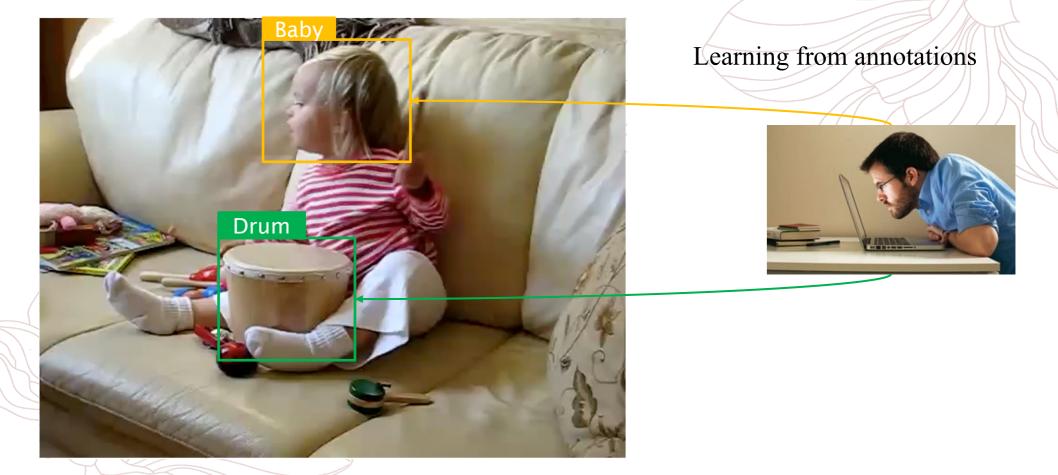


Self-supervised Audiovisual Learning

Di Hu Gaoling School of Artificial Intelligence

Renmin University of China

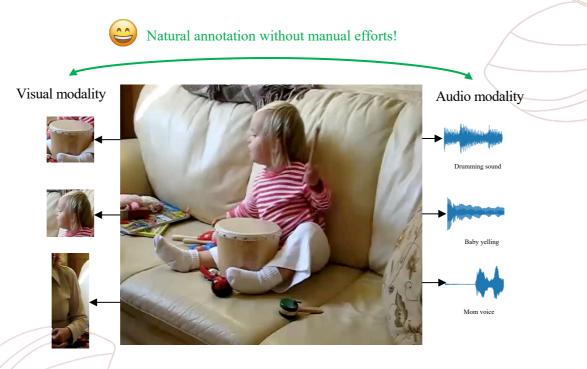
Email: dihu@ruc.edu.cn 19-06-2021


Outline

- Topic Overview
 - What is and why using self-supervised audiovisual learning
- Approaches Overview
 - What are the state of the art approaches and what is the inherent selfsupervision
 - Summary
 - What are the core challenges and future directions


Outline

- Topic Overview
 - What is and why using self-supervised audiovisual learning
- Approaches Overview
 - What are the state of the art approaches and what is the inherent selfsupervision
 - Summary
 - What are the core challenges and future directions

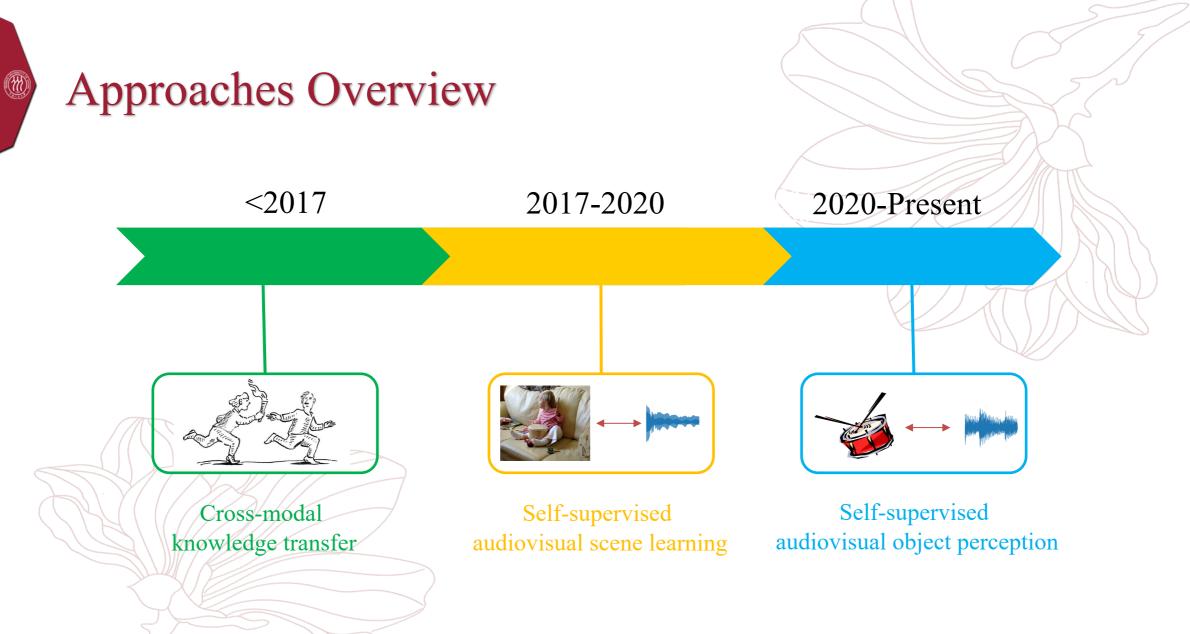

What is self-supervised audiovisual learning

But this is not the real-world!

What is self-supervised audiovisual learning

Unlike the conventional unimodal case, video is a rich source of audio and visual modalities, where the correlation between modalities can be used as a supervisory signal for self-supervised learning.

5


Why using self-supervised audiovisual learning

Reliable!

Sound is produced by the oscillation of object !

Free!

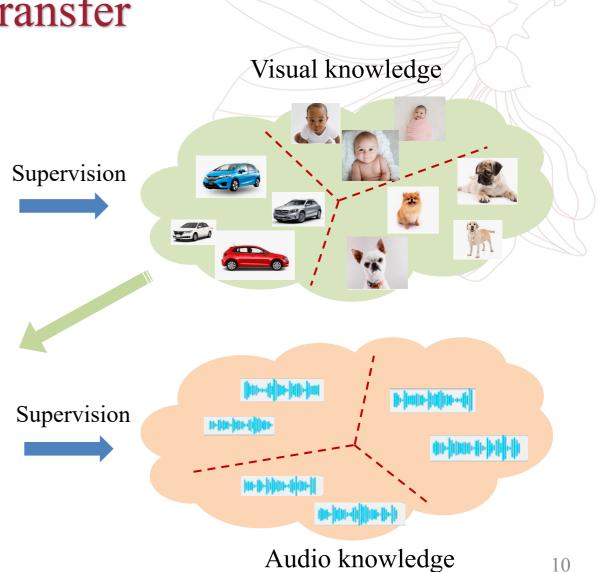
Pervasive!

Outline

- Topic Overview
 - What is and why using self-supervised audiovisual learning
- Approaches Overview
 - What are the state of the art approaches and what is the inherent selfsupervision
 - Summary
 - What are the core challenges and future directions

Approaches Overview

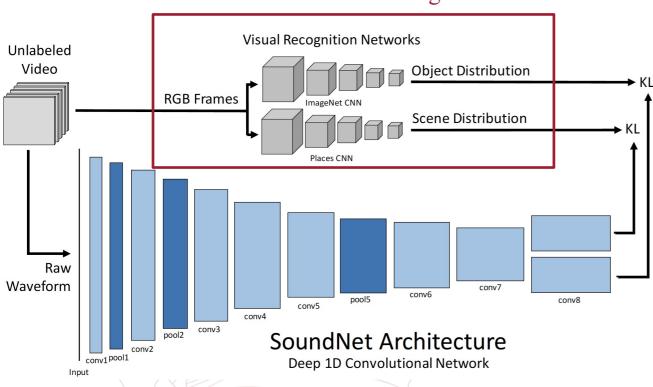
- Cross-modal knowledge transfer
- Self-supervised audiovisual scene learning



• Self-supervised audiovisual object perception

Cross-modal knowledge transfer

Image database



Audio database

Cross-modal knowledge transfer

Visual knowledge

Unlabeled Video Dataset

Feature Evaluation

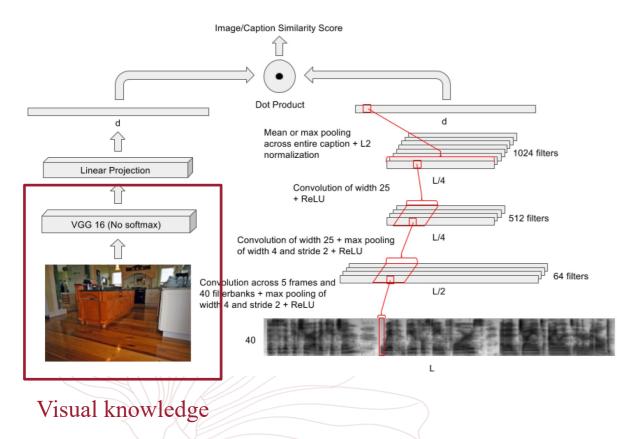

Method	Accuracy
RG [29]	69%
LTT [21]	72%
RNH [30]	77%
Ensemble [34]	78%
SoundNet	88%

Table 3: Acoustic Scene Classification on DCASE: We evaluate classification accuracy on the DCASE dataset. By leveraging large amounts of unlabeled video, SoundNet generally outperforms hand-crafted features by 10%.

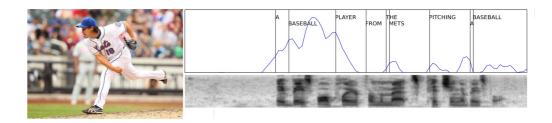

	Accuracy on		
Method	ESC-50	ESC-10	
SVM-MFCC [28]	39.6%	67.5%	
Convolutional Autoencoder	39.9%	74.3%	
Random Forest [28]	44.3%	72.7%	
Piczak ConvNet [27]	64.5%	81.0%	
SoundNet	74.2%	92.2%	
Human Performance [28]	81.3%	95.7%	

Table 4: Acoustic Scene Classification on ESC-50 and ESC-10: We evaluate classification accuracy on the ESC datasets. Results suggest that deep convolutional sound networks trained with visual supervision on unlabeled data outperforms baselines.

Cross-modal knowledge transfer

Image-spectrogram similarity

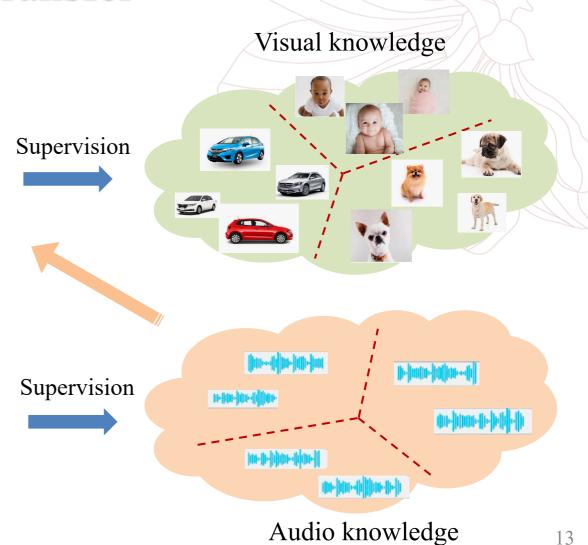
Image2sound retrieval

many cars are parked in the large parking lot there a large residential neighborhood with many apartment buildings

a sidewalk in front of the building there are bushes and a car parked

several green trees along a street with many parked cars

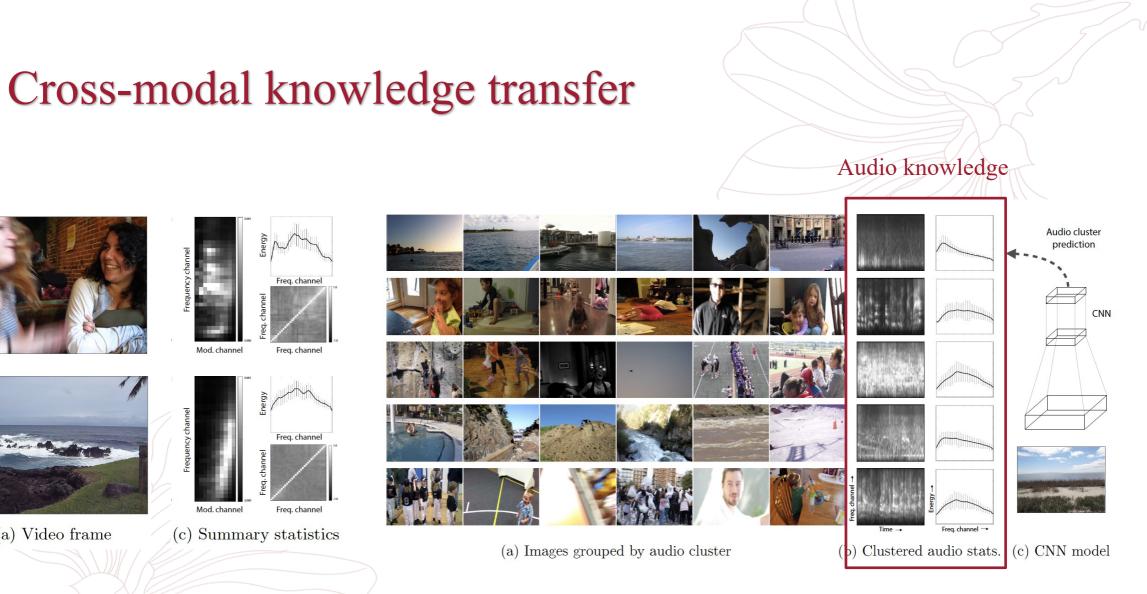
three cars are parked next to each other there's tar everywhere


car one on down the line in a factory assign sale and stop the first <code><spoken_noise></code> is

[4] D. Harwath, A. Torralba, and J. Glass, "Unsupervised Learning of Spoken Language with Visual Context," *Advances in Neural Information Processing Systems*, 2016. [5] D. Harwath and J. Glass, "Learning word-like units from joint audio-visual analysis," *Proc. Annual Meeting of the Association for Computational Linguistics*, 2017.

Cross-modal knowledge transfer

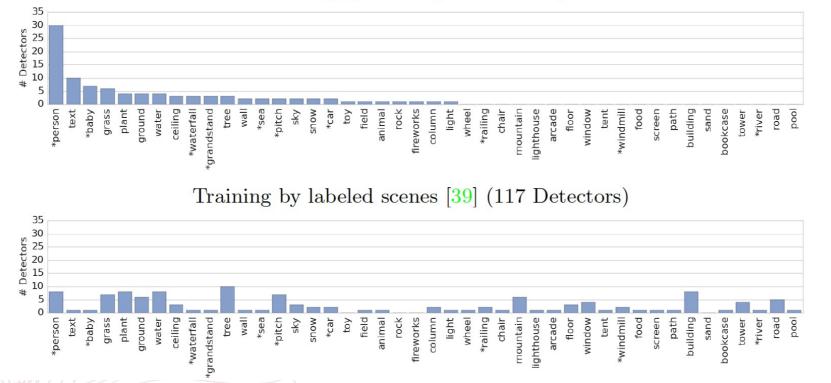
Image database



Vilabilla

Audio database

13



[6] A. Owens, J. Wu, J. McDermott, W. Freeman, and A. Torralba, "Ambient sound provides supervision for visual learning," Proc. European Conf. Computer Vision, 2016.

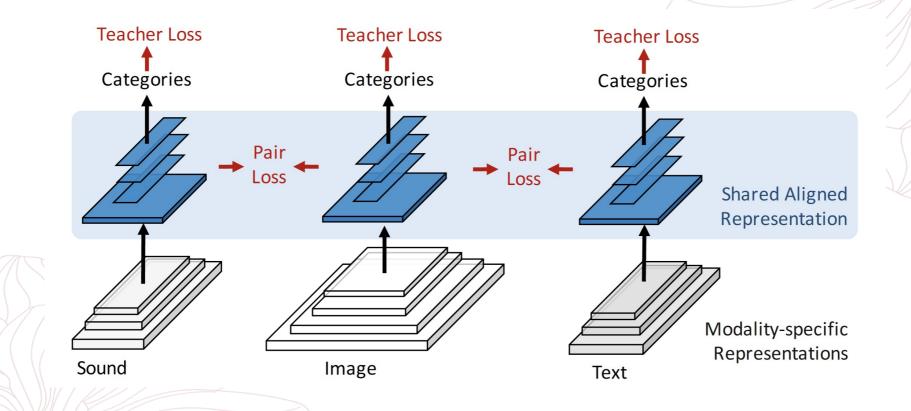
(a) Video frame

Cross-modal knowledge transfer

Training by sound (91 Detectors)

[6] A. Owens, J. Wu, J. McDermott, W. Freeman, and A. Torralba, "Ambient sound provides supervision for visual learning," Proc. European Conf. Computer Vision, 2016.

Cross-modal knowledge transfer


	ualizations of the network trained	d by sound
field	$_{ m sky}$	grass
snowy ground	ceiling	car
		9 👷 🥙 🖉
waterfall	waterfall	sea
1 4 4 4		
baby	baby	baby
person	person	person
person	person	person
grandstand	grandstand	$\operatorname{grandstand}$

Method	VOC Cls. (%mAP)				SUN397 (%acc.)														
	max5	pool	5 fc	6	fc7	max	с5 р	ool5	fc6		fc7								
Sound (cluster)	36.7	45.8	8 44	.8	44.3	17.	3 2	22.9	20.7	7	14.9	-	Met	hod				(%	mAP
Sound (binary)	39.4	46.	7 47	.1 4	47.4	17.	1 2	22.5	21.	3	21.4		Ran	dom	init	. [20	1	1	41.3
Sound (spect.)	35.8	44.0) 44	.4	44.4	14.	6 1	19.5	18.0	3	17.7		Sour				1		44.1
Texton-CNN	28.9	37.	5 35	.3	32.5	10.	7 1	15.2	11.4	1	7.6		Sour	nd (t	oinai	cv)			43.3
K-means [20]	27.5	34.8	3 33	.9	32.1	11.	6 1	14.9	12.8	3	12.4		Mot						47.4
Fracking [35]	33.5	42.2	2 42	.4	40.2	14.	1 1	18.7	16.2	2	15.1		Egoi	noti	on [1,20]			41.8
Patch pos. [4]	27.7	46.	7 -		-	10.	0 2	22.4	-		-		Pate	h po	os. [4	1,20]			46.6
Egomotion [1]	22.7	31.	L -		-	9.1	L 1	11.3	-		-		Cali	b. +	Pat	ch [4	4,20] .	51.1
mageNet [21]	63.6	65.	6 69	.6 '	73.6	29.	8 3	34.0	37.8	3	37.8	_	Imag	geNe	et [2]	1]			57.1
		00	0	9	66.2	39.	1 1	12.1	46.	1	48.8		Plac	es [3	<u>1</u>				52.8
	59.0 mage	63.: e cla			_							-	(b)			niną	g de	etec	tion
(a) I	mage	e cla	ssific	atio	on w	ith l	ine	ar S	VM	lin	dog	hrs	(b)	Fin	netu				
(a) I	mage aer 1	e cla bk b	ssific	atio btl	n w	ith l	ine: cat	ar S	VM		0		(b) mbk	Fin	netu pot	shp	sfa	trn	tv
(a) I: Method Sound (cluster)	mage aer	e clas bk b 47 3	rd bt	atio btl	on w bus 45	ith l	ine: cat 45	ar S chr o 42	VM	37	28	73	(b) mbk 58	Fin prs 85	pot 25	shp 26	sfa 32	trn 67	tv 42
(a) I Method Sound (cluster) Sound (binary)	$\operatorname{mage}_{\operatorname{aer}}$	e clas bk b 47 3 45 3	ssific rd bt 38 54 38 56	atio btl 15 16	on w bus 45 47	ith l car 66 65	ines cat 45 45	$\frac{\text{chr } \alpha}{42}$	VM cow c 23 25	37 37	28 28	73 74	(b) mbk 58 61	Fir. prs 85 85	pot 25 26	shp 26 39	sfa 32 32	trn 67 69	tv 42 38
(a) I Method Sound (cluster) Sound (binary) Sound (spect.)	mage aer 68 69 65	e clas bk b 47 \$ 45 \$ 40 \$	rd bt 88 54 88 56 85 54	atio btl 15 16 14	01 W bus 45 47 42	ith l car 66 65 63	$\frac{\text{cat}}{45}$ 41	ar S chr o 42 41 39	VM 23 25 24	37 37 32	28 28 25	73 74 72	(b) mbk 58 61 56	Fin prs 85 85 81	pot 25 26 27	shp 26 39 33	sfa 32 32 28	trn 67 69 65	tv 42 38 40
(a) I Method Sound (cluster) Sound (binary) Sound (spect.) Texton-CNN	$\begin{array}{c} \text{aer} \\ 68 \\ 69 \\ 65 \\ 65 \\ 65 \end{array}$	e clas bk b 47 3 45 3 40 3 35 2	rd bt 88 54 88 56 85 54 28 46	atio btl 15 16 14	0 W bus 45 47 42 31	car 66 63 63	ine: cat 45 45 41 30	ar S chr o 42 41 39 41	VM 23 25 24 17	37 37 32 28	28 28 25 23	73 74 72 64	(b) mbk 58 61 56 51	Fin prs 85 85 81 74	pot 25 26 27 9	shp 26 39 33 19	sfa 32 32 28 33	trn 67 69 65 54	tv 42 38 40 30
(a) I Method Sound (cluster) Sound (binary) Sound (spect.) Texton-CNN K-means	aer 68 69 65 65 61	e clas bk b 47 3 45 3 40 3 35 2 31 2	rd bt 38 54 38 56 35 54 28 46 27 49	atio btl 15 16 14 11	n w 45 47 42 31 27	car 66 65 63 63 58	ine: cat 45 45 41 30 34	ar S chr o 42 41 39 41 36	VM 23 25 24 17 12	37 37 32 28 25	28 28 25 23 21	73 74 72 64 64	(b) mbk 58 61 56 51 38	Fin prs 85 85 81 74 70	pot 25 26 27 9 18	shp 26 39 33 19 14	sfa 32 32 28 33 25	trn 67 69 65 54 51	tv 42 38 40 30 25
(a) I Method Sound (cluster) Sound (binary) Sound (spect.) Texton-CNN K-means Motion [35]	aer 68 69 65 65 61 67	e clas bk b 47 3 45 3 40 3 35 2 31 2 35 4	rd bt 88 54 88 56 85 54 28 46	atio btl 15 16 14 11 9 11	0 W bus 45 47 42 31	car 66 65 63 63 58 62	ine: cat 45 45 41 30 34 35	ar S chr o 42 41 39 41	VM 23 25 24 17 12 21	37 37 32 28	28 28 25 23	73 74 72 64	(b) mbk 58 61 56 51	Fir prs 85 85 81 74 70 78	pot 25 26 27 9 18 22	shp 26 39 33 19	sfa 32 32 28 33	trn 67 69 65 54	tv 42 38 40 30
(a) I Method Sound (cluster) Sound (binary) Sound (spect.) Texton-CNN K-means	aer 68 69 65 65 61 67 70	e clas bk b 47 3 45 3 40 3 35 4 31 2 35 4 44 4	rd bt 88 54 38 56 35 54 28 46 27 49 11 54	atio btl 15 16 14 11 9 11	0 m w 45 47 42 31 27 35 44	car 66 65 63 63 58 62 66	ine: cat 45 45 41 30 34 35	$\begin{array}{c} \text{ar S} \\ \hline \\ \text{chr } \\ 42 \\ 41 \\ 39 \\ 41 \\ 36 \\ 39 \end{array}$	VM 23 25 24 17 12 21 24	37 37 32 28 25 30	28 28 25 23 21 26	73 74 72 64 64 70	(b) mbk 58 61 56 51 38 53	Fin prs 85 85 81 74 70	pot 25 26 27 9 18	shp 26 39 33 19 14 32	sfa 32 32 28 33 25 37 39	trn 67 69 65 54 51 61	$\begin{array}{c} 42 \\ 38 \\ 40 \\ 30 \\ 25 \\ 34 \end{array}$
Method Sound (cluster) Sound (binary) Sound (spect.) Texton-CNN K-means Motion [35] Patches [4]	aer 68 69 65 65 61 67 70 60	$\begin{array}{c} \text{bk} & \text{b} \\ 47 & 3 \\ 45 & 3 \\ 40 & 3 \\ 35 & 2 \\ 31 & 2 \\ 35 & 4 \\ 44 & 4 \\ 24 & 2 \\ \end{array}$	rd bt 88 54 38 56 35 54 28 46 27 49 41 54 3 60	atio btl 15 16 14 11 9 11 12 10	bus 45 47 42 31 27 35 44 19	car 66 65 63 58 62 66 57	ine: cat 45 41 30 34 35 52	ar S chr d 42 41 39 41 36 39 44 27	VM 23 23 24 17 12 21 24 11	37 32 28 25 30 45	28 28 25 23 21 26 31	73 74 72 64 64 70 73	(b) mbk 58 61 56 51 38 53 48	Fir prs 85 85 81 74 70 78 78	pot 25 26 27 9 18 22 14	shp 26 39 33 19 14 32 28	sfa 32 32 28 33 25 37 39	trn 67 69 65 54 51 61 62	tv 42 38 40 30 25 34 43

(c) Per class mAP for image classification on PASCAL VOC 2007

[6] A. Owens, J. Wu, J. McDermott, W. Freeman, and A. Torralba, "Ambient sound provides supervision for visual learning," Proc. European Conf. Computer Vision, 2016.

Cross-modal knowledge transfer

More general cross-modal transfer framework

Input Query

Cross-modal knowledge transfer

Engine-like Units

Underwater-like Units

Running-like Units

"bubbles"

a large red fire truck on snowy ground

an old red truck sits in the foothills of a mountain

a row of old cars parked on grass

old truck parked in the grass

scuba diver underwater

craft floating in water

the bird is swimming

"auick steps

polar bear in the water

Wind-like Units

clouds are in the sky clear blue sky without any clouds a clear blue sky with kites white clouds in blue sky

Dog-like Units

a small dog on tv behind the words a jog jumps in front of a television in a living room black and white cow standing in a field a cat laying on a couch next to a laptop computer

Church-like Units

a large church like building with clock on the steeple bell tower rises over an old church a tall cathedral style building with a clock on top a tall ornate church with lots of windows dominates the scenery

Semantic Units across modalities

- A dog lying down on harking barkin the beach - The dog belongs to the homeowner train engine train nassir rain passin train. - The train platform - A person stands on water crashing boat engine The choppy water water skis in the water the man is riding - A couple of kavakers paddling through water Cross-modal retrieval

Sound Retrievals

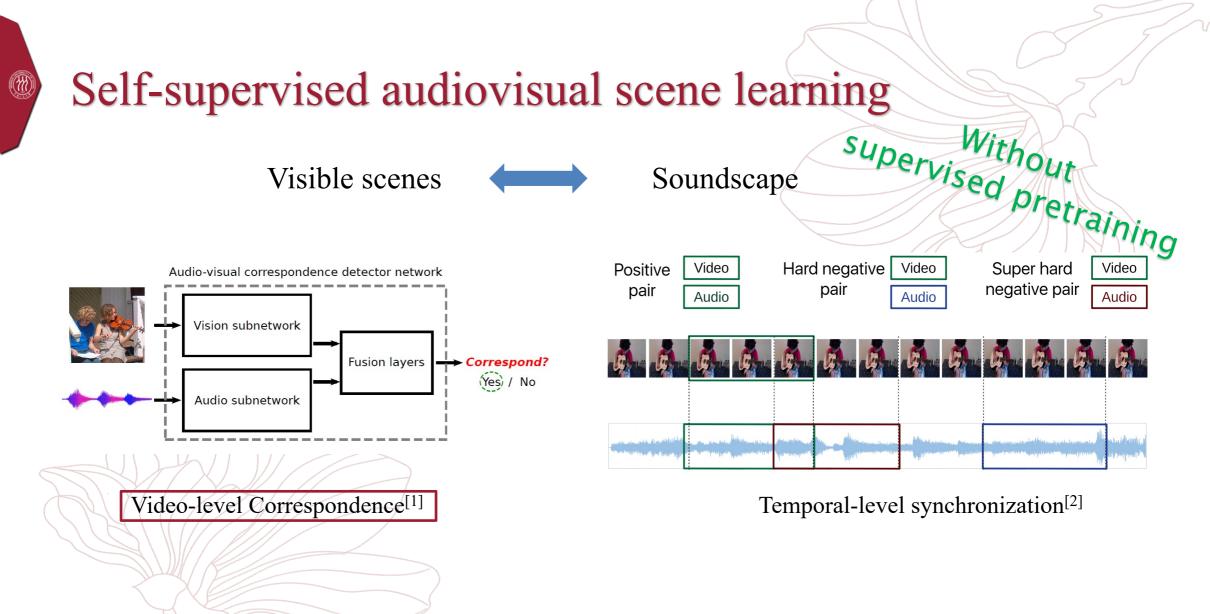
- Steel tracks under the

Text Retrievals

Image Retrievals

a man playing frisbee and/or soccer in the grass two women in grassy field playing with a frisbee two children kick a soccer ball back and forth in a park a gathering in the park and some are playing frisbee

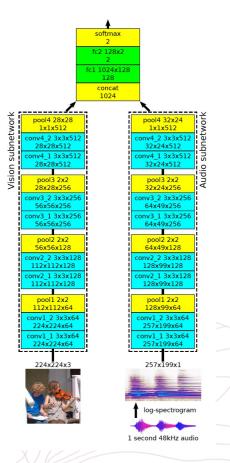
"auick


[7] Y. Aytar, C. Vondrick, and A. Torralba, "See, hear, and read: Deep aligned representations," arXiv:1706.00932, 2017.

Approaches Overview

- Cross-modal knowledge transfer
- Self-supervised audiovisual scene learning

• Self-supervised audiovisual object perception

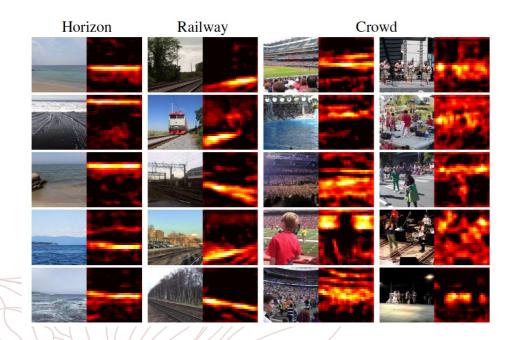

[1] R. Arandjelovic and A. Zisserman, "Look, Listen and Learn," Proc. IEEE Conf. Computer Vision, 2017.

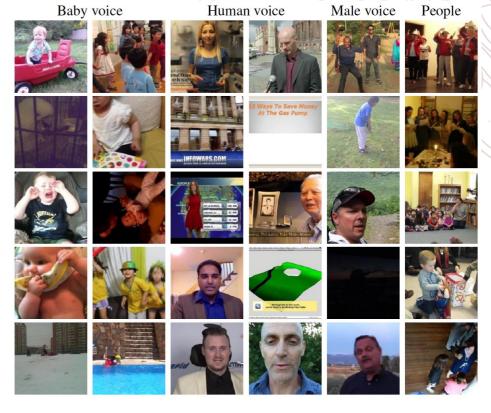
[2] B. Korbar, D. Tran, and L. Torresani, "Cooperative learning of audio and video models from self-supervised synchronization," Advances in Neural Information Processing Systems, 2018.

Visual feature

evaluation

Audio feature evaluation

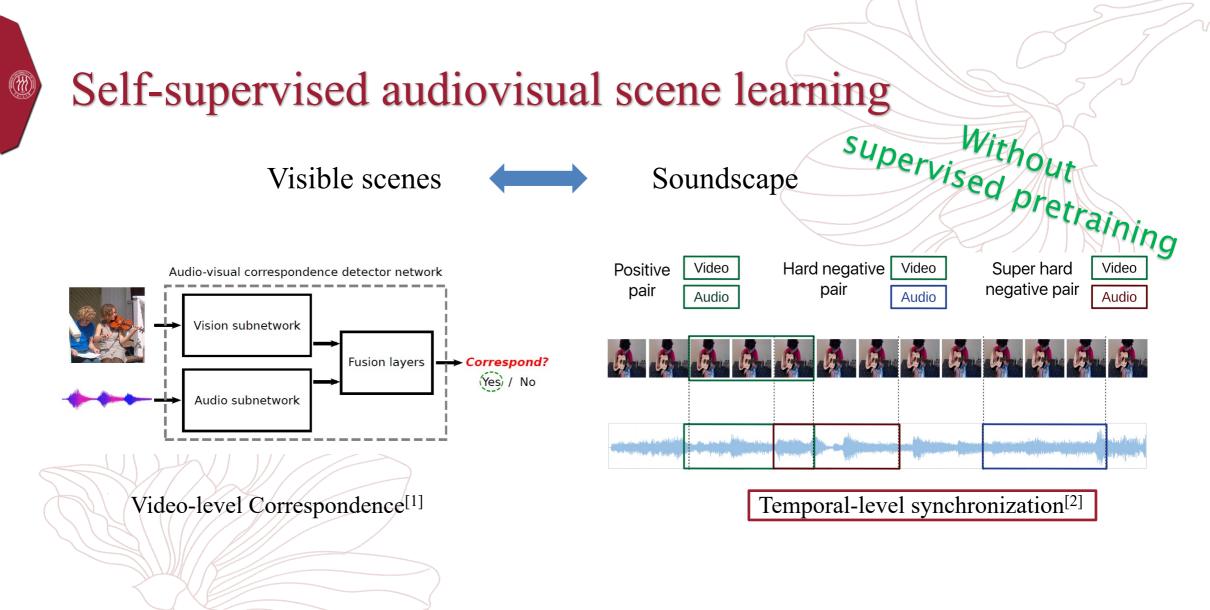

Method	Top 1 accuracy
Random	18.3%
Pathak et al. [24]	22.3%
Krähenbühl et al. [16]	24.5%
Donahue et al. [7]	31.0%
Doersch et al. [6]	31.7%
Zhang et al. [36] (init: [16])	32.6%
Noroozi and Favaro [21]	34.7%
Ours random	12.9%
Ours	32.3%



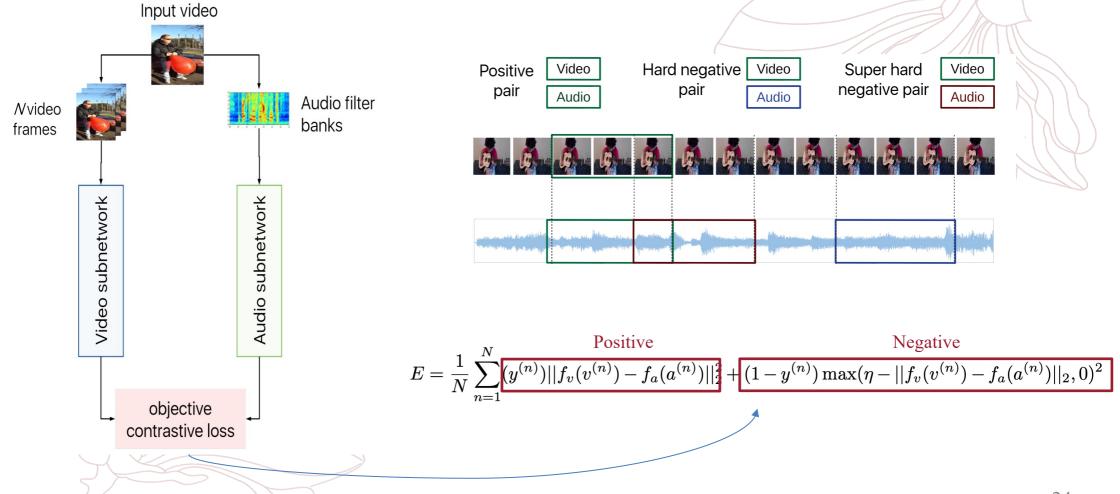
(a) ESC-50		(b) DCASE			
Method	Accuracy	Method	Accuracy		
SVM-MFCC [26]	39.6%	RG [27]	69%		
Autoencoder [2]	39.9%	LTT [19]	72%		
Random Forest [26]	44.3%	RNH [28]	77%		
Piczak ConvNet [25]	64.5%	Ensemble [32]	78%		
SoundNet [2]	74.2%	SoundNet [2]	88%		
Ours random	62.5%	Ours random	85%		
Ours	79.3%	Ours	93%		
Human perf. [26]	81.3%				

[1] R. Arandjelovic and A. Zisserman, "Look, Listen and Learn," Proc. IEEE Conf. Computer Vision, 2017.

Video-level Correspondence



Audio concepts


Semantic heatmaps of visual concepts

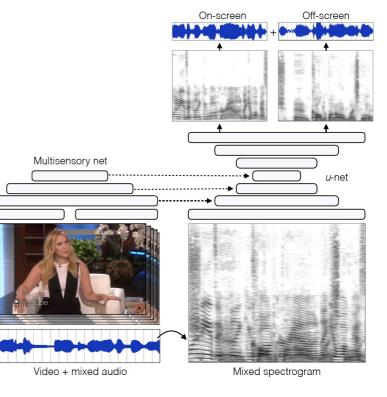
[1] R. Arandjelovic and A. Zisserman, "Look, Listen and Learn," Proc. IEEE Conf. Computer Vision, 2017.

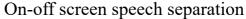
[1] R. Arandjelovic and A. Zisserman, "Look, Listen and Learn," Proc. IEEE Conf. Computer Vision, 2017.

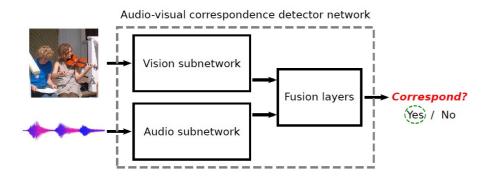
[2] B. Korbar, D. Tran, and L. Torresani, "Cooperative learning of audio and video models from self-supervised synchronization," Advances in Neural Information Processing Systems, 2018.

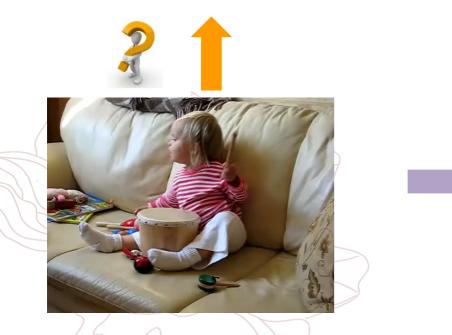
[2] B. Korbar, D. Tran, and L. Torresani, "Cooperative learning of audio and video models from self-supervised synchronization," Advances in Neural Information Processing Systems, 2018.

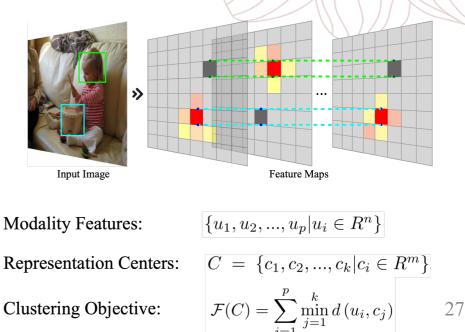
Sound is produced by the oscillation of object !

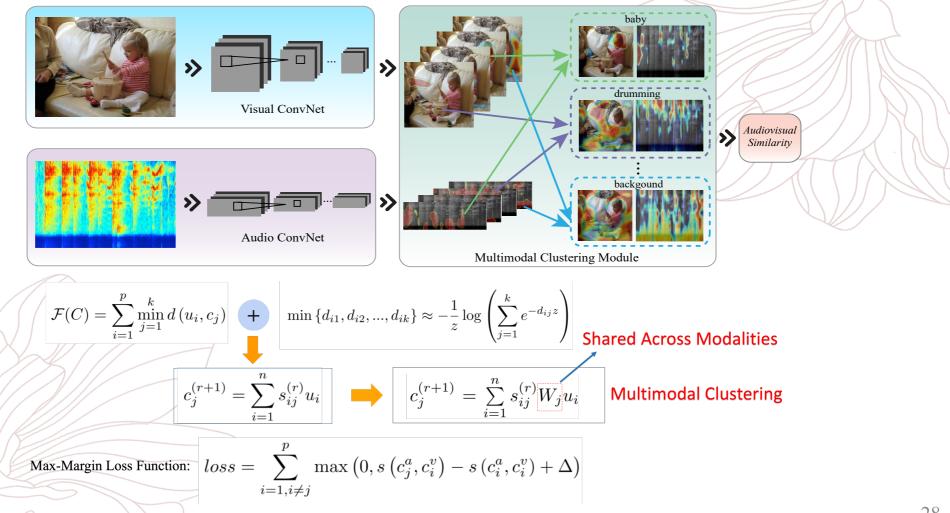



Static image



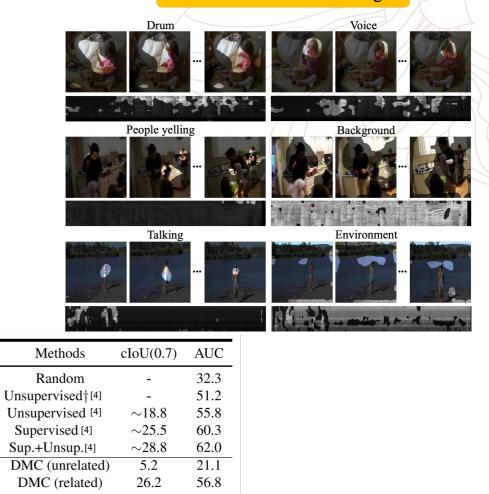




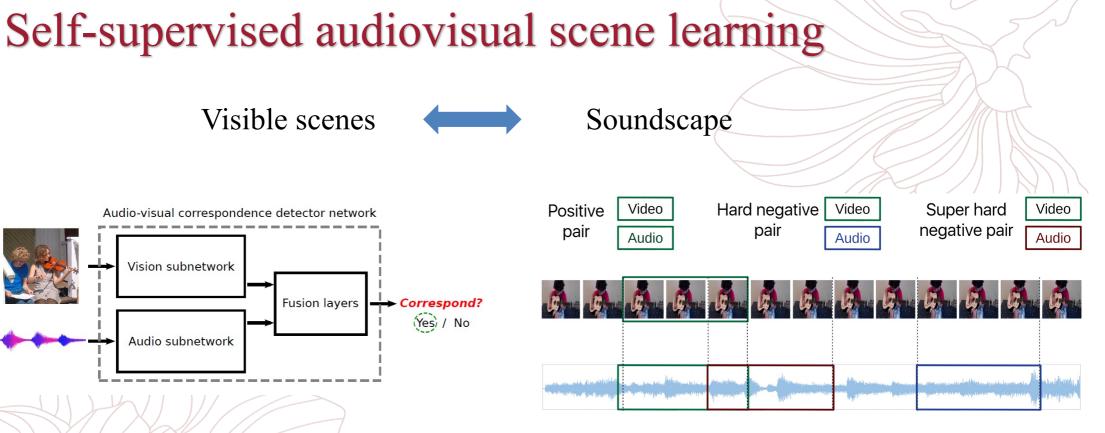

[8] A. Owens, and A.Efros, "Audio-visual scene analysis with self-supervised multisensory features," Proc. European Conf. Computer Vision, 2018.

- The unconstrained visual scene contains multiple sound-makers.
- The sound-maker does not always produce distinctive sound.
- The sound-maker may be even out of the screen



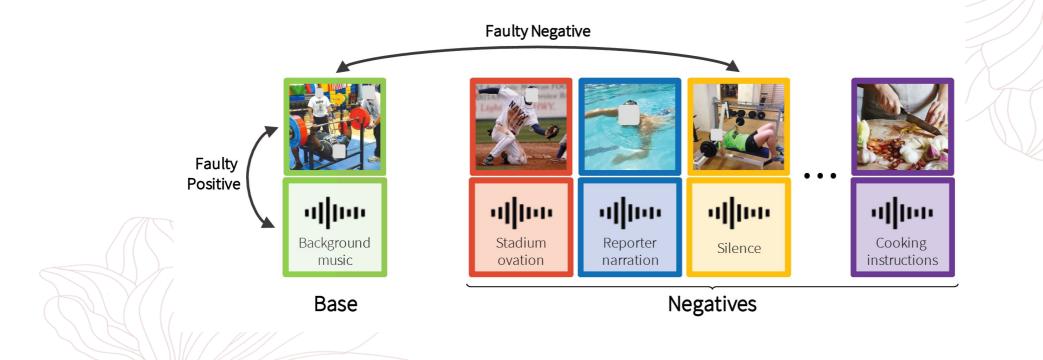

Feature Evaluation

(a) ESC-50)	(b) Pascal VOC 2007			
Methods	Accuracy	Methods Accuracy			
Autoencoder	0.399	Taxton. 0.375			
Rand. Forest	0.443	Kmeans 0.348			
ConvNet	0.645	Tracking 0.422			
SoundNet	0.742	Patch. 0.467			
L^{3} [1]	0.761	Egomotion 0.311			
$^{+}L^{3}[1]$	0.793	Sound(spe.)[3] 0.440			
†AVTS[2]	0.823	Sound(clu.) [3] 0.458			
DMC	0.798	Sound(bia.) [3] 0.467			
‡DMC	0.826	DMC 0.514			
Human Perfor.	0.813	ImageNet <u>0.672</u>			

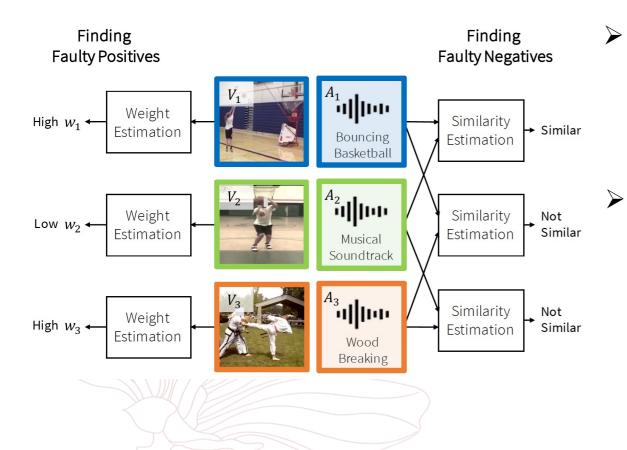

Evaluation of the Extracted A/V Features

Audiovisual Understanding

Single Sound Source Localization



Video-level Correspondence^[1]

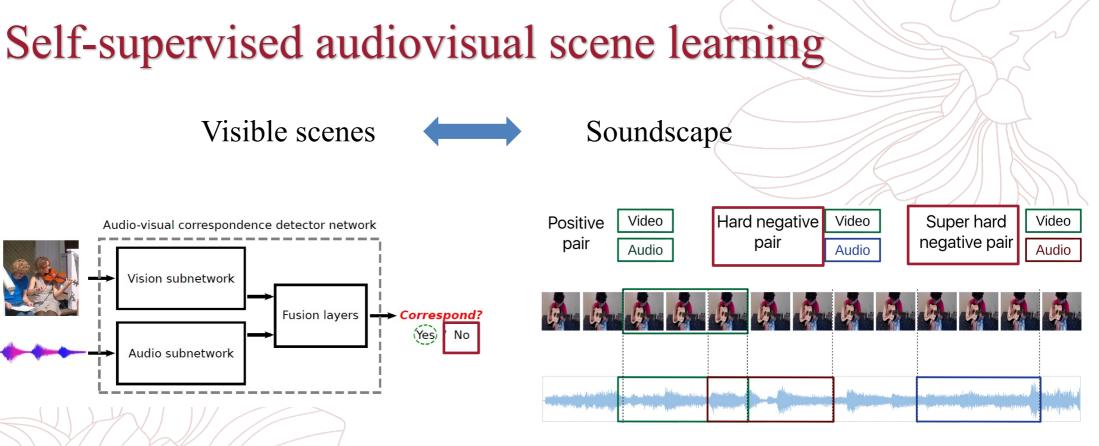

Temporal-level synchronization^[2]

What if the audio and visual modality are not well-corresponding?

[1] R. Arandjelovic and A. Zisserman, "Look, Listen and Learn," *Proc. IEEE Conf. Computer Vision*, 2017.
[2] B. Korbar, D. Tran, and L. Torresani, "Cooperative learning of audio and video models from self-supervised synchronization," *Advances in Neural Information Processing Systems*, 2018.

[10] P. Morgado, I. Misra, and N. Vasconcelos, "Robust Audio-Visual Instance Discrimination," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2021.

Tackling Faulty Positives

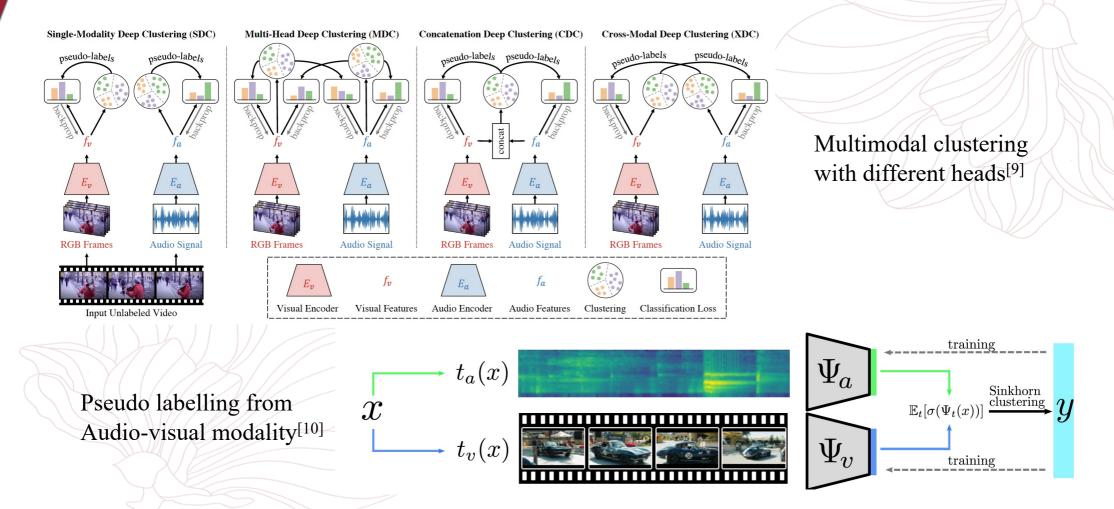

$$\mathcal{L}_{\text{RxID}} = \frac{\sum_{i} w_i \mathcal{L}_{\text{xID}}(\mathbf{v}_i, \mathbf{a}_i)}{\sum_{i} w_i}$$

Tackling Faulty Negatives

1

$$\mathcal{C}_{\text{Soft-xID}}(\mathbf{v}_i, \mathbf{a}_i) = -\sum_j T_v(j|i) \log P(\bar{\mathbf{a}}_j | \mathbf{v}_i; \tau) -\sum_j T_a(j|i) \log P(\bar{\mathbf{v}}_j | \mathbf{a}_i; \tau) T_v(j|i) = (1 - \lambda) \mathbf{1}_{i=j} + \lambda S_v(j|i) T_a(j|i) = (1 - \lambda) \mathbf{1}_{i=j} + \lambda S_a(j|i)$$

[10] P. Morgado, I. Misra, and N. Vasconcelos, "Robust Audio-Visual Instance Discrimination," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2021.


Video-level Correspondence^[1]

Temporal-level synchronization^[2]

What if we do not provide negative samples?

[1] R. Arandjelovic and A. Zisserman, "Look, Listen and Learn," Proc. IEEE Conf. Computer Vision, 2017.

[2] B. Korbar, D. Tran, and L. Torresani, "Cooperative learning of audio and video models from self-supervised synchronization," Advances in Neural Information Processing Systems, 2018.

[11] H. Alwassel, D. Mahajan, B. Korbar, L. Torresani, B. Ghanem, and D. Tran, "Self-supervised learning by cross-modal audio-video clustering," *Advances in Neural Information Processing Systems*, 2020.35 [12] Y. Asano*, M. Patrick*, C. Rupprecht, and A. Vedaldi, "Labelling unlabelled videos from scratch with multi-modal self-supervision," *Advances in Neural Information Processing Systems*, 2020.

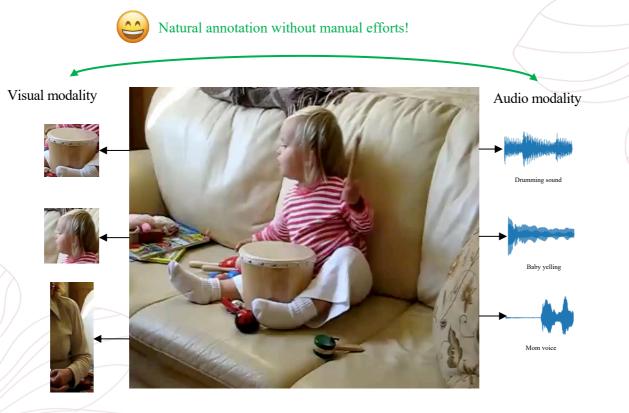
Self-supervised audiovisual scene learning

	(a) Video action recognition.					(b) Audio
	Pretraining			Evaluation		Method
	Method	Architecture	Dataset	UCF101	HMDB51	Random F
	ClipOrder [75]	R(2+1)D-18	UCF101	72.4	30.9	Piczak Co
	MotionPred [68]	C3D	Kinetics	61.2	33.4	SoundNet
	ST-Puzzle [27]	3D-ResNet18	Kinetics	65.8	33.7	L^3 -Net [1]
	DPC [17]	3D-ResNet34	Kinetics	75.7	35.7	AVTS [28
XX 7°4 1	CBT [61]	S3D	Kinetics	79.5	44.6	ConvRBM
With	SpeedNet [4]	S3D	Kinetics	81.1	48.8	XDC (Au
negative samples	AVTS [28]*	MC3-18	Kinetics	84.1	52.5	XDC (IG-
	AVTS [28] [†]	R(2+1)D-18	Kinetics	86.2	52.3	
Without	XDC (ours)	R(2+1)D-18	Kinetics	86.8	52.6	Method
negative samples	AVTS [28]*	MC3-18	AudioSet	87.7	57.3	RG [50]
	AVTS [28] [†]	R(2+1)D-18	AudioSet	89.1	58.1	LTT [34]
	XDC (ours)	R(2+1)D-18	AudioSet	93.0	63.7	RNH [52]
	MIL-NCE [37]	S3D	HowTo100M	91.3	61.0	Ensemble
	ELo [49]	R(2+1)D-50	YouTube-8M	93.8	<u>67.4</u>	SoundNet
$//\mathcal{H}$	XDC (ours)	R(2+1)D-18	IG-Random	<u>94.6</u>	66.5	L^3 -Net [1
	XDC (ours)	R(2+1)D-18	IG-Kinetics	95.5	68.9	AVTS [28
	Fully supervised	R(2+1)D-18	ImageNet	84.0	48.1	XDC (Au
$\langle \rangle$	Fully supervised	R(2+1)D-18	Kinetics	94.2	65.1	XDC (IG-

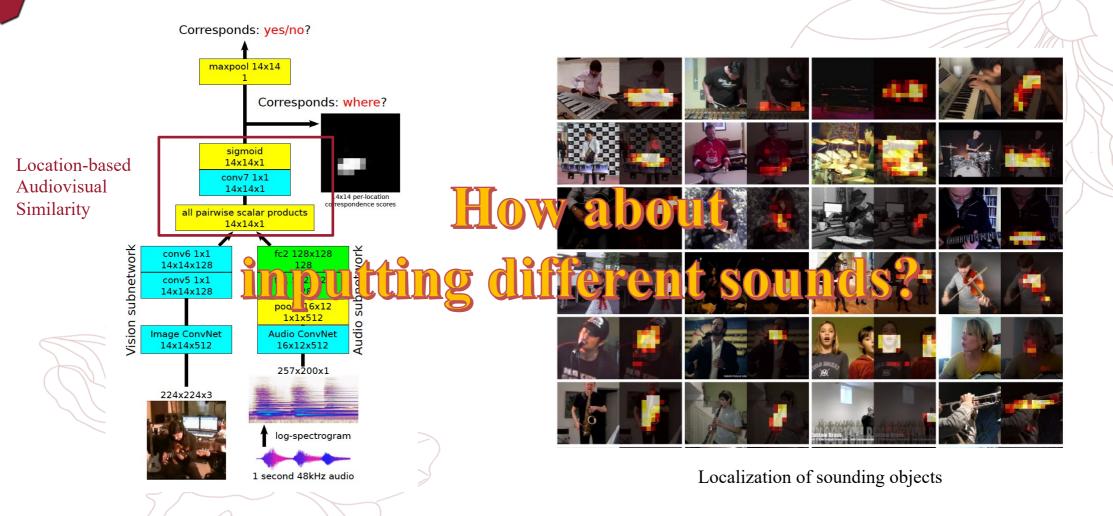
(b) Audio event classification.

Method	ESC50
Random Forest [48]	44.3
Piczak ConvNet [47]	64.5
SoundNet [2]	74.2
L^{3} -Net [1]	79.3
AVTS [28]	82.3
ConvRBM [54]	86.5
XDC (AudioSet)	84.8
XDC (IG-Random)	85.4

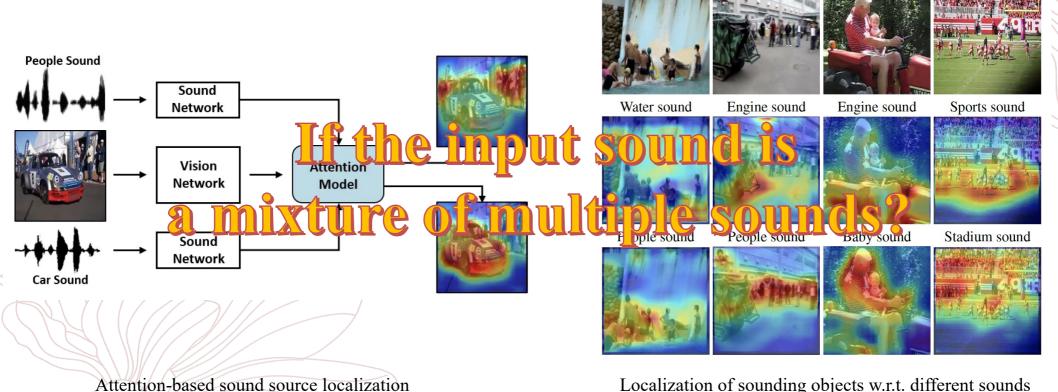
SE


With negative samples Without negative samples

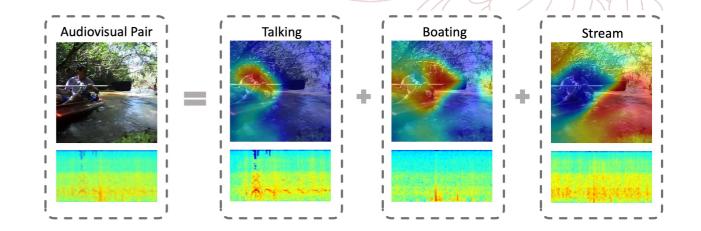
[11] H. Alwassel, D. Mahajan, B. Korbar, L. Torresani, B. Ghanem, and D. Tran, "Self-supervised learning by cross-modal audio-video clustering," Advances in Neural Information Processing Systems, 2020.


Approaches Overview

- Cross-modal knowledge transfer
- Self-supervised audiovisual scene learning
- Self-supervised audiovisual object perception

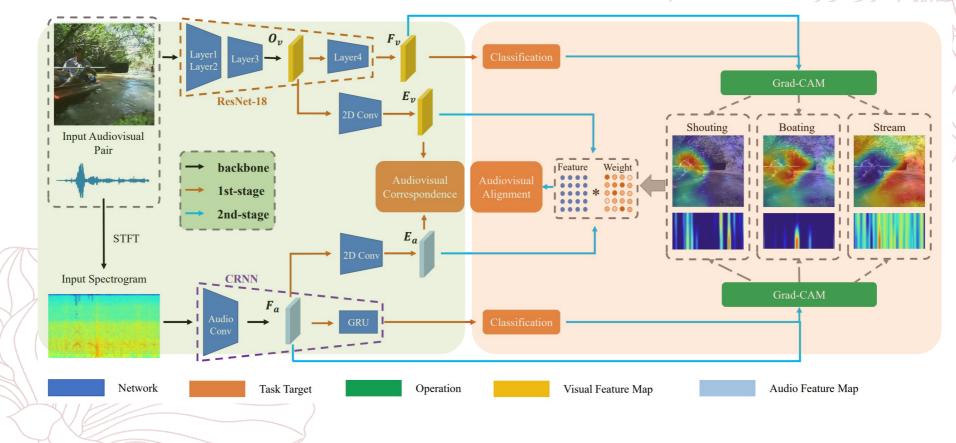


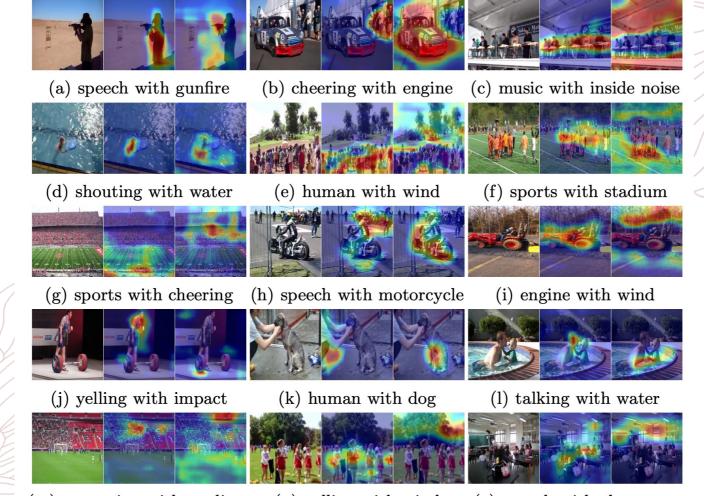
Can we learn to recognize objects via their sounds?


[13] R. Arandjelovic and A. Zisserman, "Objects that Sound," Proc. European Conf. Computer Vision, 2018.

Localization of sounding objects w.r.t. different sounds

[14] A. Senocak, T. Oh, J. Kim, M. Yang, and I. Kweon, "Learning to localize sound source in visual scenes," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2018.

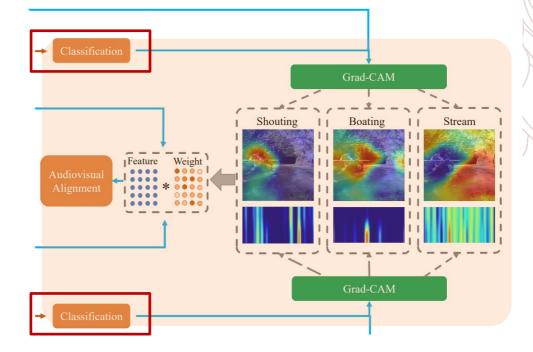

Object-level Correspondence


How to explore the fine-grained supervision?

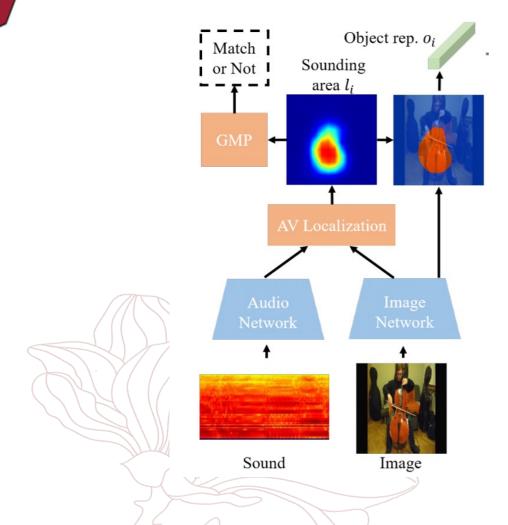
[15] R. Qian, D. Hu, H. Dinkel, M. Wu, N. Xu, and W. Lin, "Multiple Sound Sources Localization from Coarse to Fine," Proc. European Conf. Computer Vision, 2020.

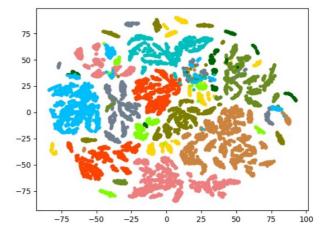
Scene-level correspondence

Object-level Correspondence

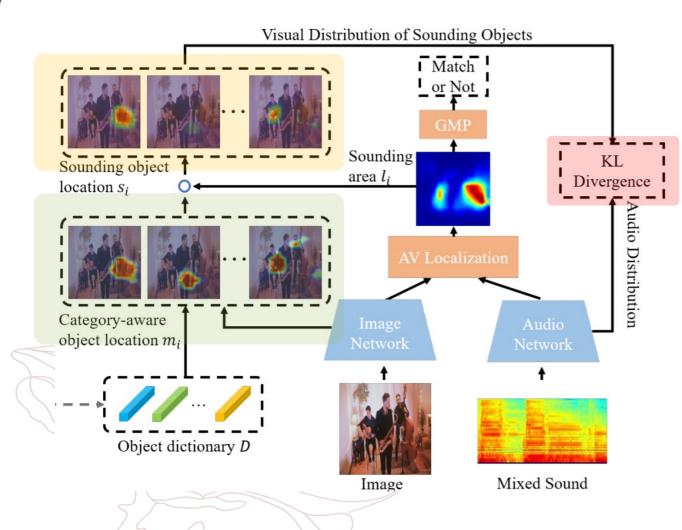

(m) screaming with stadium (n) yelling with wind

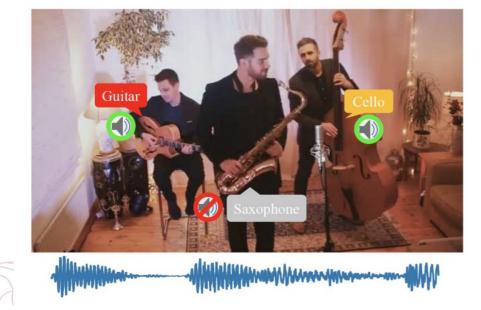
(o) speech with classroom


[15] R. Qian, D. Hu, H. Dinkel, M. Wu, N. Xu, and W. Lin, "Multiple Sound Sources Localization from Coarse to Fine," Proc. European Conf. Computer Vision, 2020.


Object-level Correspondence

Relying on pre-trained object knowledge


[15] R. Qian, D. Hu, H. Dinkel, M. Wu, N. Xu, and W. Lin, "Multiple Sound Sources Localization from Coarse to Fine," Proc. European Conf. Computer Vision, 2020.

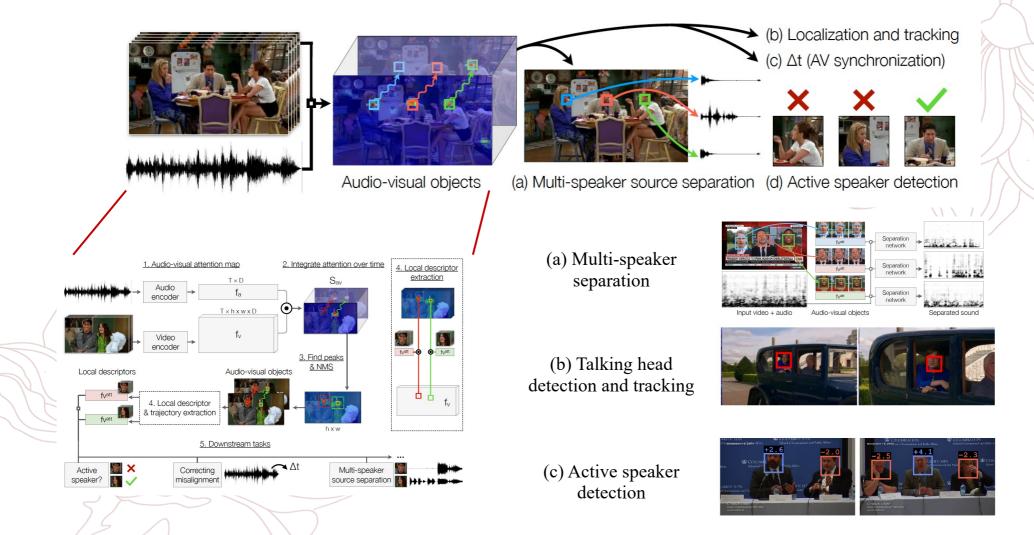


Learn visual knowledge from sound-source localization

Then finetuning to object detection or segmentation related task

Supervision still from correspondence but in the object-category level!

Object localization in cocktail-party^[14]

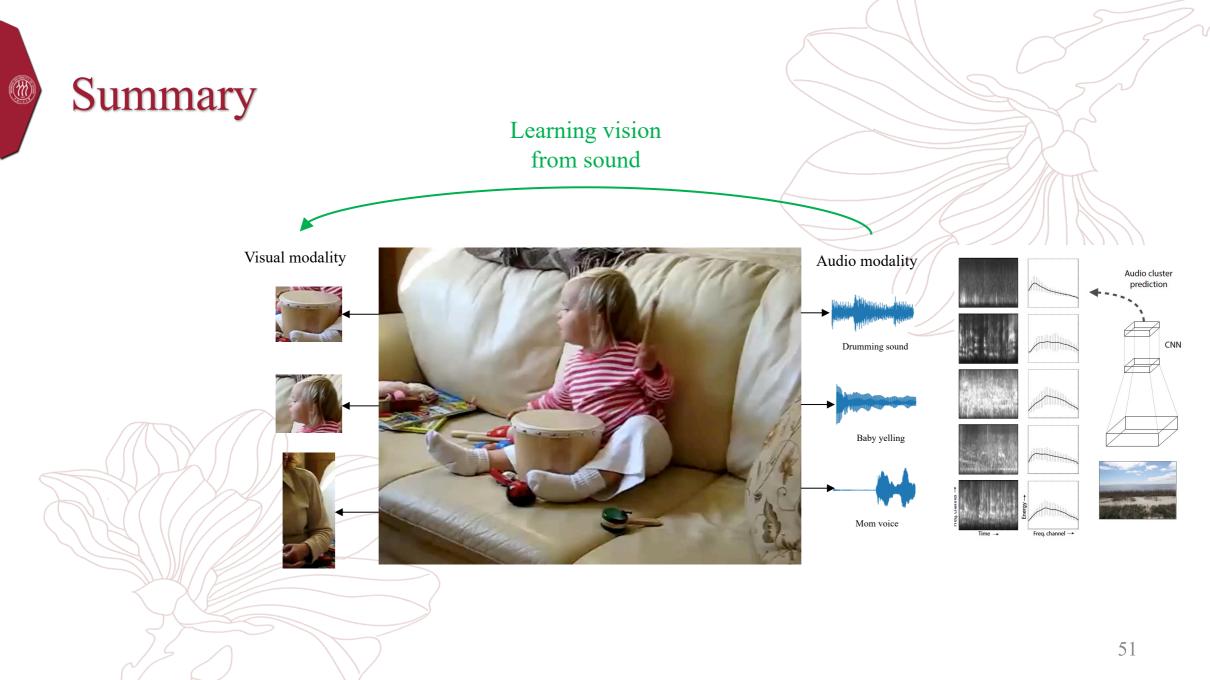

Object localization ^[5]

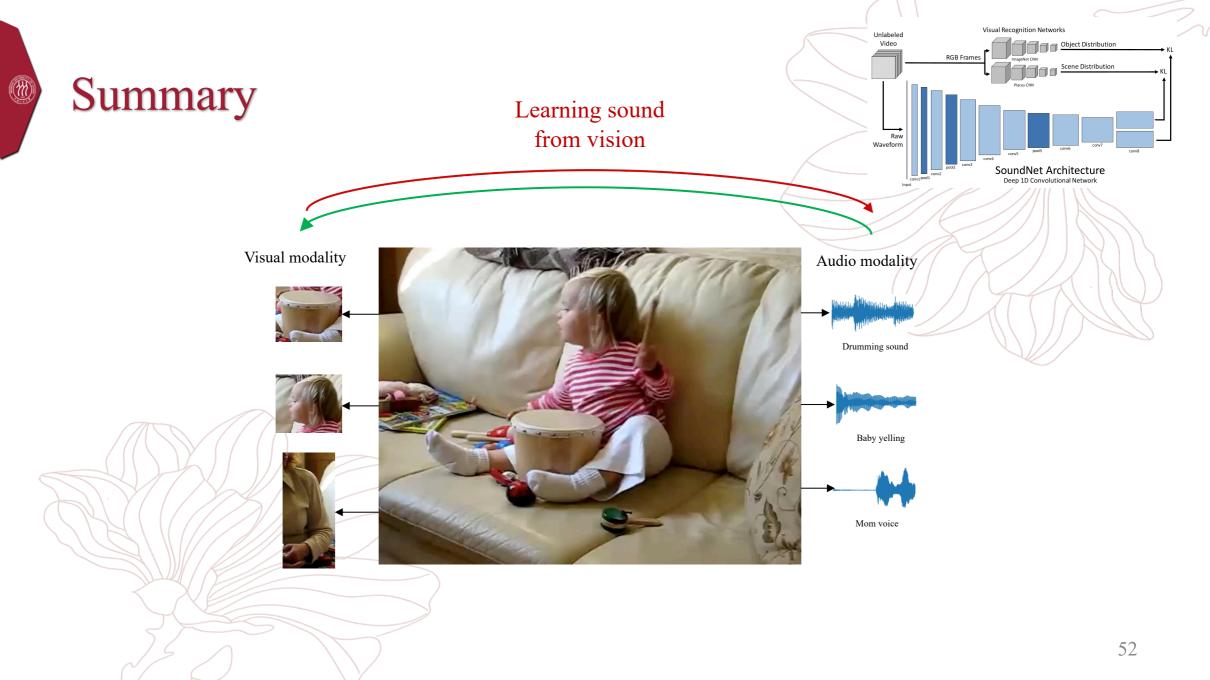
5 d				
Methods	IoU@0.5	AUC		
Sound-of-pixel	40.5	43.3		
Object-that-sound	26.1	35.8		
Attention	37.2	38.7		
DMC	29.1	38.0		
Ours	51.4	43.6		

Single sound scene

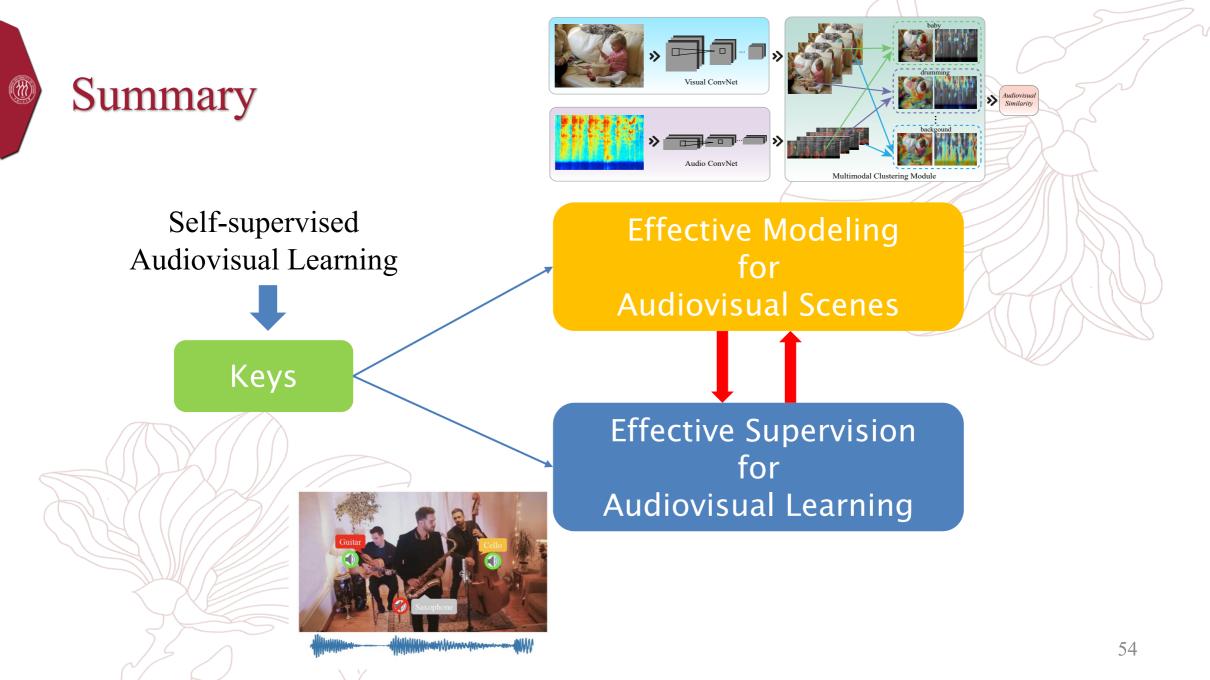
Data	MUSIC-Synthetic		MUSIC-Duet			AudioSet-multi			
Methods	CIoU	AUC	NSA	CIoU	AUC	NSA	CIoU	AUC	NSA
Sound-of-pixel	8.1	11.8	97.2	16.8	16.8	92.0	39.8	27.3	88.8
Object-that-sound	3.7	10.2	19.8	13.2	18.3	15.7	27.1	21.9	16.5
Attention	6.4	12.3	77.9	21.5	19.4	54.6	29.9	23.5	4.5
DMC	7.0	16.3	-	17.3	21.1	-	32.0	25.2	-
Ours	32.3	23.5	98.5	30.2	22.1	83.1	48.7	29.7	56.8

Cocktail-party scene




[17] T. Afouras, A. Owens, J. Chung, A. Zisserman, "Self-Supervised Learning Of Audio-Visual Objects From Video," Proc. European Conf. Computer Vision, 2020.


Outline


- Topic Overview
 - What is and why using self-supervised audiovisual learning
- Approaches Overview
 - What are the state of the art approaches and what is the inherent selfsupervision
 - Summary

- What are the core challenges and future directions

Di Hu Gaoling School of Artificial Intelligence Renmin University of China

Thank You!

Email: dihu@ruc.edu.cn 19-06-2021

Reference

[1] R. Arandjelovic and A. Zisserman, "Look, Listen and Learn," Proc. IEEE Conf. Computer Vision, 2017.

[2] B. Korbar, D. Tran, and L. Torresani, "Cooperative learning of audio and video models from self-supervised synchronization," *Advances in Neural Information Processing Systems*, 2018.

[3] Y. Aytar, C. Vondrick, and A. Torralba, "SoundNet: Learning Sound Representations from Unlabeled Video," Advances in Neural Information Processing Systems, 2016.

[4] D. Harwath, A. Torralba, and J. Glass, "Unsupervised Learning of Spoken Language with Visual Context," Advances in Neural Information Processing Systems, 2016.

[5] D. Harwath and J. Glass, "Learning word-like units from joint audio-visual analysis," Proc. Annual Meeting of the Association for Computational Linguistics, 2017.

[6] A. Owens, J. Wu, J. McDermott, W. Freeman, and A. Torralba, "Ambient sound provides supervision for visual learning," Proc. European Conf. Computer Vision, 2016.

[7] Y. Aytar, C. Vondrick, and A. Torralba, "See, hear, and read: Deep aligned representations," arXiv:1706.00932, 2017.

[8] A. Owens, and A.Efros, "Audio-visual scene analysis with self-supervised multisensory features," arXiv: 1804.03641, 2018.

[9] D. Hu, F. Nie, and X. Li, "Deep Multimodal Learning for Unsupervised Audiovisual Learning," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2019.

[10] P. Morgado, I. Misra, and N. Vasconcelos, "Robust Audio-Visual Instance Discrimination," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2021.

[11] H. Alwassel, D. Mahajan, B. Korbar, L. Torresani, B. Ghanem, and D. Tran, "Self-supervised learning by cross-modal audio-video clustering," Advances in Neural Information Processing Systems, 2020.

[12] Y. Asano*, M. Patrick*, C. Rupprecht, and A. Vedaldi, "Labelling unlabelled videos from scratch with multi-modal self-supervision," *Advances in Neural Information Processing Systems*, 2020.

[13] R. Arandjelovic and A. Zisserman, "Objects that Sound," Proc. European Conf. Computer Vision, 2018.

[14] A. Senocak, T. Oh, J. Kim, M. Yang, and I. Kweon, "Learning to localize sound source in visual scenes," *Proc. IEEE Conf. Computer Vision and Pattern Recognition*, 2018.
[15] R. Qian, D. Hu, H. Dinkel, M. Wu, N. Xu, and W. Lin, "Multiple Sound Sources Localization from Coarse to Fine," *Proc. European Conf. Computer Vision*, 2020.
[16] D. Hu, R. Qian, M. Jiang et al.,, "Discriminative Sounding Objects Localization via Self-supervised Audiovisual Matching," *Advances in Neural Information Processing Systems*, 2020.

[17] T. Afouras, A. Owens, J. Chung, A. Zisserman, "Self-Supervised Learning Of Audio-Visual Objects From Video," Proc. European Conf. Computer Vision, 2020.