folds exist and ideas about protein structure, function and evolution may be analyzed. Classification of protein folds in this space is commonly achieved by using similarity indexes and/or machine learning approaches, each with different limitations.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Results&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;We propose a method for constructing a compact vector space model of protein fold space by representing each protein structure by its residues local contacts. We developed an efficient method to statistically test for the separability of points in a space and showed that our protein fold space representation is learnable by any machine-learning algorithm.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Availability&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;An API is freely available at&amp;nbsp;https://code.google.com/p/pyrcc/.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isSupplementedBy</subfield>
    <subfield code="a">10.5281/zendoo.50193</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.compbiolchem.2015.07.010</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
318
184
views
downloads
Views 318
Downloads 184
Data volume 250.7 MB
Unique views 315
Unique downloads 181

Share

Cite as