
flowr
Streamlining Computing Workflows

Sahil Seth
Flowr version 0.9.9.90011 Revised on 2016-04-14

Contents

1 Get started 2

1.1 Toy example . 3

1.2 Stitch it . 4

1.3 Plot it . 4

1.4 Dry Run . 4

1.5 Submit it . 5

1.6 Check its status . 5

1.7 Kill it . 6

1.8 Re-run a flow . 6

2 Input files 7

2.1 1. Flow matrix . 7

2.2 2. Flow definition . 7

3 Submission types 9

4 Dependency types 9

5 Relationships 9

5.1 One to One (serial) . 9

5.2 Many to One (gather) . 10

5.3 One to Many (Burst) . 10

6 Cluster Support 11

7 Installation 12

8 Test 12

9 Advanced Configuration 13

9.1 HPCC Support Overview . 13

9.2 flowr configuration file . 14

1

10 Troubleshooting & FAQs 14

10.1 Errors in job submission . 14

10.2 Flowdef resource columns . 16

10.3 Adding a new platform . 17

10.4 Installation Error (DRAT) . 17

10.5 Installation Error (Github) . 18

11 Creating input file(s) 18

11.1 Creating Flow Definition . 19

11.2 Create flow, submit to cluster . 21

11.3 Creating modules . 21

12 Execute the pipeline 23

13 Best practices for writing modules/pipelines 23

13.1 A note on module functions . 23

13.2 Pipeline structure . 24

13.3 Nomeclature for parameters . 25

14 Example pipeline: fastq to bam 25

15 Setup up flowr 26

16 Fetch and download the pipeline 26

16.1 Download data/genome . 26

17 Customize flow definition, describing the computing cluster 27

18 Submit to cluster 28

18.1 Single step cluster submission . 28

18.2 (Optional) Details regarding cluster submission . 28

19 Citation 31

1 Get started

library(flowr)

setup()

2

This will copy the flowr helper script to ~/bin. Please make sure that this folder is in your $PATH variable.
For more details refer to setup’s help section.

Running flowr from the terminal will fetch you the following:

Usage: flowr function [arguments]

status Detailed status of a flow(s).
rerun rerun a previously failed flow
kill Kill the flow, upon providing working directory
fetch_pipes Checking what modules and pipelines are available; flowr fetch_pipes

Please use 'flowr -h function' to obtain further information about the usage of a specific function.

1.1 Toy example

Figure 1:

Consider, a simple example where we have three instances of linux’s sleep command. After its completion
three tmp files are created with some random data. Then, a merging step follows, combining the tmp files
into one big file. Next, we use du to calculate the size of the merged file.

NGS context This is quite similar in structure to a typical workflow from where a series of alignment and
sorting steps may take place on the raw fastq files. Followed by merging of the resulting bam files into one
large file per-sample and further downstream processing.

To create this flow in flowr, we need the actual commands to run; and a set of instructions regarding how to
stich the individual steps into a coherent pipeline.

Here is a table with the commands we would like to run (or flow mat).

samplename jobname cmd
sample1 sleep sleep 10 && sleep 2;echo ‘hello’
sample1 sleep sleep 11 && sleep 8;echo ‘hello’
sample1 sleep sleep 11 && sleep 17;echo ‘hello’
sample1 create_tmp head -c 100000 /dev/urandom > sample1_tmp_1
sample1 create_tmp head -c 100000 /dev/urandom > sample1_tmp_2
sample1 create_tmp head -c 100000 /dev/urandom > sample1_tmp_3
sample1 merge cat sample1_tmp_1 sample1_tmp_2 sample1_tmp_3 > sample1_merged
sample1 size du -sh sample1_merged; echo ‘MY shell:’ $SHELL

3

http://docs.flowr.space/rd.html#setup

Further, we use an additional file specifying the relationship between the steps, and also other resource
requirements: flow_def.

jobname sub_type prev_jobs dep_type queue memory_reserved walltime cpu_reserved platform jobid
sleep scatter none none short 2000 1:00 1 local 1
create_tmp scatter sleep serial short 2000 1:00 1 local 2
merge serial create_tmp gather short 2000 1:00 1 local 3
size serial merge serial short 2000 1:00 1 local 4

Note: Each row in a flow mat relates to one job. Jobname column is used to link flow definition with flow
mat. Also, values in previous jobs (prev_jobs) are derived from jobnames.

1.2 Stitch it

We use the two files descirbed above and stich them to create a flow object (which contains all the
information we need for cluster submission).

ex = file.path(system.file(package = "flowr"), "pipelines")
flowmat = as.flowmat(file.path(ex, "sleep_pipe.tsv"))
flowdef = as.flowdef(file.path(ex, "sleep_pipe.def"))

fobj <- to_flow(x = flowmat,
def = flowdef,
flowname = "example1", ## give it a name
platform = "lsf") ## override platform mentioned in flow def

Refer to to_flow’s help section for more details.

1.3 Plot it

We can use plot_flow to quickly visualize the flow; this really helps when developing complex workflows.

plot_flow(fobj) # ?plot_flow for more information
plot_flow(flowdef) # plot_flow works on flow definition as well

Refer to plot_flow’s help section for more details.

1.4 Dry Run

Dry run: Quickly perform a dry run, of the submission step. This creates all the folder and files, and skips
submission to the cluster. This helps in debugging etc.

submit_flow(fobj)

Test Successful!
You may check this folder for consistency. Also you may re-run submit with execute=TRUE
~/flowr/sleep_pipe-20150520-15-18-27-5mSd32G0

4

/docs.html#flow-definition
http://docs.flowr.space/rd.html#to_flow
http://docs.flowr.space/rd.html#plot_flow
http://docs.flowr.space/rd.html#plot_flow

sleepsleepsleepsleep
dep: none

sub: scatter

create_tmpcreate_tmpcreate_tmpcreate_tmp
dep: serial

sub: scatter

merge
dep: gather

sub: serial

size
dep: serial

sub: serial

Figure 2: Flow chart describing process for example 1

1.5 Submit it

Once, we have a flow we can submit it to the cluster using submit_flow

Submit to the cluster !

submit_flow(fobj, execute = TRUE)

Flow has been submitted. Track it from terminal using:
flowr status x=~/flowr/type1-20150520-15-18-46-sySOzZnE

Refer to submit_flow’s help section for more details.

1.6 Check its status

Next, you may use status to monitor the status of a flow.

flowr status x=~/flowr/runs/sleep_pipe-20150520*

	total	started	completed	exit_status	status
001.sleep	10	10	10	0	completed
002.tmp	10	10	10	0	completed
003.merge	1	1	1	0	completed
004.size	1	1	1	0	completed

5

http://docs.flowr.space/rd.html#submit_flow
http://docs.flowr.space/rd.html#submit_flow
http://docs.flowr.space/rd.html#status

Notice, how we skipped specifying the complete path. Status would try to use the basename and show status
of any folder it can match. If there are multiple matched, status would show a summary of each.
Alternatively, to check a summarized status of several flows, use the parent folder. In this case the parent
folder has 3 flows, and here is the summary:

flowr status x=~/flowr/runs

Showing status of: ~/flowr/runs
	total	started	completed	exit_status	status
001.sleep	30	30	10	0	processing
002.tmp	30	30	10	0	processing
003.merge	3	3	1	0	pending
004.size	3	3	1	0	pending

Scalability: Quickly submit, and check a summarized OR detailed status on ten or hundreds of flows.
Refer to status’s help section for more details.

1.7 Kill it

Incase something goes wrong, one may use to kill command to terminate all the relating jobs of a single flow
OR multiple flows.
kill one flow:

flowr kill_flow x=flow_wd

One may instruct flowr to kill multiple flows, but flowr would confirm before killing.

flowr kill x='~/flowr/runs/sleep_pipe'
found multiple wds:
~/flowr/runs/sleep_pipe-20150825-16-24-04-0Lv1PbpI
~/flowr/runs/sleep_pipe-20150825-17-47-52-5vFIkrMD

Really kill all of them ? kill again with force=TRUE

To kill multiple flow, set force=TRUE:

kill x='~/flowr/runs/sleep_pipe*' force = TRUE

Refer to kill’s help section for more details.

1.8 Re-run a flow

flowr also enables you to re-run a pipeline in case of hardware or software failures.

• hardware failure: no change to the pipeline is required, simply rerun it: rerun x=flow_wd
start_from=<intermediate step>

• software failure: either a change to flowmat or flowdef has been made: rerun x=flow_wdmat =
new_flowmat def = new_flowdef start_from=<intermediate step>

Refer to rerun’s help section for more details.

6

http://docs.flowr.space/rd.html#status
http://docs.flowr.space/rd.html#kill
http://docs.flowr.space/rd.html#rerun

2 Input files

An easy and quick way to build a workflow is to create a set of two tab delimited files. First is a table with
commands to run (for each step of the pipeline), while second has details regarding how the modules are
stitched together. In the rest of this document we would refer to them as flow_mat and flow_def respectively
(as introduced in the previous sections).

Let us read in examples of both these files to understand their structure.

ex = file.path(system.file(package = "flowr"), "pipelines")
flow_mat = as.flowmat(file.path(ex, "sleep_pipe.tsv"))
flow_def = as.flowdef(file.path(ex, "sleep_pipe.def"))

2.1 1. Flow matrix

describes commands to run:

Each row in flow mat describes one shell command, with additional information regarding the name of the
step etc.

Essentially, this is a tab delimited file with three columns:

• samplename: A grouping column. The table is split using this column and each subset is treated as an
individual flow. Thus we may have one flowmat for a series of samples, and the whole set would be
submitted as a batch.

– If all the commands are for a single sample, one can just repeat a dummy name like sample1 all
throughout.

• jobname: This corresponds to the name of the step. This should match exactly with the jobname
column in flow_def table described below.

• cmd: A shell command to run. One can get quite creative here. These could be multiple shell commands
separated by a ; or &&, more on this here. Though to keep this clean you may just wrap a multi-line
command into a script and just source the bash script from here.

Here is an example flow_mat for the flowr described above.

samplename jobname cmd
sample1 sleep sleep 10 && sleep 2;echo ‘hello’
sample1 sleep sleep 11 && sleep 8;echo ‘hello’
sample1 sleep sleep 11 && sleep 17;echo ‘hello’
sample1 create_tmp head -c 100000 /dev/urandom > sample1_tmp_1
sample1 create_tmp head -c 100000 /dev/urandom > sample1_tmp_2
sample1 create_tmp head -c 100000 /dev/urandom > sample1_tmp_3
sample1 merge cat sample1_tmp_1 sample1_tmp_2 sample1_tmp_3 > sample1_merged
sample1 size du -sh sample1_merged; echo ‘MY shell:’ $SHELL

2.2 2. Flow definition

defines how to stich pieces of the (work)flow:

Each row in this table refers to one step of the pipeline. It describes the resources used by the step and also
its relationship with other steps, especially, the step immediately prior to it.

7

http://stackoverflow.com/questions/3573742/difference-between-echo-hello-ls-vs-echo-hello-ls
https://github.com/sahilseth/flowr/blob/master/inst/pipelines/sleep_pipe.tsv

It is a tab separated file, with a minimum of 4 columns:

• jobname: Name of the step
• sub_type: Short for submission type, refers to, how should multiple commands of this step be submitted.

Possible values are serial or scatter.
• prev_job: Short for previous job, this would be jobname of the previous job. This can be NA/./none

if this is a independent/initial step, and no previous step is required for this to start.
• dep_type: Short for dependency type, refers to the relationship of this job with the one defined in

prev_job. This can take values none, gather, serial or burst.

These would be explained in detail, below.

Apart from the above described variables, several others defining the resource requirements of each step are
also available. These give great amount of flexibility to the user in choosing CPU, wall time, memory and
queue for each step (and are passed along to the HPCC platform).

• cpu_reserved
• memory_reserved
• nodes
• walltime
• queue

This is especially useful for genomics pipelines, since each step may use different amount of resources. For
example, in other frameworks, if one step uses 16 cores these would be blocked and not used during processing
of several other steps. Thus resulting in blockage of those cores. Flowr prevents this, by being able to tune
resources granurly. Example, one may submit few short steps in short queue, and longer steps of the same
pipeline in say long queue.

Most cluster platforms accept these resource arguments. Essentially a file like this is used as a template, and
variables defined in curly braces (ex. {{{CPU}}}) are filled up using the flow definition file.

If these (resource requirements) columns are not included in the flow definition, their values should be
explicitly defined in the submission template. One may customize the templates as described in the cluster
support section.

Here is an example of a typical flow_def file.

jobname sub_type prev_jobs dep_type queue memory_reserved walltime cpu_reserved platform jobid
sleep scatter none none short 2000 1:00 1 local 1
create_tmp scatter sleep serial short 2000 1:00 1 local 2
merge serial create_tmp gather short 2000 1:00 1 local 3
size serial merge serial short 2000 1:00 1 local 4

2.2.1 Example:

Let us use an example flow, to understand submission and dependency types.

Consider three steps A, B and C, where A has 10 commands from A1 to A10, similarly B has 10 commands
B1 through B10 and C has a single command, C1. Consider another step D (with D1-D3), which comes after
C.

step: A ----> B -----> C -----> D
of cmds 10 10 1 3

8

https://github.com/sahilseth/flowr/blob/master/inst/conf/torque.sh
https://github.com/sahilseth/flowr/blob/master/inst/conf
https://raw.githubusercontent.com/sahilseth/flowr/master/inst/pipelines/sleep_pipe.def

3 Submission types

This refers to the sub_type column in flow definition.

• scatter: submit all commands as parallel, independent jobs.

– Submit A1 through A10 as independent jobs

• serial: run these commands sequentially one after the other.

– Wrap A1 through A10, into a single job.

4 Dependency types

This refers to the dep_type column in flow definition.

• none: independent job.

– Initial step A has no dependency

• serial: one to one relationship with previous job.

– B1 can start as soon as A1 completes.

• gather: many to one, wait for all commands in previous job to finish then start the current step.

– All jobs of B (1-10), need to complete before C1 is started

• burst: one to many wait for the previous step which has one job and start processing all cmds in the
current step.

– D1 to D3 are started as soon as C1 finishes.

5 Relationships

Using the above submission and dependency types one can create several types of relationships between
former and later jobs. Here are a few examples of relationships one may typically use.

5.1 One to One (serial)

A1 --------> B1
A2 --------> B1
.. --------> ..
A10 --------> B10

dependency submission dependency submission
none scatter serial scatter

relationship
ONE-to-ONE

Relationship between steps A and B is best defined as serial. Step A (A1 through A10) is submitted as
scatter. Further, ith jobs of B depends on ith jobs of A. i.e. B1 requires A1 to complete; B2 requires A2 and
so on. Also, we note that defining dependency as serial, makes sure that B does not wait for all elements of A
to complete.

9

AAAA
dep: none

sub: scatter

BBBB
dep: serial

sub: scatter

5.2 Many to One (gather)

B1 ----\
B2 -----\
.. -----> C1
B9 ------/
B10-----/

dependency submission dependency submission
serial scatter gather serial

relationship
MANY-to-ONE

Since C is a single command which requires all steps of B to complete, intuitively it needs to gather pieces
of data generated by B. In this case dep_type would be gather and sub_type type would be serial since it
is a single command.

5.3 One to Many (Burst)

/-----> D1
C1 --------> D2

\-----> D3
dependency submission dependency submission

gather serial burst scatter
relationship
ONE-to-MANY

Further, D is a set of three commands (D1-D3), which need to wait for a single process (C1) to complete.
They would be submitted as scatter after waiting on C in a burst type dependency.
In essence, an example flow_def would look like as follows (with additional resource requirements not shown
for brevity):

ex2def = as.flowdef(file.path(ex, "abcd.def"))
ex2mat = as.flowmat(file.path(ex, "abcd.tsv"))
kable(ex2def[, 1:4])

10

jobname sub_type prev_jobs dep_type
A scatter none none
B scatter A serial
C serial B gather
D scatter C burst

plot_flow(ex2def)

AAAA
dep: none

sub: scatter

BBBB
dep: serial

sub: scatter

C
dep: gather

sub: serial

DDDD
dep: burst

sub: scatter

There is a darker more prominent shadow to indicate scatter steps.

6 Cluster Support

As of now we have tested this on the following clusters:

Platform command status queue.type
LSF 7 bsub Beta lsf
LSF 9.1 bsub Stable lsf
Torque qsub Stable torque
Moab msub Stable moab
SGE qsub Beta sge
SLURM sbatch alpha slurm

For more details, refer to the configuration section

11

http://docs.flowr.space/install.html#cluster

7 Installation

Requirements:

• R version > 3.1, preferred 3.2

for a latest official version (from CRAN)
install.packages("flowr", repos = CRAN="http://cran.rstudio.com")

Latest stable release from DRAT (updated every other week); CRAN for dependencies
install.packages("flowr", repos = c(CRAN="http://cran.rstudio.com", DRAT="http://sahilseth.github.io/drat"))

OR cutting edge devel version
devtools::install_github("sahilseth/flowr", ref = "devel")

After installation run setup(), this will copy the flowr’s helper script to ~/bin. Please make sure that this
folder is in your $PATH variable.

library(flowr)
setup()

Running flowr from the terminal should now show the following:

Usage: flowr function [arguments]

status Detailed status of a flow(s).
rerun rerun a previously failed flow
kill Kill the flow, upon providing working directory
fetch_pipes Checking what modules and pipelines are available; flowr fetch_pipes

Please use 'flowr -h function' to obtain further information about the usage of a specific function.

If you interested, visit funr’s github page for more details
From this step on, one has the option of typing commands in a R console OR a bash shell (command line).
For brevity we will show examples using the shell.

8 Test

Test a small pipeline on the cluster
This will run a three step pipeline, testing several different relationships between jobs. Initially, we can test
this locally, and later on a specific HPCC platform.

This may take about a minute or so.
flowr run x=sleep_pipe platform=local execute=TRUE
corresponding R command:
run(x='sleep_pipe', platform='local', execute=TRUE)

If this completes successfully, we can try this on a computing cluster; where this would submit a few
interconnected jobs.
Several platforms are supported out of the box (torque, moab, sge, slurm and lsf), you may use the platform
variable to switch between platforms.

12

https://github.com/sahilseth/funr

flowr run pipe=sleep_pipe platform=lsf execute=TRUE
other options for platform: torque, moab, sge, slurm, lsf
this shows the folder being used as a working directory for this flow.

Once the submission is complete, we can test the status using status() by supplying it the full path as
recovered from the previous step.

flowr status x=~/flowr/runs/sleep_pipe-samp1-20150923-10-37-17-4WBiLgCm

we expect to see a table like this when is completes successfully:

	total	started	completed	exit_status	status
001.sleep	3	3	3	0	completed
002.create_tmp	3	3	3	0	completed
003.merge	1	1	1	0	completed
004.size	1	1	1	0	completed

Also we expect a few files to be created:
ls ~/flowr/runs/sleep_pipe-samp1-20150923-10-37-17-4WBiLgCm/tmp
samp1_merged samp1_tmp_1 samp1_tmp_2 samp1_tmp_3

If both these checks are fine, we are all set !

There are a few places where things may go wrong, you may follow the advanced configuration guide for
more details. Feel free to post questions on github issues page.

9 Advanced Configuration

9.1 HPCC Support Overview

Support for several popular cluster platforms is built-in. There is a template, for each platform, which should
work out of the box. Further, one may copy and edit them (and save to ~/flowr/conf) in case some changes
are required. Templates from this folder (~/flowr/conf), would override defaults.

Here are links to latest templates on github:

• torque
• lsf
• moab
• sge
• slurm, needs testing

Not sure what platform you have?

You may check the version by running ONE of the following commands:

msub --version
Version: **moab** client 8.1.1
man bsub
##Submits a job to **LSF** by running the specified
qsub --help

13

https://github.com/sahilseth/flowr/issues
https://github.com/sahilseth/flowr/blob/master/inst/conf/torque.sh
https://github.com/sahilseth/flowr/blob/master/inst/conf/lsf.sh
https://github.com/sahilseth/flowr/blob/master/inst/conf/moab.sh
https://github.com/sahilseth/flowr/blob/master/inst/conf/sge.sh
https://github.com/sahilseth/flowr/blob/master/inst/conf/slurm.sh

Here are some helpful guides and details on the platforms:

• PBS: wiki
• Torque: wiki

– MD Anderson
– University of Houston

• LSF wiki:

– Harvard Medicla School uses: LSF HPC 7
– Also used at Broad

• SGE wiki

– A tutorial for Sun Grid Engine
– Another from JHSPH
– Dependecy info here

Comparison_of_cluster_software

9.2 flowr configuration file

This needs expansion

flowr has a configuration file, with parameters regarding default paths, verboseness etc. flowr loads this
default configuration from the package installation. In addition, to customize the parameters, simply create a
tab-delimited file called ~/.flowr. An example of this file is available here

Addtional files loaded if available:

• (flow installation)/flowr.conf
• (ngsflows installation)/ngsflows.conf
• ~/flowr/conf/flowr.conf
• ~/.flowr

10 Troubleshooting & FAQs

10.1 Errors in job submission

Possible issue: Jobs are not getting submitted

1. Check if the right platform was used for submission.
2. Confirm (with your system admin) that you have the privilege to submit jobs.
3. Use a custom flowdef : Many institutions have strict specification on the resource reservations. Make

sure that the queue, memory, walltime, etc. requiremets are specified properly
4. Use a custom submission template: There are several parameters in the submission script used to

submit jobs to the cluster. You may customize this template to suit your needs.

3. Use a custom flowdef

We can copy an example flow definition and customize it to suit our needs. This a tab delimited text file, so
make sure that the format is correct after you make any changes.

14

http://en.wikipedia.org/wiki/Portable_Batch_System
http://en.wikipedia.org/wiki/TORQUE_Resource_Manager
http://www.rcc.uh.edu/hpc-docs/49-using-torque-to-submit-and-monitor-jobs.html
http://en.wikipedia.org/wiki/Platform_LSF
https://wiki.med.harvard.edu/Orchestra/IntroductionToLSF
https://www.broadinstitute.org/gatk/guide/article?id=1311
http://en.wikipedia.org/wiki/Sun_Grid_Engine
https://sites.google.com/site/anshulkundaje/inotes/programming/clustersubmit/sun-grid-engine
http://www.biostat.jhsph.edu/bit/cluster-usage.html
https://wiki.duke.edu/display/SCSC/SGE+Job+Dependencies
http://en.wikipedia.org/wiki/Comparison_of_cluster_software
https://github.com/sahilseth/flowr/blob/master/inst/conf/flowr.conf

cd ~/flowr/pipelines
wget https://raw.githubusercontent.com/sahilseth/flowr/master/inst/pipelines/sleep_pipe.def
check the format
flowr as.flowdef x=~/flowr/pipelines/sleep_pipe.def

Run the test with a custom flowdef :

flowr run x=sleep_pipe execute=TRUE def=~/flowr/pipelines/sleep_pipe.def ## platform=lsf [optional, picked up from flowdef]

4. Use a custom submission template

If you need to customize the HPCC submission template, copy the file for your platform and make your
desired changes. For example the MOAB based cluster in our institution does not accept the queue argument,
so we need to comment it out.
Download the template for a specific HPCC platform into ~/flowr/conf

cd ~/flowr/conf ## flowr automatically picks up a template from this folder.
for MOAB (msub)
wget https://raw.githubusercontent.com/sahilseth/flowr/master/inst/conf/moab.sh
for Torque (qsub)
wget https://raw.githubusercontent.com/sahilseth/flowr/master/inst/conf/torque.sh
for IBM LSF (bsub)
wget https://raw.githubusercontent.com/sahilseth/flowr/master/inst/conf/lsf.sh
for SGE (qsub)
wget https://raw.githubusercontent.com/sahilseth/flowr/master/inst/conf/sge.sh
for SLURM (sbatch) [untested]
wget https://raw.githubusercontent.com/sahilseth/flowr/master/inst/conf/slurm.sh

Make the desired changes using your favourite editor and submit again.
Possible issue: Jobs for subsequent steps are not submitting (though first step works fine).

1. Confirm jobids are parsing fine: Flowr parses the computing platform’s output and extracts job
IDs of submitted jobs.

2. Check dependency string:

1. Parsing job ids

Flowr parses job IDs to keep a log of all submitted jobs, and also to pass them along as a dependency to
subsequent jobs. This is taken care by the parse_jobids() function. Each job scheduler shows the jobs id,
when you submit a job, but it may show it in a slightly different fashion. To accommodate this one can use
regular expressions as described in the relevant section of the flowr config.
For example LSF may show a string such as:

Job <335508> is submitted to queue <transfer>.
test if it parses correctly
jobid="Job <335508> is submitted to queue <transfer>."
set_opts(flow_parse_lsf = ".*(\<[0-9]*\>).*")
parse_jobids(jobid, platform="lsf")
[1] "335508"

In this case 335508 was the job id and regex worked well !
Once we identify the correct regex for the platform you may update the configuration file with it.

15

https://github.com/sahilseth/flowr/tree/master/inst/conf
https://github.com/sahilseth/flowr/blob/master/R/parse-jobids.R
https://github.com/sahilseth/flowr/blob/master/inst/conf/flowr.conf

cd ~/flowr/conf
wget https://raw.githubusercontent.com/sahilseth/flowr/master/inst/conf/flowr.conf
flowr automatically reads from this location, if you prefer to put it elsewhere, use
load_opts("flowr.conf") ## visit sahilseth.github.io/params for more details.

Update the regex pattern and submit again.

2. Check dependency string

After collecting job ids from previous jobs, flowr renders them as a dependency for subsequent jobs. This is
handled by render_dependency.PLATFORM functions.

Confirm that the dependency parameter is specified correctly in the submission scripts:

wd=~/flowr/runs/sleep_pipe-samp1-20150923-11-20-39-dfvhp5CK ## path to the most recent submission
cat $wd/002.create_tmp/create_tmp_cmd_1.sh

10.1.0.1 Flowr Configuration file

Possible issue: Flowr shows too much OR too little information.

There are several verbose levels available (0, 1, 2, 3, . . .)

One can change the verbose levels in this file (~/flowr/conf/flowr.conf) and check verbosity section in
the help pages for more details.

10.2 Flowdef resource columns

Possible issue: What all resources are supported in the flow definition?

The resource requirement columns of flow definition are passed along to the final (cluster) submission script.
For example values in cpu_reserved column would be populated as {{{CPU}}} in the submission template.

The following table provides a mapping between the flow definition columns and variables in the submission
templates:

flowdef variable submission template variable
nodes NODES
cpu_reserved CPU
memory_reserved MEMORY
email EMAIL
walltime WALLTIME
extra_opts EXTRA_OPTS

JOBNAME
STDOUT
CWD
DEPENDENCY
TRIGGER
CMD

* These are generated on the fly and ** This is gathered from flow mat

16

https://github.com/sahilseth/flowr/blob/master/R/render-dependency.R
http://docs.flowr.space/rd.html#verbose
http://docs.flowr.space/rd.html#verbose
https://github.com/sahilseth/flowr/blob/master/inst/conf
https://github.com/sahilseth/flowr/blob/master/inst/conf

10.3 Adding a new platform

Possible issue: Need to add a new platform

Adding a new platform involves a few steps, briefly we need to consider the following steps where changes
would be necessary.

1. job submission: One needs to add a new template for the new platform. Several examples are
available as described in the previous section.

2. parsing job ids: flowr keeps a log of all submitted jobs, and also to pass them along as a dependency
to subsequent jobs. This is taken care by the parse_jobids() function. Each job scheduler shows the
jobs id, when you submit a job, but each shows it in a slightly different pattern. To accommodate this
one can use regular expressions as described in the relevant section of the flowr config.

3. render dependency: After collecting job ids from previous jobs, flowr renders them as a dependency
for subsequent jobs. This is handled by render_dependency.PLATFORM functions.

4. recognize new platform: Flowr needs to be made aware of the new platform, for this we need to
add a new class using the platform name. This is essentially a wrapper around the job class

Essentially this requires us to add a new line like: setClass("torque", contains = "job").

5. killing jobs: Just like submission flowr needs to know what command to use to kill jobs. This is
defined in detect_kill_cmd function.

There are several job scheduling systems available and we try to support the major players. Adding support
is quite easy if we have access to them. Your favourite not in the list? re-open this issue, with details on the
platform: adding platforms

Possible issue: For other issues upload the error shown in the out files to github issues tracker.

outfiles end with .out, and are placed in a folder like 00X.<jobname>/
here is one example:
cat $wd/002.create_tmp/create_tmp_cmd_1.out
final script:
cat $wd/002.create_tmp/create_tmp_cmd_1.sh

10.4 Installation Error (DRAT)

install.packages("flowr", repos = "http://sahilseth.github.io/drat")

ERROR: dependency ‘whisker’ is not available for package ‘params’
* removing ‘/usr/local/lib/R/site-library/params’
ERROR: dependencies ‘params’, ‘diagram’, ‘whisker’ are not available for package ‘flowr’
* removing ‘/usr/local/lib/R/site-library/flowr’

The downloaded source packages are in
‘/tmp/RtmpykBS2r/downloaded_packages’

Warning messages:
1: In install.packages("flowr", repos = "http://sahilseth.github.io/drat") :
installation of package ‘params’ had non-zero exit status

2: In install.packages("flowr", repos = "http://sahilseth.github.io/drat") :
installation of package ‘flowr’ had non-zero exit status

17

https://github.com/sahilseth/flowr/issues/7
https://github.com/sahilseth/flowr/blob/master/inst/conf
https://github.com/sahilseth/flowr/blob/master/R/parse-jobids.R
https://github.com/sahilseth/flowr/blob/master/inst/conf/flowr.conf
https://github.com/sahilseth/flowr/blob/master/R/render-dependency.R
https://github.com/sahilseth/flowr/blob/master/R/class-def.R
http://en.wikipedia.org/wiki/Job_scheduler
https://github.com/sahilseth/flowr/issues/7
https://github.com/sahilseth/flowr/issues

Issues is that whisker and params are not installed, and are not available in the DRAT repo.

Solution 1:

install.packages("whisker")
install.packages("diagram")
install.packages("flowr", repos = "http://sahilseth.github.io/drat")

Solution 2:

install.packages("flowr", repos = c(CRAN = "http://cran.rstudio.com", DRAT = "http://sahilseth.github.io/drat"))

10.5 Installation Error (Github)

devtools:::install_github(“sahilseth/flowr”)
error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

Solution:

This is basically a issue with httr (link) Try this:

install.packages("RCurl")
devtools:::install_github("sahilseth/flowr")

If not then try this: install.packages(“httr”);

library(httr);
set_config(config(ssl.verifypeer = 0L))
devtools:::install_github("sahilseth/flowr")

11 Creating input file(s)

Let us use the same example described in the overview section. We start by getting a set of commands we
would like to run.

wait for a few seconds...
sleep 5
sleep 5

create two small files
cat $RANDOM > tmp1
cat $RANDOM > tmp2

merge the two files
cat tmp1 tmp2 > tmp

check the size of the resulting file
du -sh tmp

Wrap these commands into R

18

sleep=c('sleep 5', 'sleep 5')

tmp=c('cat $RANDOM > tmp1',
'cat $RANDOM > tmp2')

merge='cat tmp1 tmp2 > tmp'

size='du -sh tmp'

Next, we would create a table using the above commands:

create a table of all commands
library(flowr)
lst = list(sleep=sleep,

create_tmp=tmp,
merge=merge,
size=size)

flowmat = to_flowmat(lst, "samp1")
kable(flowmat)

samplename jobname cmd
samp1 sleep sleep 5
samp1 sleep sleep 5
samp1 create_tmp cat $RANDOM > tmp1
samp1 create_tmp cat $RANDOM > tmp2
samp1 merge cat tmp1 tmp2 > tmp
samp1 size du -sh tmp

11.1 Creating Flow Definition

We have a few steps in a pipeline; we would use a flow definition to descibe their flow. Flowr enables us to
quickly create a skeleton flow definition using a flowmat, which we can then alter to suit our needs. A handy
function to_flowdef, accepts a flowmat and creates a flow definition.

create a skeleton flow definition
def = to_flowdef(flowmat)
suppressMessages(plot_flow(def))

19

sleep
dep: none

sub: serial

create_tmp
dep: gather

sub: serial

merge
dep: gather

sub: serial

size
dep: gather

sub: serial

The default skeleton takes a very conservative approach, creating all submissions as serial and all dependencies
as gather. This ensures robustness, compromising efficiency. So customize this to make it super efficient.

We can make a few changes to make this pipeline a little more efficient. Briefly, we would run a few steps in
a scatter fashion (in parallel).

A few points to note:

• Intial steps have no dependency, so their previous_jobs and dependency_type is none.
• Steps with multiple commands, which can be run in parallel are submitted as scatter.
• Steps with single commands are submitted as serial.
• Say two consective steps run on small pieces of data, we have a serial one to one relationship. Example,

both sleep and create_tmp are submitted as scatter and create_tmp has a dependency_type
serial.

• Finally if a step needs all the small pieces from a previous step, we use a gather type dependency.

sleep create tmp merge size
def$sub_type = c("scatter", "scatter", "serial", "serial")
def$dep_type = c("none", "serial", "gather", "serial")
kable(def)

jobname sub_type prev_jobs dep_type queue memory_reserved walltime cpu_reserved nodes platform jobid
sleep scatter none none short 2000 1:00 1 1 torque 1
create_tmp scatter sleep serial short 2000 1:00 1 1 torque 2
merge serial create_tmp gather short 2000 1:00 1 1 torque 3
size serial merge serial short 2000 1:00 1 1 torque 4

20

sleepsleepsleepsleep
dep: none

sub: scatter

create_tmpcreate_tmpcreate_tmpcreate_tmp
dep: serial

sub: scatter

merge
dep: gather

sub: serial

size
dep: serial

sub: serial

Tip Alternatively, one may write this to a file (write_sheet(def, “sleep_pipe.def”)), make changes in a
text editor and read it again (as.flowdef(“sleep_pipe.def”).

11.2 Create flow, submit to cluster

Next, we create a flow object:

fobj = to_flow(flowmat, def, flowname = "sleep_pipe")

Finally, we can submit this to the cluster:

plot_flow(fobj)
submit_flow(fobj) ## dry run
fobj2 = submit_flow(fobj, execute = TRUE) ## submission to LSF cluster

after submission, we can use the following:
status(fobj2) ## check status
rerun(fobj2) ## re-run from a intermediate step
kill(fobj2) ## kill it!

11.3 Creating modules

We used a simple example where a single function was creating all the commands. This is easier, but a step
(or module) is not re-usable in another pipeline. Thus we may write a module for each step, such that one
may mix and match to create their own pipeline.

NOTE: A module, always returns a flowmat. A module may have one or several steps. A module + flowdef,
becomes a pipeline.

21

to follow this tutorial, you may download them:
url=https://raw.githubusercontent.com/sahilseth/flowr/master/inst/pipelines
cd ~/flowr/pipelines
wget $url/sleep_pipe.R ## A R script, with sleep_pipe(), which creates a flowmat
wget $url/sleep_pipe.def ## A tab-delimited flow definition file
wget $url/sleep_pipe.conf ## An *optional* tab-delim conf file, defining default params

The sleep_pipe calls the three other functions (modules); fetches flowmat from each, then rbinds them,
creating a larger flowmat. You may refer to the sleep_pipe.R file for the source.

#' @param x number of sleep commands
sleep <- function(x, samplename){

cmd = list(sleep = sprintf("sleep %s && sleep %s;echo 'hello'",
abs(round(rnorm(x)*10, 0)),
abs(round(rnorm(x)*10, 0))))

flowmat = to_flowmat(cmd, samplename)
return(list(flowmat = flowmat))

}

#' @param x number of tmp commands
create_tmp <- function(x, samplename){

Create 100 temporary files
tmp = sprintf("%s_tmp_%s", samplename, 1:x)
cmd = list(create_tmp = sprintf("head -c 100000 /dev/urandom > %s", tmp))
--- convert the list into a data.frame
flowmat = to_flowmat(cmd, samplename)
return(list(flowmat = flowmat, outfiles = tmp))

}

#' @param x vector of files to merge
merge_size <- function(x, samplename){

Merge them according to samples, 10 each
mergedfile = paste0(samplename, "_merged")
cmd_merge <- sprintf("cat %s > %s",

paste(x, collapse = " "), ## input files
mergedfile)

get the size of merged files
cmd_size = sprintf("du -sh %s; echo 'MY shell:' $SHELL", mergedfile)

cmd = list(merge = cmd_merge, size = cmd_size)
--- convert the list into a data.frame
flowmat = to_flowmat(cmd, samplename)
return(list(flowmat = flowmat, outfiles = mergedfile))

}

#' @param x number of files to make
sleep_pipe <- function(x = 3, samplename = "samp1"){

call the modules one by one...
out_sleep = sleep(x, samplename)
out_create_tmp = create_tmp(x, samplename)
out_merge_size = merge_size(out_create_tmp$outfiles, samplename)

row bind all the commands

22

https://github.com/sahilseth/flowr/blob/master/inst/pipelines/sleep_pipe.R

flowmat = rbind(out_sleep$flowmat,
out_create_tmp$flowmat,
out_merge_size$flowmat)

return(list(flowmat = flowmat, outfiles = out_merge_size$outfiles))
}

12 Execute the pipeline

Using run

One may use run function to create the flowmat, fetch the flowdef and execute the pipeline in a single step.
Here we would focus more on each of these steps in detail.

1. Single step submission:
fobj = run("sleep_pipe", execute = TRUE);

2
change wd, so that we can source the files downloaded in the previous step
setwd("~/flowr/pipelines")

2a. optionally, load default parameters
load_opts("sleep_pipe.conf")

2b. get sleep_pipe() function
source("sleep_pipe.R")
create a flowmat
flowmat = sleep_pipe()

2c. read a flow definition.
flowdef = as.flowdef("sleep_pipe.def")

2d. create flow and submit to cluster
fobj = to_flow(flowmat, flowdef, execute = TRUE)

13 Best practices for writing modules/pipelines

These are some of the practices we follow in-house. We feel using these makes stitching custom pipelines
using a set of modules quite easy. Consider this a check-list of a few ideas and a work in progress.

13.1 A note on module functions

picard_merge <- function(x,
samplename = opts_flow$get("samplename"),
mergedbam,
java_exe = opts_flow$get("java_exe"),
java_mem = opts_flow$get("java_mem"),
java_tmp = opts_flow$get("java_tmp"),

23

picard_jar = opts_flow$get("picard_jar")){
Make sure all args have a value (not null)
If a variable was not defined in a conf. file opts_flow$get, will return NULL
check_args()

bam_list = paste("INPUT=", x, sep = "", collapse = " ")
create a named list of commands
cmds = list(merge = sprintf("%s %s -Djava.io.tmpdir=%s -jar %s MergeSamFiles %s OUTPUT=%s ASSUME_SORTED=TRUE VALIDATION_STRINGENCY=LENIENT CREATE_INDEX=true USE_THREADING=true",java_exe, java_mem, java_tmp, picard_jar, bam_list, mergedbam))

Create a flowmat
flowmat = to_flowmat(cmds, samplename)

return a list, flowmat AND outfiles
return(list(outfiles = mergedbam, flowmat = flowmat))

}

1. should accept minimum of two inputs,

• x (a input file etc, depends on the module) and
• samplename (is used to append a column to the flowmat)

2. should always return a list arguments:

• flowmat (required) : contains all the commands to run
• outfiles (recommended): could be used as an input to other tools

3. can define all other default arguments such as paths to tools etc. in a seperate conf (tab-delimited) file.

• Then use opts_flow$get("param") to use their value.

Example conf file:
cat my.conf
bwa_exe /apps/bwa/bin/bwa

4. should use check_args() to make sure none of the default parameters are null.

check_args(), checks ALL the arguments of the function, and throws a error. use ?check_args for more details.
opts_flow$get("my_new_tool")

NULL

13.2 Pipeline structure

For example we have a pipeline consisting of alignment using bwa (aln1, aln2, sampe), fix rg tags using picard
and merging the files. We would create three files:

fastq_bam_bwa.R ## A R script, with sleep_pipe(), which creates a flowmat
fastq_bam_bwa.conf ## An *optional* tab-delim conf file, defining default params
fastq_bam_bwa.def ## A tab-delimited flow definition file

Notice how all files have the same basename; this is essential for the run function to find all these files.

24

1. all three files should have the same basename

Reason for using the same basename:

• When we call run("fastq_bam_bwa",) it tries to look for a .R file inside flowr’s package,
~/flowr/pipelines OR your current wd. If there are multiple matches, later is chosen.

• Then, it finds and load default parameters from fastq_bam_bwa.conf (if available).
• Further, it calls the function fastq_bam_bwa, then stiches a flow using fastq_bam_bwa.def as the flow

definition.

2. can have multiple flowdefs like fastq_bam_bwa_lsf.def, fastq_bam_bwa_lsf.def etc, where .def is used
by default. But other are available for users to switch platforms quickly.

Feature:

• A user can supply a custom flow definition

run('fastq_bam_bwa', def = 'path/myflowdef.def'....)

• Starting flowr version 0.9.8.9011, run also accepts a custom conf file in addition to a flowdef file. Conf
contains all the default parameters like absolute paths to tools, paths to genomes, indexes etc.

run('fastq_bam_bwa', def = 'path/myflowdef.def', conf='path/myconf.conf',....)

This is quite useful for portability, since to use the same pipeline across institution/computing clusters one
only needs to change the flow definition and R function remains intact.

Refer to help section on run for more details.

Tip: Its important to note, that in this example we are using R functions, but any other language can be
used to create a tab-delimited flowmat file, and submitted using submit_flow command.

13.3 Nomeclature for parameters

Here is a good example: https://github.com/sahilseth/flowr/blob/master/inst/pipelines/fastq_bam_bwa.
conf

(recommeded for increased compatibility)

1. all binaries end with _exe
2. all folders end with _dir
3. all jar files end with _jar
4. specify cpu’s using <%CPU%>, this makes this value dynamic and is picked up by the flow definition

14 Example pipeline: fastq to bam

You may visit docs.flowr.space for more details.

If you face any issues, please feel free to raise a issue on github.

25

rd.html#run
https://github.com/sahilseth/flowr/blob/master/inst/pipelines/fastq_bam_bwa.conf
https://github.com/sahilseth/flowr/blob/master/inst/pipelines/fastq_bam_bwa.conf
http://docs.flowr.space/index.html
https://github.com/sahilseth/flowr/issues

15 Setup up flowr

Requirements:

• R version > 3.1, preferred 3.2
• install flowr from sahilseth.github.io/drat, provides a more recent version than CRAN.

#install.packages("params", repos = "http://cran.rstudio.com")
for a latest stable version (updated every few days):
install.packages("flowr", repos = c(CRAN = "http://cran.rstudio.com",

DRAT = "http://sahilseth.github.io/drat"))

After installation run setup(), this will copy the flowr’s helper script to ~/bin. Please make sure that this
folder is in your $PATH variable.

library(flowr)
setup()

Then we need to test whether we are able to submit jobs to the cluster properly.

run a test on the local platform
run(x='sleep_pipe', platform='local', execute=FALSE)
run a test on the HPCC platform (torque, sge, moab, slurm, lsf)
run(x='sleep_pipe', platform='torque', execute=TRUE)

NOTE: In case the test is not successful, please follow the advanced configuration page for more details on
how to solve the issues.

16 Fetch and download the pipeline

Next, we will download a pipeline which processes multiple fastq files of a sample into a single aligned and
merged BAM file.

cd ~/flowr/pipelines
base=https://raw.githubusercontent.com/sahilseth/flowr/devel/inst/pipelines
wget $base/fastq_bam_bwa.R
wget $base/fastq_bam_bwa.conf
wget $base/fastq_bam_bwa.def

16.1 Download data/genome

16.1.1 Reference Genome

One can download the reference genome including indexes of various alignment tools from Illumina’s iGenomes
website.

You may skip this step, if you already have the genome fasta and related files.

26

http://docs.flowr.space/install.html
https://en.wikipedia.org/wiki/FASTQ_format
http://samtools.github.io/hts-specs/SAMv1.pdf
https://support.illumina.com/sequencing/sequencing_software/igenome.html

mkdir ~/flowr/genomes; cd ~/flowr/genomes
url=ussd-ftp.illumina.com/Homo_sapiens/NCBI/build37.2/Homo_sapiens_NCBI_build37.2.tar.gz
ftp ftp://igenome:G3nom3s4u@$url
tar -zxvf Homo_sapiens_NCBI_build37.2.tar.gz

A typical NGS pipeline consists of many steps, each with several parameters. You can modify
fastq_bam_bwa.conf, specifying paths to various tools and their default options (samtools, bwa, picard and
reference genome indexes).
Note: All parameters of this pipeline are conveniently specified in a tab-delimited format in the
fastq_bam_bwa.conf file.

customize parameters, including paths to samtools, bwa, reference genomes etc.
vi fastq_bam_bwa.conf

16.1.2 Example data

You may skip this step if you already have raw reads for a sample, in fastq format.

mkdir ~/flowr/genomes; cd ~/flowr/genomes
for testing puposes one may download example fastq files:
wget http://omixon-download.s3.amazonaws.com/target_brca_example.zip
unzip target_brca_example.zip

17 Customize flow definition, describing the computing cluster

Next, we need to customize the resource requirements based on the computing platform. You may refer to
the flow definition format for more details.

customize the resource requirements in flowdef:
- need to change: queue, platform
- may change: walltime, memory, CPUs etc.
vi fastq_bam_bwa.def

read check flowdef (shell)
flowr as.flowdef x=fastq_bam_bwa.def

OR from R
as.flowdef(x='fastq_bam_bwa.def')

Read and check flowdef
jobname sub_type prev_jobs dep_type queue memory_reserved walltime cpu_reserved platform jobid
aln1 scatter none none medium 16384 2:00 12 lsf 1
aln2 scatter none none medium 16384 2:00 12 lsf 2
sampe scatter aln1,aln2 serial medium 16384 2:00 1 lsf 3
fixrg scatter sampe serial medium 16384 2:00 1 lsf 4
merge serial fixrg gather medium 16384 12:00 1 lsf 5

A flow definition with default values has already been supplied, briefly,

• Submission Type (sub_type): determines, how each step is submitted to the cluster. All steps
except merging may have multiple subprocess (each of which can run in parallel). Thus, we spread
(scatter) them across the cluster.

27

http://docs.flowr.space/docs.html#flow_definition

• Previous Jobs (prev_jobs): The two aln steps of bwa may be run in parallel, and its subsequent
sampe would wait for both. Spcecifically, in case of multiple fastq files ith sampe step would wait for ith

aln1 and aln2 steps.
• cpu_reserved: Since aln can use multiple cores, we provide it 12 cores, and for rest of the steps, 1

core each.
• walltime: Merging may take a little longer, so we give it ample amount of time (12 hours). Some

computing platforms specify time as hh:mm:ss and others prefer hh:mm, you may need to check with
your system admin.

• memory: For simplicity we can assign 16GB (16000kb) of memory to each of these steps (may be an
overkill, please change as necessary).

• queue: We use a generic medium queue, since if usually exists; please change as needed.
• platform: Finally, specify the platform of your computing cluster (moab, lsf, torque, sge, slurm [alpha])

Tip: Once we define the flow definition correctly, we may not need to change it any further (one time
effort).

18 Submit to cluster

18.1 Single step cluster submission

Note: Assuming that the pipeline along with its .def and .conf files is available in ~/flowr/pipelines.
Also, .conf files should have all the correct paths and .def file should have resource requirements specified
correctly.

get input fastqs
fqs1=~/flowr/genomes/target_brca_example/brca.example.illumina.0.1.fastq
fqs2=~/flowr/genomes/target_brca_example/brca.example.illumina.0.2.fastq

submit to the cluster
flowr run x=fastq_bam_bwa fqs1=$fqs1 fqs2=$fqs2 samplename=samp execute=TRUE

change the platform specified in flowdef
flowr run x=fastq_bam_bwa fqs1=$fqs1 fqs2=$fqs2 samplename=samp execute=TRUE platform=slurm

OR from R using:

library(flowr)
fqpath = "~/flowr/genomes/target_brca_example"
demonstrating that multiple fqs can be used here...
fobj = run(x = "fastq_bam_bwa", samplename = "samp1", execute = TRUE,

fqs1 = rep(paste0(fqpath, "/brca.example.illumina.0.1.fastq"), 2),
fqs2 = rep(paste0(fqpath, "/brca.example.illumina.0.2.fastq"), 2))

Refer to the help pages for more details on the run function.

18.2 (Optional) Details regarding cluster submission

The run function performs several steps, finally submitting the commands to the cluster. It may be useful to
go through these steps to understand the details.
1. Get user inputs
Using the name of the pipeline, run fetches it in various places inclusing ~/flowr/pipelines.

28

Tip:**
http://docs.flowr.space/rd.html#run

library(flowr)
setwd("~/flowr/pipelines")
source("fastq_bam_bwa.R")

#fetch_pipes("fastq_bam_bwa")

this may throw a warning if paths do not exist
if you have used modules instead of full paths please ignore the warnings
load_opts("fastq_bam_bwa.conf")

Get example input
these can be a vector of multiple paired-end files
OR multiple single-end files
fqs1 = "~/flowr/genomes/target_brca_example/brca.example.illumina.0.1.fastq"
fqs2 = "~/flowr/genomes/target_brca_example/brca.example.illumina.0.2.fastq"
samp = "samplename"

optionally specify the center, lane, platform etc.
set_opts(rg_center = "the_institute", rg_lane = "1")

Note: load_opts checks if variables ending with
_exe, _path, _dir etc. exist or not.
make sure they are all correct.
Ignore the warnings, if instead of specifying full path to a tool
you are using the module command.

Refer to the help pages of fetch_pipes and fetch_pipes for more details.

2. Read flow definition

def = as.flowdef("fastq_bam_bwa.def")

def seems to be a file, reading it...

--> checking if required columns are present...

--> checking if resources columns are present...

--> checking if dependency column has valid names...

--> checking if submission column has valid names...

--> checking for missing rows in def...

--> checking for extra rows in def...

--> checking submission and dependency types...

29

http://docs.flowr.space/rd.html#fetch_pipes
http://docs.flowr.space/rd.html#load_opts

The plot would work only if you have X11 etc enabled, i.e. if you logged into the cluster using ssh -X (or
ssh -Y).
Optionally, one can edit all config files on their own machine, debug and sort issues; when done, upload them
to the cluster and submit.

plot_flow(def) ## on a cluster, only works if graphics X11 is enabled. ssh -X

aln1aln1aln1aln1
dep: none

sub: scatter
aln2aln2aln2aln2

dep: none

sub: scatter

sampesampesampesampe
dep: serial

sub: scatter

fixrgfixrgfixrgfixrg
dep: serial

sub: scatter

merge
dep: gather

sub: serial

3. Create a table with all commands to run

We use the function fastq_bam_bwa to create a flow mat.

run the module and create a flow mat, with all the commands
out = fastq_bam_bwa(fqs1, fqs2, samplename = samp)

optionally, write this to a file (a simple tab delimited table)
write_sheet(out$flowmat, "fastq_bam_bwa.tsv")

4. Executing on the computing cluster

Now we can submit this to the cluster using:

fobj2 = to_flow(x='~/flowr/pipelines/fastq_bam_bwa.tsv',
def='~/flowr/pipelines/fastq_bam_bwa.def',
name = "fastq_bam_bwa",
execute=TRUE)

OR from the terminal using:

flowmat=~/flowr/pipelines/fastq_bam_bwa.tsv
flowdef=~/flowr/pipelines/fastq_bam_bwa.def
flowr to_flow x=$flowmat def=$flowdef name=fastq_bam_bwa execute=TRUE

30

http://docs.flowr.space/docs.html#flow_mat

Tip: This example shows a single sample, but you may have as many samples in the flowmat. In case
of multiple samples, the samplename column is used to group commands and each set if submitted as a
individual flow.

Several other functions, one may use after submission:

checking the status:

from R:
status(x="~/flowr/runs/fastq_bam_bwa*")

OR from terminal using:
flowr status x=~/flowr/runs/fastq_bam_bwa*

	total	started	completed	exit_status	status
001.aln1	1	1	0	0	processing
002.aln2	1	1	0	0	processing
003.sampe	1	0	0	0	pending
004.fixrg	1	0	0	0	pending
005.merge	1	0	0	0	pending

Additionally, you may kill or rerun the flow as well.

flowr kill x=~/flowr/runs/fastq_bam_bwa*
flowr rerun x=~/flowr/runs/<full path of the flow> start_from=fixrg

Please use the respective help pages for more details.

19 Citation

Please consider citing flowr, would be great help (from within R, enter citation("flowr"))

To cite flowr in publications use:

Sahil Seth, et. al (2015) Flowr: Robust and efficient pipelines using a simple language-agnostic approach
bioRxiv 2015

A BibTeX entry for LaTeX users is

@Article{, author = {Sahil Seth and Samirkumar B Amin and Xingzhi Song and Xizeng Mao and Huandong
Sun and Roeland GW Verhaak and Andrew PA Futreal and Jianhua Zhang}, title = {Flowr: Robust and
efficient pipelines using a simple language-agnostic approach}, journal = {bioRxiv}, year = {2015}, doi =
{10.1101/029710}, publisher = {Cold Spring Harbor Labs Journals}, url = {http://biorxiv.org/content/early/
2015/10/22/029710}, }

As flowr is continually evolving, you may want to cite its version number. Find it with ‘help(package=flowr)’.

31

http://docs.flowr.space/rd.html#kill
http://docs.flowr.space/rd.html#kill
http://biorxiv.org/content/early/2015/10/22/029710
http://biorxiv.org/content/early/2015/10/22/029710

	Get started
	Toy example
	Stitch it
	Plot it
	Dry Run
	Submit it
	Check its status
	Kill it
	Re-run a flow

	Input files
	1. Flow matrix
	2. Flow definition

	Submission types
	Dependency types
	Relationships
	One to One (serial)
	Many to One (gather)
	One to Many (Burst)

	Cluster Support
	Installation
	Test
	Advanced Configuration
	HPCC Support Overview
	flowr configuration file

	Troubleshooting & FAQs
	Errors in job submission
	Flowdef resource columns
	Adding a new platform
	Installation Error (DRAT)
	Installation Error (Github)

	Creating input file(s)
	Creating Flow Definition
	Create flow, submit to cluster
	Creating modules

	Execute the pipeline
	Best practices for writing modules/pipelines
	A note on module functions
	Pipeline structure
	Nomeclature for parameters

	Example pipeline: fastq to bam
	Setup up flowr
	Fetch and download the pipeline
	Download data/genome

	Customize flow definition, describing the computing cluster
	Submit to cluster
	Single step cluster submission
	(Optional) Details regarding cluster submission

	Citation

