There is a newer version of this record available.

Preprint Open Access

Creative Magic Squares: Area Representations

Inder J. Taneja

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Magic Squares, Area representations, pefect square sums</subfield>
  <controlfield tag="005">20210816235152.0</controlfield>
  <controlfield tag="001">5009224</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4362366</subfield>
    <subfield code="z">md5:a85f00ce71f83c08ac78be416d5ff38b</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-06-22</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Formarly, Professor of Mathematics, Federal University of Santa Catarina, Florianópolis, SC, Brazil</subfield>
    <subfield code="a">Inder J. Taneja</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Creative Magic Squares: Area Representations</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;It is well known that every magic square can be written as &lt;strong&gt;perfect square sum&lt;/strong&gt; of entries. It is always possible with odd number entries starting from 1. In case of odd order magic squares we can also write with &lt;strong&gt;consecutive natural number&lt;/strong&gt;&amp;nbsp;entries. Still, it is unknown whether it is possible to even order magic squares. In case of odd order magic squares, still we can write them with &lt;strong&gt;minimum perfect square&lt;/strong&gt;&amp;nbsp;sum of entries. Based on this idea of &lt;strong&gt;perfect square sum&lt;/strong&gt; of entries, we have written a magic square representing areas. This is done for the magic squares of orders 3 to 11. In the case of magic squares of orders 10 and 11 the images are not very clear, as there are a lot of numbers. To have a clear idea, the magic squares are also written in numbers. In all the cases, the area representations are more that one way. It is due to the fact that we can always write magic squares as &lt;strong&gt;normal&lt;/strong&gt;, &lt;strong&gt;bordered&lt;/strong&gt;&amp;nbsp;and &lt;strong&gt;block-bordered&lt;/strong&gt;&amp;nbsp;ways.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5009223</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5009224</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
All versions This version
Views 13494
Downloads 8763
Data volume 394.7 MB274.8 MB
Unique views 11393
Unique downloads 7455


Cite as