CVPR 2021 Tutorial on Audio-Visual Scene Understanding

Audio Scene Understanding

Zhiyao Duan University of Rochester

June 19, 2021

My Background

- Associate professor in ECE and CS at U Rochester
- Directs Audio Information Research (AIR) lab

MUSIC INFORMATION RETRIEVAL

• Music transcription, alignment, source separation, generation, interactive performance

SPEECH PROCESSING

 Speech separation, enhancement, verification, emotion analysis, diarization, text-to-speech, voice transfer

ENVIRONMENTAL SOUND UNDERSTANDING

 Sound search by vocal imitation, sound event detection, source localization

AUDIO-VISUAL PROCESSING

• Talking face generation, music performance analysis and generation, source separation

Motivations and Goals

- Audio is a critical modality in audio-visual scenes (e.g., videos), but has received considerably less attention than the visual modality
- Computer Audition (or machine listening) is a much smaller field than CV
- Bring some new thoughts and perspectives to the CV community
- Receive new ideas from you for solving audio-visual and audio problems

Audio Scene Understanding

In human perception, this is called Auditory Scene Analysis.

The cocktail party problem

(image from http://www.justellus.com/)

CVPR2021 Tutorial on Audio-Visual Scene Understanding - Audio Scene Understanding - 6/19/2021

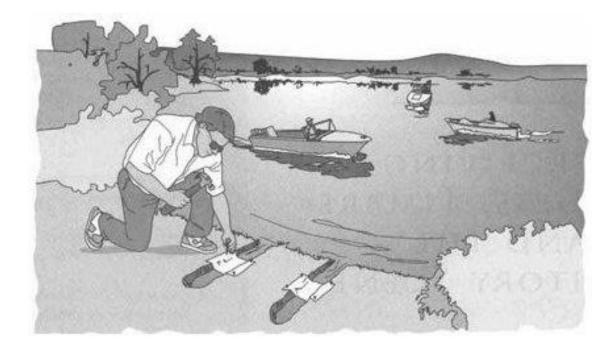
Important Tasks

- What are the sound sources?
- What are they talking about?
- What musical notes are played?
- Where are the sound sources?
- What does each source sound like?
- Make a particular voice clearer
- Remove the room effect

.

- ---- sound event detection / speaker recognition
- ---- speech recognition
- ---- music transcription
- ---- sound source localization
- ---- sound source separation
- ---- speech enhancement
- ---- de-reverberation

It's not easy!

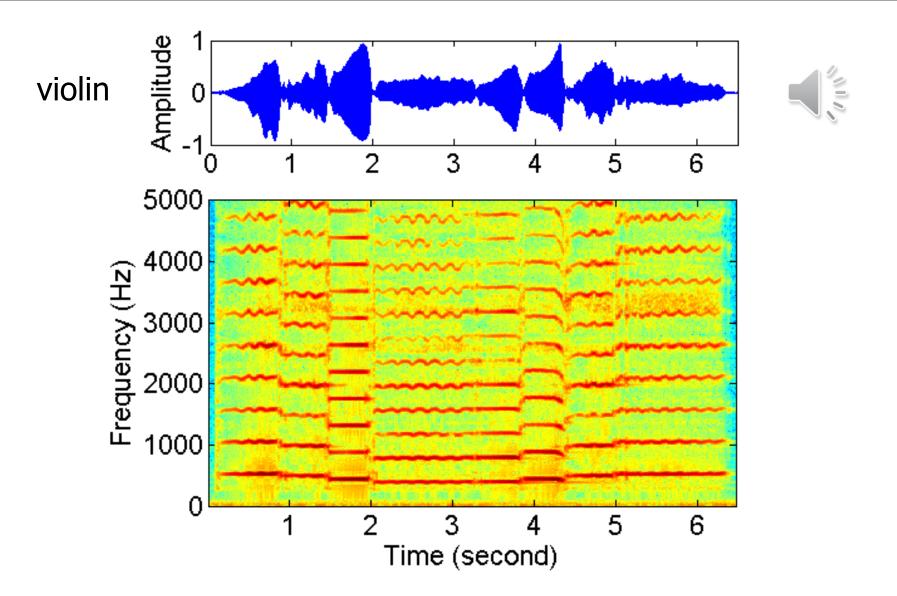


Example from Albert S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound. The MIT Press, 1990.

Fundamental Challenges

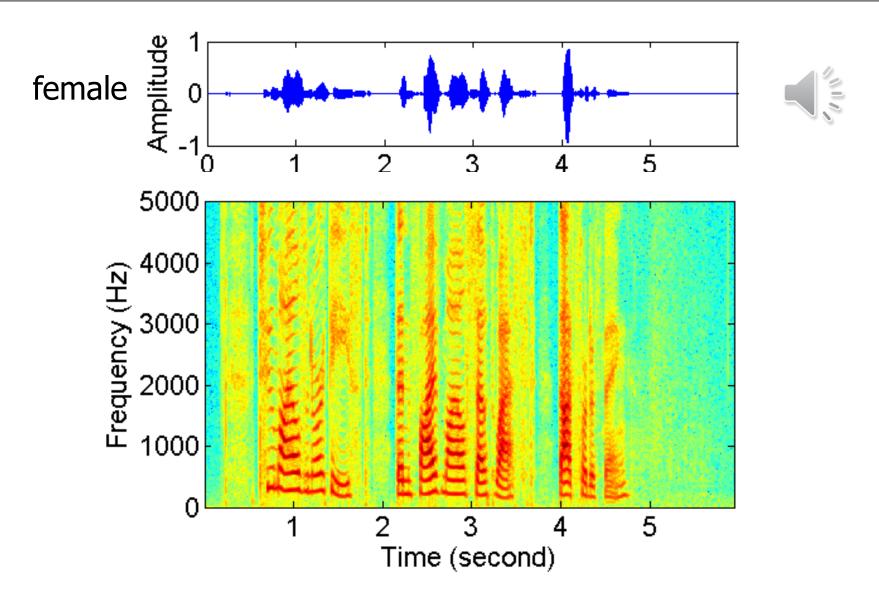
- Sound sources often overlap (in both time and frequency).
- Various kinds of sound sources
 - Harmonic (e.g., vowel) vs. percussive (e.g., consonants)
 - Short (e.g., mouse clicking) vs. long (car engine)
 - Natural (e.g., environmental sounds) vs. artificial (e.g., speech, music)
- Rich semantic structures (also an advantage!)
 - (Long-term) temporal dependencies in speech and music
 - Harmonic relations among simultaneous sources in music
- Reverberation: ubiquitous and smears sounds significantly
- Difficult to annotate

Spectrogram



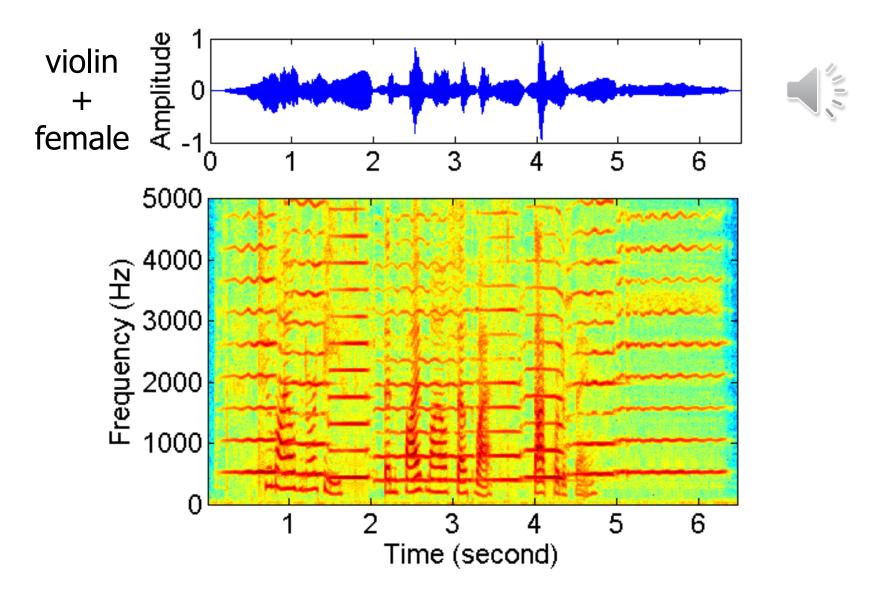
CVPR2021 Tutorial on Audio-Visual Scene Understanding - Audio Scene Understanding - 6/19/2021

Spectrogram



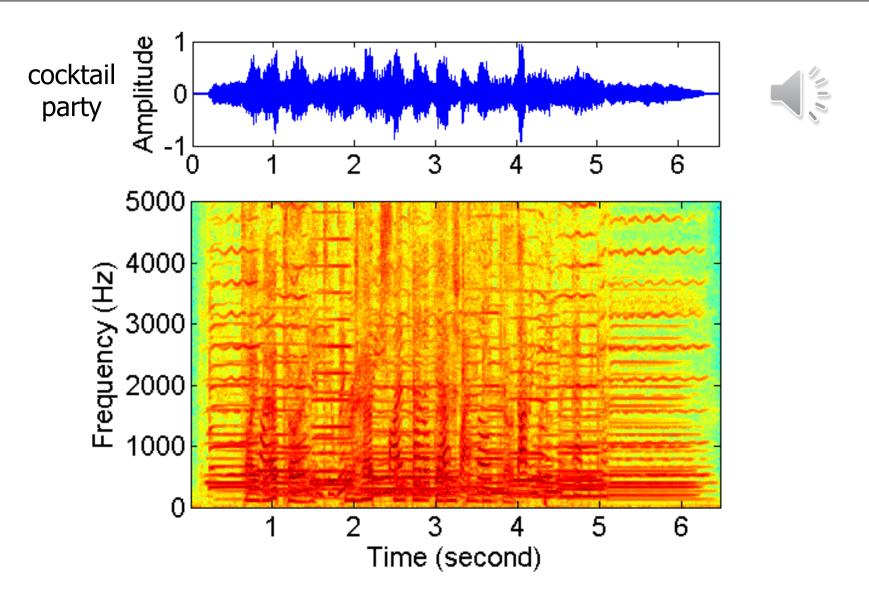
CVPR2021 Tutorial on Audio-Visual Scene Understanding - Audio Scene Understanding - 6/19/2021

If they sound together



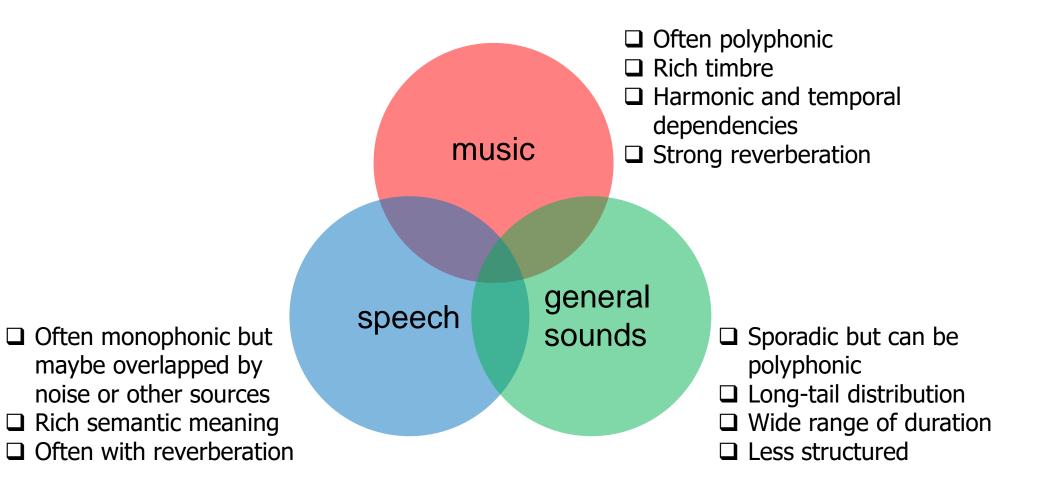
CVPR2021 Tutorial on Audio-Visual Scene Understanding - Audio Scene Understanding - 6/19/2021

How about this?



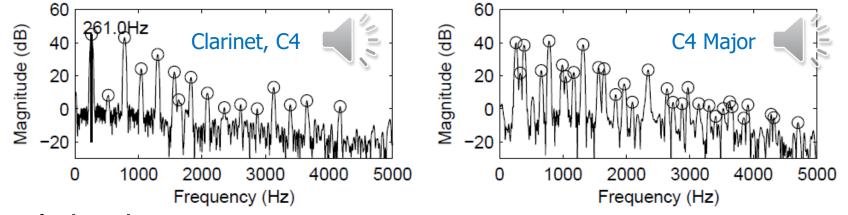
CVPR2021 Tutorial on Audio-Visual Scene Understanding - Audio Scene Understanding - 6/19/2021

Three General Kinds of Sound



Polyphonic Music

- Overlapping harmonics
 - Fundamental frequencies of simultaneous notes are often of small integer ratios, causing many harmonics of different notes to overlap with each other
 - E.g., C4:C5 = 1:2, C4:G4 = 2:3, C4:F4 = 3:4, C4:E4 = 4:5
 - For C4-E4-G4 major chord, harmonic overlap ratios are: C4 (46.7%), E4 (33.3%), G4 (60%)

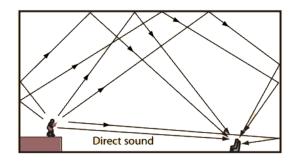


- Temporal structures
 - Repetitions and variations at different time scales: section, phrase, measure, beat
 - Transformations of motifs: transposition, inversion, retrograde (reverse), etc.

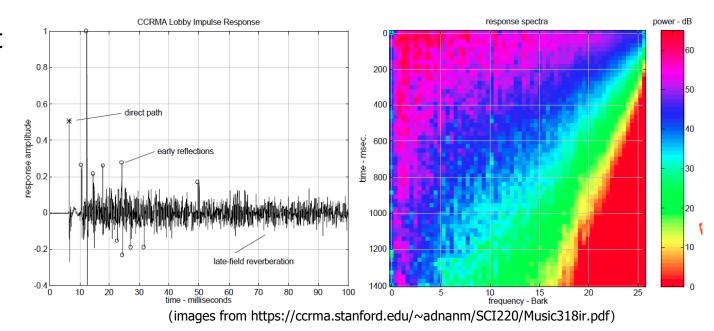
Reverberation

- Room Impulse Response (RIR)
 - Reverberation time RT60: time takes for sound to decay by 60 dB
 - Office ~0.5s, home ~0.7s, classroom ~1s, concert hall ~2s, cathedral ~3.5s
- 1 second is 44,100 samples at 44.1 KHz sampling rate
- Similar to motion blur for images, but with a much large "blurring kernel"

(images from http://www.cse.cuhk.edu.hk/~leojia/projects/robust_deblur/)



(image from http://hyperphysics.phy-astr.gsu.edu/hbase/Acoustic/reverb.html)

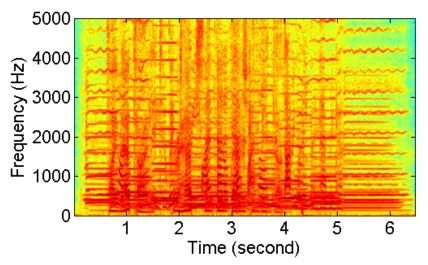


Difficulties in Annotation

- Approach 1: annotate a real recording directly
 - Time consuming to listen through
 - Difficult to attend to simultaneous sound sources
- Approach 2: record each source in isolation and then mix them
 - Difficult to ensure synchronization and coordination
 - Still needs to annotate each source
- Approach 3: mix sound events (musical note samples) based on a transcript (musical score)
 - Requires a concatenative synthesis engine
 - Costly to obtain authentic sound samples
 - Less realistic room acoustics

Vision vs. Audition

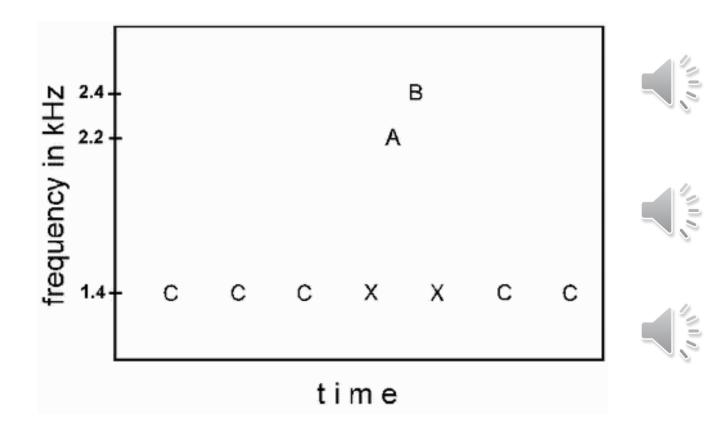
- Visual scenes mainly describe objects that reflect light
 Shape, color, brightness, texture, motion, etc.
- Audio scenes mainly describe sources that emit sound
 - Time, frequency, loudness, location, temporal evolution, etc.
- Visual objects occlude; auditory objects overlap
 - Analyzing audio scenes is like computer vision where
 - Objects are half-transparent
 - Objects change transparency over time
 - Objects disappear and reappear unexpectedly
 - (if with reverb) objects are all strongly motion blurred



Auditory Scene Analysis

- Studies how human auditory systems analyze auditory scenes through psychoacoustic experiments [1]
- The analysis-synthesis process
 - Decompose scenes into small auditory segments
 - Group segments into auditory streams
- Sequential grouping
 - proximity and similarity in time, frequency, loudness, timbre, spatial location; related rhythm
- Simultaneous grouping
 - harmonicity; common fate in onset/offset, frequency, amplitude, and spatial location
- [1] Albert S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound. The MIT Press, 1990.

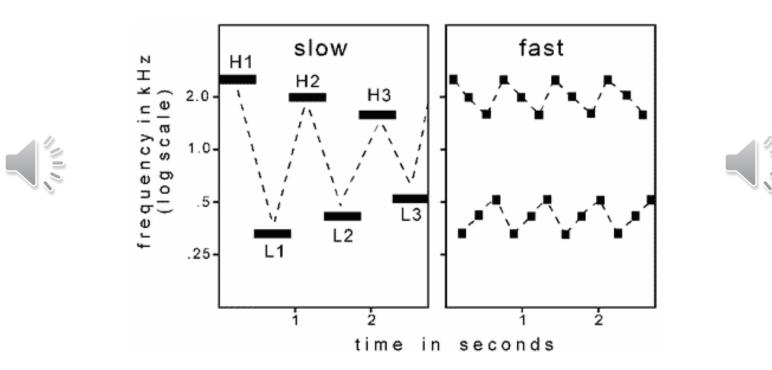
Exclusive Allocation



• The allocation of the X tones are different when the C tones are played or not, and it affects our perception of the A and B tones.

Example from Albert S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound. The MIT Press, 1990.

Stream Segregation



- High and low tones are segregated when played fast
- Can you tell the order of the six tones?

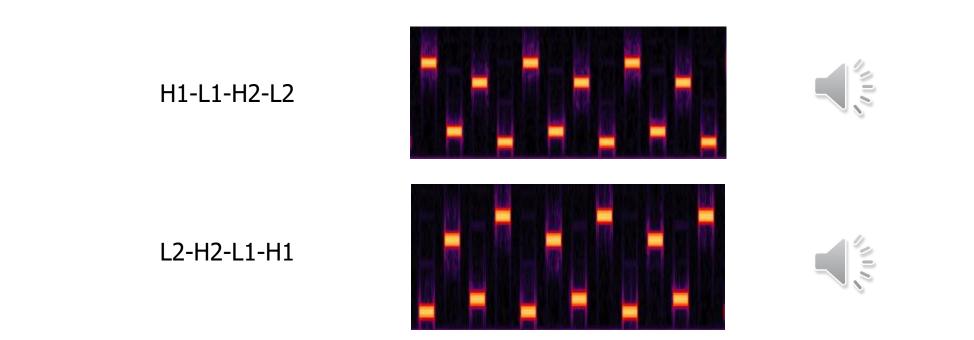
Example from Albert S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound. The MIT Press, 1990.

Stream Segregation in Music

Toccata and Fugue in d minor, J.S. Bach

Arrangement for violin solo, performed by Sergei Krylov (video from https://www.youtube.com/watch?v=R_tu63ypB6I)

Primitive vs. Learned



• Infants cannot discriminate the two stimuli, which indicates that they perform stream segregation of the high and low tones.

Example from Albert S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound. The MIT Press, 1990.

Primitive vs. Learned

- Listening to a stimulus repeatedly can improve performance in stream segregation
- Easier to follow a friend's voice than a stranger's in a noisy environment
 - Prior knowledge of timbre helps
- Music training helps music scene understanding
 - Prior knowledge of music theory, composition rules, music style, etc. helps

Super Ability in Music Scene Understanding

 "In Rome, he (14 years old) heard Gregorio Allegri's *Miserere* once in performance in the Sistine Chapel. He wrote it out entirely from memory, only returning to correct minor errors..."

-- Gutman, Robert (2000). *Mozart: A Cultural Biography*

Wolfgang Amadeus Mozart

Selected Important Tasks

• Automatic Music Transcription

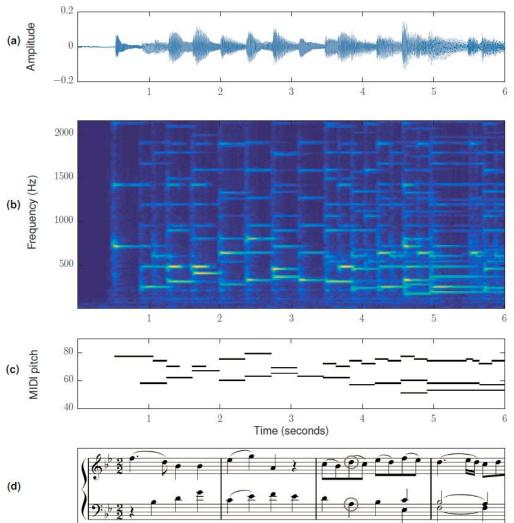
• Sound Event Detection

• Audio Source Separation

Automatic Music Transcription

- Converting music audio into a symbolic representation (e.g., MIDI or music notation)
- Consider by many the "Holy Grail" in Music Information Retrieval (MIR)
- Applications: performance analysis, education, search, etc.
- Challenges
 - Polyphonic
 - Rich timbre
 - Music language model
 - Lack of annotated data

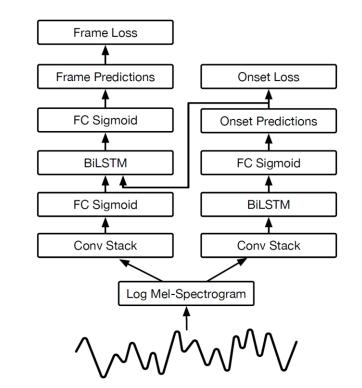
Emmanouil Benetos*, Simon Dixon*, Zhiyao Duan*, and Sebastian Ewert*, **Automatic music transcription: an overview**, *IEEE Signal Processing Magazine*, vol. 36, no. 1, pp. 20-30, 2019. (*alphabetic order)



Piano Transcription

- Disklavier piano: acoustic piano that records MIDI and can reproduce audio from MIDI
 - In this way, audio recordings and MIDI transcriptions are obtained easily
- Datasets: MAPS [1], MAESTRO [2]

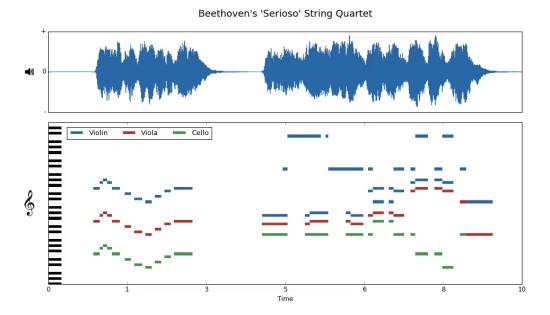
• Onsets & Frames [3]



- [1] V. Emiya, R. Badeau, and B. David. Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle. IEEE/ACM TASLP, 2010.
- [2] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, & D. Eck. Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset. ICLR, 2019.
- [3] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Simon, C. Raffel, J. Engel, S. Oore, & D. Eck. **Onsets and frames: Dual-objective piano transcription**. arXiv preprint arXiv:1710.11153. 2017.

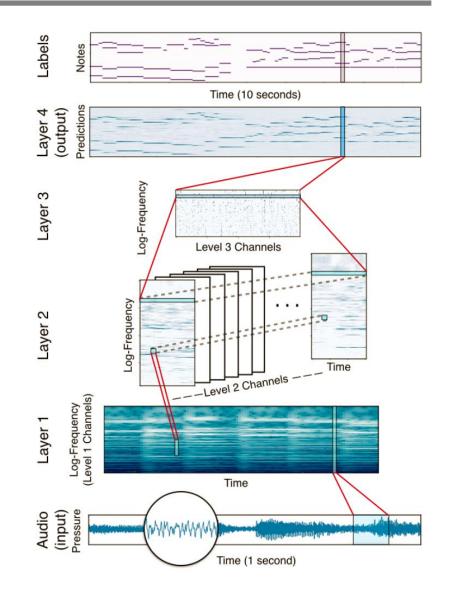
Multi-Instrument Transcription

- MusicNet [1]
 - 330 classical pieces with MIDI alignments using Dynamic Time Warping (DTW)



[1] J. Thickstun, Z. Harchaoui, and S. Kakade, **Learning features of music from scratch**, ICLR, 2017.

[2] J. Thickstun, Z. Harchaoui, D.P. Foster, S.M. Kakade, **Invariances and data** augmentation for supervised music transcription, ICASSP, 2018.



Music is not just about sound

- University of Rochester Multimodal Music Performance Dataset (URMP)
 - 44 ensemble performances with 13 kinds of instruments
 - Isolated recordings and annotations

Bochen Li*, Xinzhao Liu*, Karthik Dinesh, Zhiyao Duan, and Gaurav Sharma, **Creating a multitrack classical music performance dataset for multi-modal music analysis: challenges, insights, and applications**, *IEEE Transactions on Multimedia*, vol. 21, no. 2, pp. 522-535, 2019. (*equal contribution)

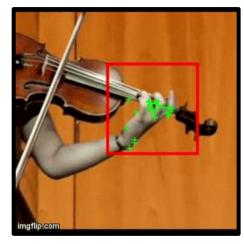
Audio-Visual Music Analysis

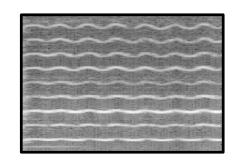
- Key is to build audio-visual correspondence
- Static
 - − Fixed image \leftarrow → Audio frame, e.g., [1]
 - E.g., Posture of a flutist $\leftarrow \rightarrow$ Play/Nonplay activity
 - E.g., Piano fingering $\leftarrow \rightarrow$ Music transcription
- Dynamic, instrument specific
 - Dynamic movement $\leftarrow \rightarrow$ Audio feature fluctuation
 - E.g., Guitarist's strumming hand $\leftarrow \rightarrow$ Rhythmic pattern
 - E.g., Violinist rolling left hand $\leftarrow \rightarrow$ Vibrato [2]

Dynamic, general

- Co-factorization of audio/visual fluctuations [3]
- Learning audiovisual motion embeddings [4,5]

(images from https://www.123rf.com/photo_39591413_young-flute-player-performing-indoors-against-white-background.html)





[1] H. Zhao, C. Gan, A. Rouditchenko, C. Vondrick, J. McDermott, and A. Torralba, **The Sound of Pixels**, ECCV, 2018.

[2] B. Li, K. Dinesh, G. Sharma, and Z. Duan, Video-based vibrato detection and analysis for polyphonic string music, ISMIR, 2017.

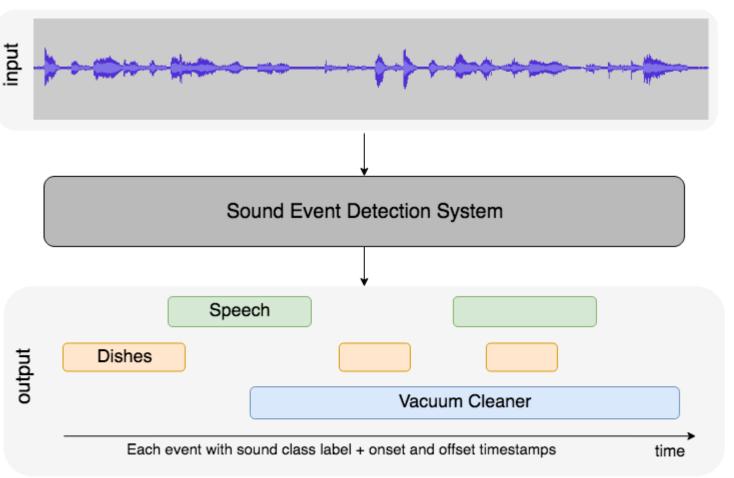
[3] S. Parekh, S. Essid, A. Ozerov, N.Q. Duong, P. Pérez, & G. Richard. Motion informed audio source separation. ICASSP 2017.

[4] H. Zhao, C. Gan, W.-C. Ma, A. Torralba. The Sound of Motions, ICCV, 2019.

[5] C. Gan, D. Huang, H. Zhao, J. B. Tenenbaum, A. Torralba, Music gesture for visual sound separation, CVPR 2020.

Sound Event Detection

- IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE) – Task 4
- Datasets
 - Synthetic mixtures (strong labels)
 - Real recordings (weak labels)



(image from http://dcase.community/challenge2021/task-sound-event-detection-and-separation-in-domestic-environments)

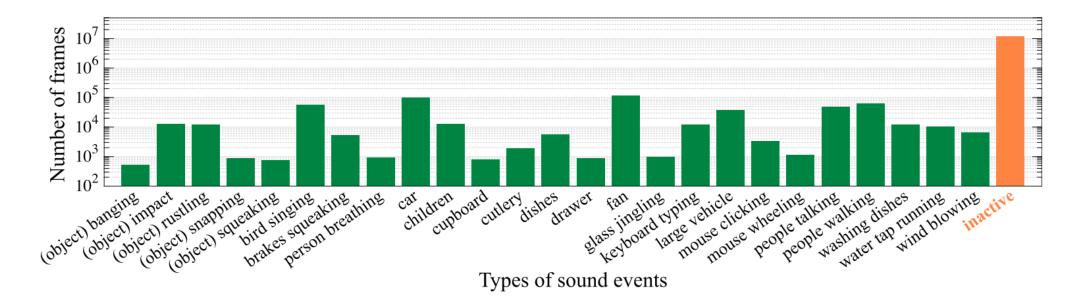
Sound Event Detection

- Best Scoring System [1] in DCASE2020
 - Conformer model (CNN + Transformer) [2]
 - Semi-supervised learning with Mean-Teacher technique [3]
 - Data augmentation with time shifting and mixup [4]
 - Median filtering and score fusion

- [1] K. Miyazaki, T. Komatsu, T. Hayashi, S. Watanabe, T. Toda, K. Takeda, Convolution-augmented transformer for semi-supervised sound event detection, DCASE2020 Challenge, 2020.
- [2] A. Gulati, J. Qin, C.-C. Chiu, et al., **Conformer: convolution-augmented transformer for speech recognition**, arXiv preprint arXiv:2005.08100, 2020.
- [3] A. Tarvainen and H. Valpola, Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results, NIPS, 2017.
- [4] H. Zhang, M. Cisse, Y. N. Dauphin, and D. LopezPaz, Mixup: Beyond empirical risk minimization, arXiv preprint arXiv:1710.09412, 2017.

Interesting Directions

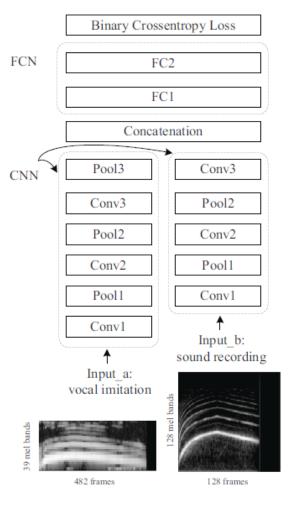
- Addressing data imbalance issue [1]
 - Modify binary cross entropy loss to: simple reweighting loss, inverse frequency loss, asymmetric focal loss, focal batch Tversky loss



• [1] K. Imoto, S. Mishima, Y. Arai, & R. Kondo, Impact of sound duration and inactive frames on sound event detection performance, ICASSP, 2021.

Interesting Directions

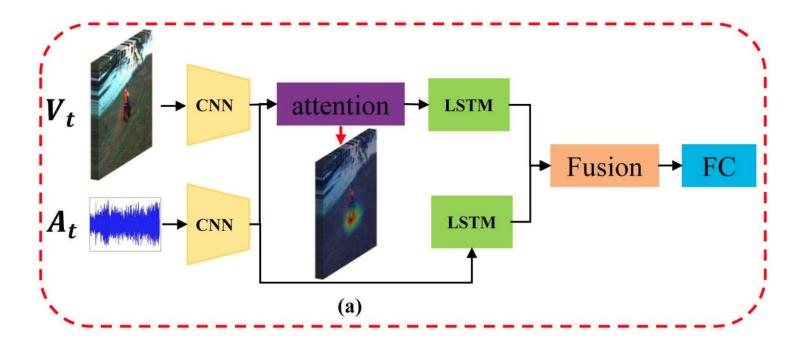
- Few-shot learning to open-set scenarios [1]
- Sound retrieval (by vocal imitation [2, 3])



- [1] Y. Wang, J. Salamon, N. J. Bryan, & J. P. Bello. Few-shot sound event detection, ICASSP, 2021.
- [2] Y. Zhang, B. Pardo, & Z. Duan, Siamese style convolutional neural networks for sound search by vocal imitation, IEEE/ACM TASLP 2019.
- [3] Y. Zhang, J. Hu, Y. Zhang, B. Pardo, & Z. Duan, Vroom!: A search engine for sounds by vocal imitation queries, CHIIR, 2020.

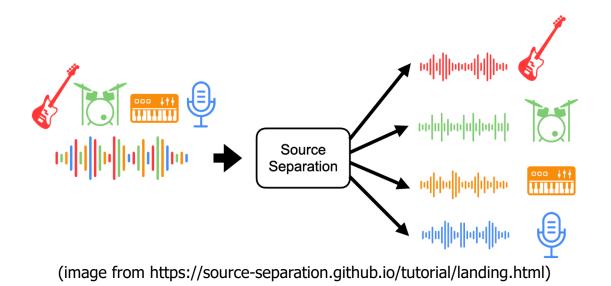
With Visual Information

- Audio-Visual Event Detection
 - Audio-visual association helps to fuse information from both modalities



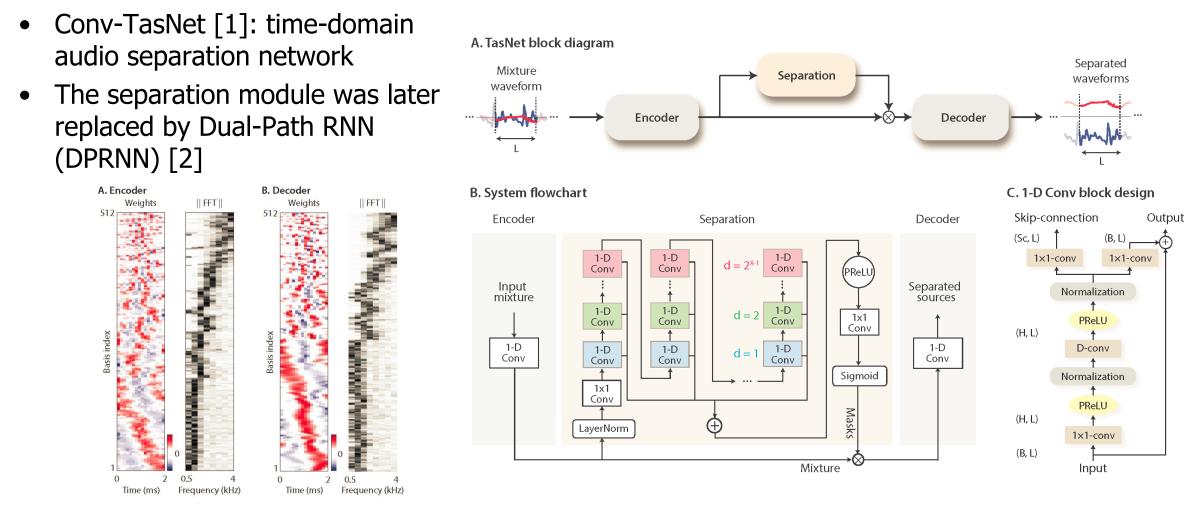
Y. Tian, J. Shi, B. Li, Z. Duan, & C. Xu, Audio-visual event localization in unconstrained videos, ECCV, 2018.

Audio Source Separation



- Speech separation, speech enhancement
 - Training supervised methods on random mixtures of speech (and noise)
- Music: singing voice separation, multi-instrument separation
 - Interesting finding: it is helpful to use a large amount of random mixtures of instrumental sources in training!

State of The Art



- [1] Y. Luo, N. Mesgarani, **Conv-TasNet: surpassing ideal time-frequency magnitude masking for speech separation**, IEEE/ACM TASLP, 2019.
- [2] Y. Luo, Z. Chen, T. Yoshioka, Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation, ICASSP, 2020.

Unseen Number of Sources

- Methods with supervised training cannot generalize to unseen numbers of sources (e.g., train on 2-speaker mixtures but test on 4-speaker mixtures)
- Key idea to generalization of SANet [1]: anchor each source to a fixed position in an embedding space through speaker loss and compactness loss.

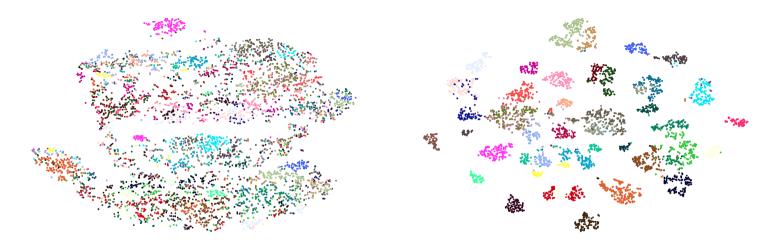
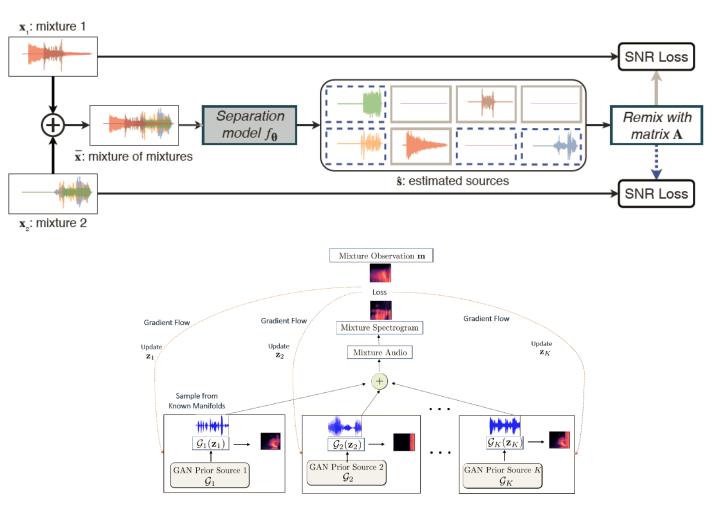


Fig. 2. Estimated attractors (k-means centroids) of test mixtures visualized by t-SNE. Each color represents a speaker. Left: Conv-DANet. Right: SANet.

[1] F. Jiang & Z. Duan, Speaker attractor network: generalizing speech separation to unseen numbers of sources, IEEE SPL, 2021.

Unsupervised Separation

- Humans do not listen to "parallel" data to learn to separate audio.
- When only mixtures available
 - Traditional: Independent Component Analysis (ICA), Computational Auditory Scene Analysis (CASA) methods
 - Self-supervised learning: Mixture Invariant Training [1]
- When clean sources (non-parallel to mixture) available
 - Traditional: Dictionary learning on these sources (e.g., NMF, sparse coding)
 - Impose GAN priors (e.g., WaveGAN) [2]



[1] S. Wisdom, E. Tzinis, H. Erdogan, R. J. Weiss, K. Wilson, & J. R. Hershey. Unsupervised Sound Separation Using Mixture Invariant Training. NeurIPS 2020.
 [2] V. Narayanaswamy, J. J. Thiagarajan, R. Anirudh, & A. Spanias. Unsupervised audio source separation using generative priors. Interspeech, 2020.

Universal Sound Separation

ullet

weak labels [4]

Use sound event detection to provide

- New task and dataset on separating general sounds (hundreds of sound classes) [1,2]
- Use sound event detection to generate training segments and weak labels [3]
 - Cap gun Estimated Sources (\hat{S}) Frame-level Labels (l_{τ}) Clip-level Labels (l) Siren ₽ 4 –1 { Siren } Classifier 10 <u>م</u> 1.0 a 0.5 · Mixture (X){Dog} Classifier 0.0 10 s Ding Separator 0 Amplitu Car horn Classifier {} ← 10 s و ^{1.0} ā 0.5 Classifier { Singing } 0.0 10 s Classifier { Siren, Dog, Singing } Training Sound Classes = { Siren, Dog, Car horn, Singing
- [1] I. Kavalerov1, S. Wisdom, H. Erdogan, B. Patton, K. Wilson, J. Le Roux, J. R. Hershey, Universal sound separation, WASPAA, 2019.
- [2] S. Wisdom, H. Erdogan, D.P. Ellis, R. Serizel, N. Turpault, E. Fonseca, J. Salamon, P. Seetharaman, J.R. Hershey. What's all the fuss about free universal sound separation data?, ICASSP, 2021.
- [3] Q. Kong, Y. Wang, X. Song, Y. Cao, W. Wang, M. D. Plumbley, Source separation with weakly labelled data: an approach to computational auditory scene analysis, ICASSP, 2020.
- [4] F. Pishdadian, G. Wichern, & J. Le Roux, Finding strength in weakness: learning to separate sounds with weak supervision, IEEE/ACM TASLP, 2020.

Summary

- Fundamental research questions in audio scene understanding
 - Recognition, separation, de-reverberation, localization,
- Unique properties and challenges of audio scenes
 - Polyphonic, various timbre, rich structures, reverberation, difficult to annotate
- Inspirations from human auditory scene analysis
- Important tasks, state of the art approaches, and interesting directions
 - Automatic music transcription
 - Sound event detection
 - Audio source separation
- My questions for you:
 - Do you find audio scene understanding helpful in vision tasks?
 - Can you find novel ways to use visual information to help audio understanding?

