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Abstract We present a reformulation of the Quantum Query Model (QQM) without
considering the measurement step. Our new formulation is described by a set of
vectors satisfying some properties, which we call a Block Set. Given an algorithm in
QQM we prove that there is an equivalent algorithm in the Block Set Formulation
(BSF). If we keep the same measurement step, then we prove that both formulations
have the same Gram Matrix of the output states, and the BSF allows us to describe
it explicitly. Finally, we test the advantages of BSF by applying this approach to the
construction of quantum exact algorithms.
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The QQM is a framework that allows us to express most known quantum algorithms. Thealgorithms represented by this model consist on a set of unitary operators acting over afinite Hilbert space, and a final measurement step consisting on a set of projectors. A lack offrameworks for constructing quantum algorithms is specially noticeable for the exact case,which can be partially explained by the following reasons:
• Currently, some few exact quantum algorithms are known that could be combined forcalculating more complex functions. Years ago, the only exact quantum algorithms knownto produce a speed-up over classical algorithms for total functions were those that usedDeutsch’s algorithm as a subroutine.
•Numerical methods like Barnum et al. (2003) just give us approximate solutions, whoseresults can be very hard to translate into analytically defined algorithms for the exactcase.By using a formulation based on span programs several important results have been ob-tained for bounded-error algorithms. Ambainis (2013) proposes as a research problem thedevelopment of tools for designing exact quantum algorithms. This work proposes another

reformulation of the quantum query with the goal of making it easier to build exact quan-
tum algorithms.

Motivation

In the quantum query model, the execution of an algorithm for input x is given by a finalstate ∣∣∣Ψfx〉 = UtOxUt−1...U1OxU0 |0, 0〉, where Ui is a unitary operator and Ox is the oracleoperator. We define the oracle as Ox |i〉 |Ψi〉 = (−1)xi |i〉 |w〉, such that x0 = 0, i ∈ {0, .., n}and w are ancilla bits (or, working register).We prove that the application of unitary operators before the measurement step in the
QQM is equivalent to decomposing an unit vector into a sum of vectors and then inverting
some of their relative phases. We call those vectors a Block Set. They must fulfill a list ofproperties.
Definition 1. Let n, t ≥ 0. We say that an indexed set

{
|Ψ (k)〉 ∈ HQ ⊗HW : k ∈ Zt+1

n+1} is
a Block Set for the ordered pair of Hilbert spaces

(
HQ, HW

)
, if:

(i)
n∑

k0=0...
n∑

kt=0
∥∥|Ψ (k0, .., kt)〉∥∥2 = 1.

(ii)
〈Ψi (b0, .., bt−i) | Ψi (c0, .., ct−i)〉 = 0 if bt−i 6= ct−i for 0 ≤ i ≤ t,
where

∣∣Ψi (a0, .., at−i)〉 = n∑
k1=0...

n∑
ki=0 |Ψ (a0, .., at−i, k1, .., ki)〉.

(iii) n = dim (HQ)− 1.
(iv) dim (H (i, j)) ≤ dim (HW ) ∀i, j,

where H (i, j) = span
{∣∣Ψt−i (a0, .., ai−1, j)〉 : ak ∈ Zn+1}.Let Sx := {i : xi = 1}, where xi is the i-th bit in x . The Dirac measure, denoted as δz(A),equals 1 if z ∈ A and 0 otherwise. The output state of the input x under a Block Set{

|Ψ (k)〉 ∈ HQ ⊗HW : k ∈ Zt+1
n+1} is defined as

∣∣∣Ψfx〉 = n∑
kt=0 ...

n∑
k0=0(−1)∑t

i=0 δki(Sx) |Ψ (k0, ..., kt)〉 . (1)
For any QQM algorithm with t queries there is a t-dimensional Block Set with the same
Gram matrix of final states. This formulation is useful for exact quantum algorithms. Weapplied it successfully for a generalization of Deutsch-Jozsa algorithm.

Fig. 1: The relation between both models is not bijective. The red box means that all BSF or QQMalgorithm inside it have the same Gram matrix.

Block Set Formulation
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We say that a Block Set is orthogonal if their elements are pairwise orthogonal. Let{
|Ψ (k)〉 ∈ HQ ⊗HW : k ∈ Zt+1

n+1} be an orthogonal real Block Set for (HQ, HW ), then theGram matrix of their output states {∣∣∣Ψfx〉} is given by
G = 2∑

k

(
P̄k + Q̄k)∥∥|Ψ (k)〉∥∥2− J, (2)

where J is the matrix with all entries equal to 1. This explicit representation of the finalGram matrix gives us much control over the algorithm that we design.

Fig. 2: In an orthogonal Block Set, each element k controls a binary matrix P̄k + Q̄k in Equation (2). Thus,each element has an independent influence over the Gram matrix. The figure represents such matrices forsome elements in a two-dimensional orthogonal Block Set: (a) (0, 0), (b) (0, 1), (c) (0, 2), (d) (1, 2), (e) (0, 3), (f )(1, 3). Entries 1 are represented in black and entries 0 in red.
By using orthogonal Block Sets, we can obtain a quantum exact algorithm that distin-
guishes two sets X, Y ⊂ {0, 1}n in t queries. This is equivalent to the following problem.We denote by ⊕ the XOR operation between two binary inputs and by XOR(X, Y ) the setgenerated by the bitwise XOR operation amongst all elements in X and Y .
Definition 2 (XOR-Weighted Problem). Let J ⊂ Ztn+1 and let X, Y ⊂ {0, 1}n. Take a set of

boolean formulas
{⊕
i∈j
xi : x0 = 0, j ∈ J}, where each formula is associated to a value wj .

Find weights wj > 0 satisfying both conditions: (i)
∑
j∈J

wj = 1; and (ii) the sum of weights

associated to formulas satisfied by z ∈ XOR (X, Y ) is equal to 1/2.Solving the XOR-Weighted Problem in the BSF is equivalent to solving a linear system ofequations using just positive variables which sum is 1. Such reduction could be applied to
any boolean function f in order to find an exact quantum algorithm in BSF, even though
an optimal solution is not guaranteed.Some QQM algorithms have a simple correspondence to BSF. For instance, the followingBSF algorithm is equivalent to Deutsch-Jozsa algorithm. We define an orthogonal BlockSet {|Ψ (i)〉 : 0 < i ≤ n}, such that ∥∥|Ψ (i)〉∥∥2 = 1

n for all 0 < i ≤ n. In terms of the XOR-Weighted Problem, this is equivalent to taking the set of formulas J = {xi : 0 < i ≤ n} andsetting weight wi = 1
n to each xi such that 0 < i ≤ n. In this case, if we take X as the set ofbalanced inputs and take Y as the set of constant inputs, then any element z ∈ XOR(X, Y )satisfies exactly half the formulas from J .

Gram Matrices and an Application

Our theoretical result was the Block Set Formulation, which is a reformulation of the Quan-tum Query Model such that the unitary operators are replaced by phase inversions over aset of vectors. This contribution gives an alternative interpretation on how quantum queryalgorithms work. Our main algorithmic motivation is the application of the BSF to the chal-lenging problem of constructing new exact quantum algorithms. With BSF, this problem maybe reduced to a linear system and allow us to obtain non-trivial quantum exact algorithmsfor a wide range of functions. This kind of analysis should be much easier in BSF than inother linear formulations such as semi-definite programming.

Conclusions
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