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Big whorls have little whorls,

which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

- L. F. Richardson, 1922.
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Abstract

Magnetohydrodynamic (MHD) turbulence in the interstellar medium (ISM) influences star

formation and subsequently the way our Galaxy evolves. Direct observations of magnetic

fields for studying MHD turbulence can be difficult and costly to obtain; as an alternative,

we explore a technique called velocity anisotropy to probe MHD turbulence. We apply the

velocity anisotropy technique (VAT) in CO radiative transfer MHD simulations for the first

time and also to non-synthetic observations for the first time. We find that for optically

thin radiative transfer simulations, the sub-Alfvénic and super-Alfvénic regimes are indis-

tinguishable. For the optically thick case the regimes were distinguishable. We then apply

the VAT to 12CO and 13CO emission line observations of the Taurus Molecular Cloud, and

compare results with that of a principal component analysis (PCA) technique detailed in

Heyer & Brunt (2011). We find that increased velocity anisotropy did not correspond to

regions of lower gas column density/visual extinction as it did when analyzed with PCA,

though this may be due to the selection of region size. We also found 12CO emission to show

more velocity anisotropy than 13CO emission, in agreement with the PCA analysis. As a

preface to and to supply context for the VAT and its usefulness, we first overview the ISM,

turbulence, MHD turbulence in the ISM, and the interstellar magnetic field. We discuss the

challenges of observing magnetic fields and the need for methods like VAT to study these

fields, MHD turbulence, and the way our Galaxy evolves.
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1. Introduction

This thesis is an exploration of a technique called velocity anisotropy (a technique also

discussed by Esquivel & Lazarian (2011) and Burkhart et al. (2014)). This technique probes

magnetohydrodynamic (MHD) turbulence in the interstellar medium (ISM). MHD turbu-

lence in the ISM is important because of its influence on star formation and subsequent influ-

ence on the way our Milky Way evolves (McKee & Ostriker 2007; Elmegreen & Scalo 2004;

Falceta-Gonçalves et al. 2014). Current methods of observing interstellar magnetic fields in

MHD turbulence are time intensive and costly, so exploring new statistical techniques for

measuring MHD turbulence is advantageous. In this thesis we apply the velocity anisotropy

technique (VAT) to both compressible MHD simulations including radiative transfer and

also observational data for the first time. Understanding the VAT’s ability to describe MHD

turbulence is useful as it is an easily computed statistic. Developing and testing techniques

such as the VAT allows for more flexibility and potentially better accuracy when describing

the ISM throughout our Galaxy (Burkhart 2014).

To provide context for the exploration of MHD turbulence in the ISM, we begin with an

overview of the ISM, turbulence theory, MHD turbulence, and interstellar magnetic fields.

We discuss the challenges of producing magnetic field observations, motivating the produc-

tion of statistical techniques like the VAT which can describe magnetic fields in the ISM

from indirect observations.

In order to effectively model MHD turbulence a combination of theory, numerical simu-

lations, and observational data with statistical studies is most helpful (Burkhart 2014). We

discuss the advantages of numerical simulations and how they are translated to synthetic

observations such that they are comparable with observations of the interstellar medium.

We apply the VAT to radiative transfer MHD simulations with various Sonic Mach numbers

and analyze the resulting trend. We then apply the VAT to emission data for the Taurus
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Molecular Cloud, and explain why it is a good target for MHD turbulence studies. We end

by briefly comparing the results of the VAT to a principal component analysis (PCA) of

MHD turbulence in the Taurus Molecular Cloud as presented by Heyer & Brunt (2011).

1.1. The Interstellar Medium

Permeating our galaxy is the interstellar medium (ISM). It is composed of gaseous

hydrogen and helium, with a spritz of heavier elements from the death of stars, some dust

grains, cosmic rays, and embedded magnetic fields (Ferrière 2001; Tielens 2005; Vazquez-

Semadeni 2012). The ISM contains condensed clouds, larger void-like pockets, shells, and

bubbles over a wide range of scales, concentrated mostly in shock fronts near the Galactic

plane and spiral arms of our Galaxy (Ferrière 2001; Vazquez-Semadeni 2012).

The gas component of the ISM is ∼ 1010 M� or about ∼ 10− 15% of the total mass of

the Galactic disk (Ferrière 2001; Vazquez-Semadeni 2012). Its contents are mostly hydrogen,

accompanied by 10% helium, 0.1% carbon, nitrogen, or oxygen, and tiny amounts of heavier

elements (Dyson & Williams 1997). It is also dusty, but with a particle-number ratio of gas

to dust of 1012 (Dyson & Williams 1997).

We categorize parts of the ISM based on the form of its gas, its temperature, its density,

and its ionization fraction (Ferrière 2001; Tielens 2005; Vazquez-Semadeni 2012). The gas

can be ionized, neutral atomic, or neutral molecular, and we loosely split the temperatures

into cool (< 104 K), warm (∼ 104 K), and hot (∼ 106 K) (Ferrière 2001; Vazquez-Semadeni

2012). We call categories or phases of the ISM cold neutral (CNM), warm neutral (WNM),

warm ionized (WIM), hot ionized (HIM), and sometimes distinguish a warm partially ionized

phase (Savage & Mathis 1979; McKee & Ostriker 2007; Vazquez-Semadeni 2012).

Thermal instability causes the ISM to separate into different phases— certain tem-
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perature and density values are unstable and small deviations from these values will cause

runaway heating or cooling in the ISM (Vazquez-Semadeni 2012). The heating or cooling

will slow and stop once the ISM reaches stable temperature and density values. These sta-

ble values are the aforementioned phases. However, these phases aren’t isolated from their

often turbulent surroundings (Vazquez-Semadeni 2012). Turbulence, a mixing phenomenon

defined more exactly in Section 1.2, acts against phase separation, pushing the ISM into

unstable, in-between phase regimes (Vazquez-Semadeni 2012). These unstable regimes pro-

duced by turbulence may consist of up to half of the mass of the ISM (Vazquez-Semadeni

2012).

Commonly studied structures in the ISM include molecular clouds (MCs). In fact,

half of ISM’s mass and ∼ 1 − 2% of the interstellar volume is contained in these clumpy,

cooler, discrete clumps/clouds (Ferrière 2001). The remaining ISM is warm or hot and is

either diffusely spread between these clouds or slightly concentrated in patches, filaments, or

structures called bubbles, superbubbles, and loops (Ferrière 2001; Vazquez-Semadeni 2012).

The temperature, density, and scale height (the distance for which the density decreases by

a factor of e) for these phases and structures are shown in Table 1.

Perhaps the most important role that the ISM plays in our Galaxy is that of forming

and recycling stars (Ferrière 2001). Star formation determines the structure and evolution

of our Galaxy and yields the materials that make up our planets and ourselves (McKee &

Ostriker 2007). After forming, stars can interact with the ISM through supernovae, stellar

winds, and ionizing radiation fields (Ferrière 2001). These interactions inject material and

energy, causing compression waves and turbulence, and creating structure and ionized regions

in the ISM, including nebulae, molecular clouds, HI clouds, HII regions, (super)bubbles,

circumstellar disks, and supernova remnants (Ferrière 2001). Figure 1 illustrates some of

these objects. The exact role of MHD turbulence in the star formation cycle is an active
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Table 1:: Phases of the ISM (Ferrière 2001).

Phase or Density Temperature Scale height Fractional Volume State of

Structure (atoms cm−3) (K) (pc) (% of ISM) hydrogen

MC 102 − 106 10− 29 80 < 1 molecular

CNM 20− 50 50− 100 100− 300 1− 5 neutral atomic

WNM 0.2− 0.5 6000− 10000 300− 400 10− 20 neutral atomic

WIM 0.2− 0.4 8000 1000 20− 50 ionized

HIM 10−4 − 10−2 8000 1000− 3000 < 1 ionized

HII 102 − 104 106 − 107 70 30− 70 ionized

area of research, underscoring the importance of developing the VAT and other techniques.

1.2. Turbulence Theory

Turbulence is important in all astrophysics that involve gas dynamics (McKee & Ostriker

2007). This includes large scale ISM structure, like the spiral arms in a galaxy, and smaller

scale structure, like compression in molecular cloud formation which leads to star formation

(Elmegreen & Scalo 2004). Understanding turbulence, magnetic fields, and structure in

the ISM is key to understanding how galaxies evolve to look the way that they do in gas,

dust, and stars, and to understand the mechanisms that fuel these evolutionary processes

(Elmegreen & Scalo 2004).

In these sections we describe turbulence, its energy cascade, statistics used to describe

turbulence such as the Reynolds, Sonic Mach, and Alvfén Mach numbers, the Navier-Stokes

equations (which govern turbulent and other fluid flow), magnetohydrodynamic turbulence

in the ISM, and outline the turbulence theories developed by Kolmorgorov in 1941 and
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(a) A molecular cloud in Ca-

rina (Hubble Telescope 2013)

(b) The Crab Nebula, a plan-

etary nebula (Hubble Image

& of Arizona State University

2005)

(c) Superbubble LHA 120-

N 44 in the Large Magel-

lanic Cloud (Very Large Tele-

scope image 2011)

Fig. 1.—: Images of some structures present in the ISM

Goldreich and Sridhar in 1995.

Colloquially, turbulence is used to describe something that is chaotic and random. While

it is true that the long term properties of turbulence are unpredictable, turbulence is not

actually random (McDonough 2007; Ball 2014; Falceta-Gonçalves et al. 2014). True ran-

domness requires the characteristics of any point to be temporally independent of any other

point (Ball 2014). Taking the average of something random results in something uniform,

but taking the average of turbulence results in non-uniformity; though turbulence may seem

chaotic, it has specific statistical properties that are revealed through temporal and spatial

averaging (Ball 2014). Subsequently, turbulence can be studied and modeled in terms of

statistical quantities (Falceta-Gonçalves et al. 2014).

More technically, turbulence can be defined as nonlinear fluid motion due to an input

of energy over a broad range of correlated spatial and temporal scales (Elmegreen & Scalo

2004). Turbulence can be classified as wave or fluid, compressible or incompressible, and
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gravitationally, thermally, or magnetically driven (McDonough 2007). Characteristics of

turbulent flows include seemingly random behavior, sensitivity to initial conditions (nonre-

peatability), large ranges of length and time scales that satisfy the continuum hypothesis (an

approximation that fluids are continuous rather than discrete), mixing motions, dissipation,

3D time dependence, and rotationality (McDonough 2007).

When looking at a turbulent fluid, such as rapids in a river, you would see a churning

and tumultuous hierarchy of eddies of all different sizes (Ball 2014). The cause of this

churning is kinetic energy which has been somehow injected into the fluid. Energy is not

injected on the length and time scale of each eddy in the hierarchy, but is rather injected on

a large spatial and temporal scale and then “cascades” (is transferred) down to successively

smaller scales, feeding the eddies at each scale along the way (McDonough 2007; Ball 2014;

Falceta-Gonçalves et al. 2014). At the smallest scales, the energy exits the cascade as heat

from the friction of molecules rubbing together (viscosity), though the bulk of the injected

kinetic energy remains at large scales (McDonough 2007; Ballesteros-Paredes et al. 2007; Ball

2014). This means that turbulence does not start out as a hierarchy of eddies, but rather

one large swirling motion/eddy/vortex from some local fluid instability (Falceta-Gonçalves

et al. 2014). This motion is unstable and fragments into smaller and smaller vorticies, until

the motions are so small they are damped out by viscosity (Falceta-Gonçalves et al. 2014).

Liquids and gasses generally have a laminar, parallel flow at lower speeds, and become

turbulent, swirling and forming eddies, at higher speeds (see Figure 2a) (Ball 2014). The

transition from laminar flow to turbulent flow depends on the viscosity and velocity of the

liquid or gas, since viscosity “smoothes” the flow and turbulence agitates it (Ball 2014). In

the 1880’s, O. Reynolds investigated this transition from laminar to turbulent flow using

pipes with dyed liquids (see Figure 3) (McDonough 2007). He came up with the dimension-

less Reynolds number, which characterizes when this transition to turbulence happens by
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(a) Laminar fluid flow from a faucet

changes to turbulent flow as it hits a

cup. In an astrophysical sense, this is

analogous to a hot outflow from a star

hitting colder ISM. Figure from Werne

(2016)

(b) A hierarchy of eddies can be seen in

the turbulent rapids in this river. Fig-

ure from Wayfarer (2016)

(c) A gradient image of linear polariza-

tion for a region of the Southern Galac-

tic Plane Survey, illustrating interstellar

turbulence. Figure from Gaensler et al.

(2011).

(d) Bumpy rides from airplane turbu-

lence is a commonly experienced form

of turbulence. The eddies under this

airplane are yet another. Figure from

Morris/AirTeamImages (2007)

Fig. 2.—: Turbulence in various media.
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expressing the relative importance of inertial and viscous forces (Ball 2014).

Re =
ρUL

µ

where ρ is the fluid density, µ the viscosity, U the velocity scale or a typical value of

velocity or the average, and L a typical length scale like the radius of the pipe in Figure 3

(McDonough 2007).

The Reynolds number (Re) is the ratio of the flow speed to viscosity of the material

(Ball 2014). A low Reynolds number (Re . 2000) implies that viscous forces are large

and will result in laminar (smooth, constant, non-mixing) flow (McDonough 2007; Falceta-

Gonçalves et al. 2014). A high Reynolds number (Re & 2300) indicates viscous forces

are small and inertial forces are large (McDonough 2007; Falceta-Gonçalves et al. 2014).

Turbulence develops at high Reynolds numbers (McDonough 2007).

While the Reynolds number will tell you if a flow is turbulent, the Sonic Mach number

is a way to quantify how much turbulence exists in a fluid.

The Sonic (Ms) Mach Number is defined as:

Ms =
v

cs

where v is the flow velocity and cs the speed of sound in the medium (Vazquez-Semadeni

2012). The Sonic Mach number relates the flow velocity with the speed of sound in the fluid

or gas.

Subsonic (Ms < 1) materials have a local sound speed/gas pressure greater than the

flow velocity. They have less waves or perturbations and behave incompressibly (Vazquez-

Semadeni 2012). This is what we tend to see everyday on Earth. Typical velocities of air
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Fig. 3.—: The Reynolds experiment: (a) laminar flow corresponding to Re . 2000, (b) early

transitional but still laminar/minimal mixing flow corresponding to 2000 . Re . 2300, and

(c) turbulence/significant mixing corresponding to Re & 2300. Figure from McDonough

(2007)
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are much less than the speed of sound and gas densities on Earth are relatively unvaried;

pressure forces in the atmosphere typically take care of overdensities that may develop before

they have time to grow larger than the local sound speed.

Supersonic (Ms > 1) materials have a larger flow velocity than local sound speed, more

turbulence, a range of gas densities, and behave compressibly (Vazquez-Semadeni 2012).

This is what we tend to see in interstellar space, though turbulence, magnetic fields, and net

cooling can change the compressibility of the gas (Vazquez-Semadeni 2012). Velocities of

gas can be faster than the speed of sound and density can vary greatly in the ISM because

strongly supersonic motions can cool gas rapidly and allow production of large amplitude

density fluctuations (Vazquez-Semadeni 2012).

Though the Reynolds number and the Sonic Mach number help to characterize turbulent

fluid flows, fluid flows can be described more completely by the Navier-Stokes equations.

Both laminar and turbulent fluid flows of various Mach numbers follow the Navier-Stokes

equations, which result from the application of Newton’s second law of motion to fluids

(Ball 2014). The Navier-Stokes equations describe the physics of all fluid flows within the

continuum hypothesis (McDonough 2007). The continuity or mass equation (1), momentum

equation (2) and energy equation (3) for a compressible fluid (different equations exist for

incompressible fluids) are:

∂ρ

∂t
+

∂

∂xj
[ρuj] = 0 (1)

∂

∂t
(ρui) +

∂

∂xj
[ρuiuj + pδij − τji] = 0, i = 1, 2, 3 (2)

∂

∂t
(ρe0) +

∂

∂xj
[ρuje0 + ujp+ qj − uiτij] = 0 (3)

Here, ρ is the density, p the pressure, t the time, u the flow velocity, τ the viscous stress,

and q the heat-flux.
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The Navier-Stokes equations map how energy, momentum, and mass are conserved in

a fluid in terms of pressure, temperature, density, and velocity. However, they are non-

linear and have non-local solutions (Falceta-Gonçalves et al. 2014). Solving these equations

analytically is usually impractical (McDonough 2007). Instead, simplifying assumptions are

made to analytically solve the equations, experimental data is gathered, or the full equations

are studied numerically in computational fluid dynamics (McDonough 2007).

In 1941, Andrei Kolmogorov solved the Navier-Stokes equations for subsonic turbulent

flow after assuming the energy transfer rate is constant at all scales and that the velocity

scale follows a stochastic (random) distribution (Kolmogorov 1991; Falceta-Gonçalves et al.

2014). Subsequently, scaling laws, which describe statistical moments of velocity or velocity

structure functions, could be used to model turbulence under these assumptions (Falceta-

Gonçalves et al. 2014). Essentially, Kolmogorov calculated how much energy is contained

in turbulent eddies of different sizes and showed that the energy and scale are related by a

power law, E(k) ∝ k−5/3 (?Ball 2014). Komorogov’s solutions were later transferred into

Fourier space as a non-linear interaction between similar wavenumbers, creating a spectral

form of the Navier-Stokes equations (Falceta-Gonçalves et al. 2014). This power spectrum

shows one representation of the dependence of energy on wavenumber or frequency (see

Figure 4) (McDonough 2007). Placing turbulence in the perspective of a spectrum of certain

energies at certain scales, for which statistics could be calculated, removed it from a more

physical interpretation (as eddies and vorticies) but more easily illustrated scale relations in

the energy cascade (Ball 2014). This theory of turbulence, often and hereafter referred to as

K41, successfully reproduces most experimental data (Falceta-Gonçalves et al. 2014).

K41 works well for subsonic, turbulent flow, which is typical of fluids on Earth (McKee

& Ostriker 2007). However, the ISM is supersonic, magnetized, and turbulent; magnetic

fields influence the injection and evolution of turbulence and energy is dissipated through
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Fig. 4.—: An energy spectrum E(k) of turbulence as a function of wave number, k = 2π/L.

The inertial range, between the energy injection and viscous damping scales, is where the

cascade follows a power law, E(k) ∝ k−5/3, as predicted by Kolmogorov (McDonough 2007;

Falceta-Gonçalves et al. 2014). This range is where the energy transfer rate is constant

(McDonough 2007; Falceta-Gonçalves et al. 2014). Eventually viscosity damps out the energy

cascade. Figure from Hutchinson (2014).
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not only the energy cascade but also shocks (Elmegreen & Scalo 2004; Lazarian 2004; Mc-

Kee & Ostriker 2007). For the ISM, K41 is an approximation (Elmegreen & Scalo 2004;

Lazarian 2004; McKee & Ostriker 2007). Though no complete and unified theory exists

for supersonic, magnetized fluid flow (which characterizes molecular clouds), partial ones

include Goldreich-Sridhar’s for subsonic magnetized turbulence and Fleck’s for supersonic

flow (Falceta-Gonçalves et al. 2014). We later discuss Goldreich-Sridhar’s theory in the con-

text of magnetohydrodynamic (MHD) turbulence in the ISM, and direct the reader to Fleck

(1996) for more information on their theory.

1.3. Interstellar Magnetohydrodynamic Turbulence

Interstellar turbulence has different properties from typical turbulence on Earth; it is

not statistically homogeneous, isotropic, or stationary (Elmegreen & Scalo 2004). Inter-

stellar turbulence is further alienated from the more familiar, terrestrial turbulence by the

incorporation of self-gravity, heating and cooling processes, and magnetic flux conservation

(Vazquez-Semadeni 2012). One familiarity is that interstellar turbulence seems largely sim-

ilar to classical incompressible turbulence, like that described by K41; energy appears to be

injected on much larger scales (e.g. spiral density waves, shear instabilities, and superbub-

bles on a kilo-parsec scale) and then cascades down to smaller scales (e.g. supernovae, stellar

winds, cosmic ray streaming on parsec to AU scales) (Elmegreen & Scalo 2004). Supernovae

are thought to be the largest energy contributors, but other processes, like fluid instabilities,

galaxy interactions, self-gravity, shock waves, and/or field star motions, can inject energy

into the ISM (Elmegreen & Scalo 2004). In molecular clouds, the result of energy injection,

the energy cascade, and subsequent turbulence is both a curb in global collapse due to a

transferring of energy to fragments of smaller and smaller scales and also an encouragement

of local collapse in cloud cores (Elmegreen & Scalo 2004).
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Because the ISM is magnetized as well as fluid, the Navier-Stokes Equations are sup-

plemented with Maxwell’s Equations to become MHD equations, assuming perfect coupling

between magnetic fields and plasma (Falceta-Gonçalves et al. 2014). A magnetic Reynolds

number exists, where the velocity is replaced with magnetic diffusivity. Reminiscent of the

Sonic Mach number, the Alvén Mach (Ma) number is used to describe the magnetic field

strength:

Ma =
vL
va

where vL the injection velocity and va the Alfvén velocity, (va = B/
√

4πρ) (Vazquez-

Semadeni 2012).

It is important to find whether magnetized regions in the ISM are sub-Alfvénic (Ma < 1)

or super-Alfvénic (Ma > 1). Sub-Alfvénic mediums are shaped by their strong magnetic

fields; the gas motions excited by turbulence are small compared to the mean magnetic

field and so do not change the magnetic field configuration (Falceta-Gonçalves et al. 2008).

Super-Alfvénic mediums are unrestricted by their weaker magnetic fields (Vazquez-Semadeni

2012). Their magnetic pressure is small compared to the kinetic energy of the turbulent gas so

the mean magnetic field is easily distorted (Falceta-Gonçalves et al. 2008; Vazquez-Semadeni

2012). This creates large polarization dispersions and density fluctuations (Falceta-Gonçalves

et al. 2008; Vazquez-Semadeni 2012). Turbulent fragmentation occurs in super-Alfvénic

regions, producing strong shocks responsible for the density perturbations that condense

molecular clouds and ignite star formation. Molecular clouds have MHD turbulence that is

supersonic and super-Alfvénic (Falceta-Gonçalves et al. 2008; Vazquez-Semadeni 2012).

Measurements of small scale magnetic fields can be tedious and insensitive, so turbulence

parameters like Alfvén Mach numbers are difficult to estimate (Burkhart 2014). Techniques

like the VAT can used instead. The presence of a magnetic field induces a preferred di-
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rection for charged particle motion within the ISM, as discussed in Section 1.6 (McKee &

Ostriker 2007; Burkhart et al. 2013). This causes the turbulent energy cascade to become

anisotropic, meaning eddies are elongated along the direction of the magnetic field (see Fig-

ure 5) (Burkhart et al. 2013). Large scale motions in turbulent, magnetic ISM have more

kinetic energy than small scale motions, resulting in similar values for the magnetic field

at all scales (Burkhart et al. 2013). Consequently, the magnetic field influence does not

dynamically prevail at large scales but does for small scales (Burkhart et al. 2013). This

results in greater elongation as scales decrease (Burkhart et al. 2013).

Fig. 5.—: Two perspectives of a numerical simulation of turbulence with a strong magnetic

field. The image on the left has the magnetic field in the direction of the horizontal axis.

Elongation of eddies are discernible when compared to the image on the right, whose mag-

netic field is directed inward, along our line of sight. The blue regions are higher density

than the yellow by a factor of four. Simulation courtesy of Burkhart and Kowal et al. (2007).

While the Alfvénic Mach gives an estimate of magnetic field strength, a more thorough

description of MHD turbulence would be helpful. The Goldreich & Sridhar (1995) theory
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of incompressible magnetohydrodynamic (MHD) turbulence (hereafter GS95) is based on a

critically-balanced anisotropic energy cascade. While K41 assumed the wave number and ve-

locity of incoming perturbations were the same as those leaving via the energy cascade, GS95

does not. The energy cascade is the same in the perpendicular direction of the magnetic

field as in K41, but is diminished in the direction parallel to the magnetic field (Goldreich

& Sridhar 1995). Additionally, anisotropy increases on small scales (Goldreich & Sridhar

1995). This leaves detectable anisotropy both in the dispersion of eddy velocities and in the

dispersion of wave numbers, though easier to observe anisotropic dispersion in velocity power

spectra (Goldreich & Sridhar 1995). The balancing part of the critically balanced premise of

GS95 theorizes that the timescale for energy to cascade along the two directions is compara-

ble. If λ‖ and λ⊥ are the wavelengths parallel and perpendicular to the mean magnetic field

and vA and v are the Alfvenic and mean velocity fluctuations at those component scales,

then the critical balance would look like (Goldreich & Sridhar 1995):

λ‖/vA ∼ λ⊥/v

An energy-conserving cascade has v ∝ λ
1/3
⊥ , so we find (Goldreich & Sridhar 1995):

λ‖ ∝ λ
2/3
⊥

Thus, critically balanced Alfvénic cascade yields a scale dependent anisotropy of the λ⊥

velocity field (Goldreich & Sridhar 1995).

Because of GS95 MHD eddy elongation, astronomers can deduce Alfvénic Mach numbers

from the anisotropy in the velocity field of the region (Burkhart 2014). Due to observation

geometry, the actual anisotropy is always less than or equal to that which is observed along

the line of sight; only a lower limit of anisotropy can be detected due to projection effects

(Burkhart 2014). When our line of sight is perpendicular to the magnetic field, the estimated

Alfvénic Mach number is an upper limit (Burkhart 2014). Dust polarization and Faraday
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rotation measurements, further discussed in Section 1.4, could assist with complimentary

plane of sky magnetic field estimations (Burkhart 2014).

1.4. Observing MHD Turbulence in the ISM

Strong observational indicators that the ISM is in fact turbulent are the ISM’s density

distribution and velocity distribution (Dyson & Williams 1997; Burkhart et al. 2013; Falceta-

Gonçalves et al. 2014). The velocity distribution is usually detected by non-thermal broad-

ening of emission and absorption lines like HI and 12CO and 13CO (Dyson & Williams 1997;

Burkhart et al. 2013; Falceta-Gonçalves et al. 2014). Statistics on the time and space vari-

ability of both the density and velocity fluctuations are used to study interstellar MHD tur-

bulence, though velocity dispersions are favored (McKee & Ostriker 2007; Falceta-Gonçalves

et al. 2014).

Low surface brightness of density tracers and projection effects complicates direct anal-

ysis of turbulent flows in the ISM (Falceta-Gonçalves et al. 2014). As a result, turbulence

is typically studied with line of sight data (polarization, velocity dispersion from spectral

lines, Faraday rotation) or in plane of the sky maps (integrated quantities like emission lines,

column density, stokes parameters for polarization maps) (Falceta-Gonçalves et al. 2014).

Column density projections/emission maps are also influenced by projection effects— that

is, different structures projected on the same line of sight but decorrelated at a given length

scale can be seen as a single structure in projected emission map (Falceta-Gonçalves et al.

2014). Other tracers of interstellar turbulence include the scintillation of background radia-

tion/changes in refraction index due to turbulent motions in the ionized components of the

ISM (yielding a density spectrum along line of site) and also the fluctuations of Faraday

rotation measurements in the plane of sky if the magnetic field is known (Falceta-Gonçalves

et al. 2014).



– 24 –

Techniques have been developed to extrapolate 3D turbulence information from avail-

able observations (spectral line data cubes from molecular transitions, continuum emission

maps from dust, extinction maps from background stars, and polarization maps from dust)

(McKee & Ostriker 2007; Lazarian 2011; Burkhart 2014). These include one point statistics

(mass distribution, volume or density probability distribution functions), autocorrelation

functions, power spectra, structure functions, fractal dimensions, multifractal spectra, hier-

archical structure trees, clump mass functions, bispectrum, phase coherence, and principal

component analysis (McKee & Ostriker 2007; Lazarian 2011; Burkhart 2014). Some of these

techniques are further discussed in Section 1.7.

What do observations show us about MHD turbulence in the ISM? Turbulence in the

ISM is mostly supersonic due to the large spatial scales in interstellar flows (Vazquez-

Semadeni 2012). The amplitudes of velocity distributions for the ISM show there exists

supersonic turbulent motion driven at scales from ∼ 10 − 100 pc (Falceta-Gonçalves et al.

2014). On smaller scales, in different phases, and for different temperatures, the sound speed

of the ISM varies, and subsequently the Sonic Mach number of turbulence in the ISM can

vary (Vazquez-Semadeni 2012). For warm diffuse ionized regions in the ISM, turbulent flow

is trans-sonic, Ms ∼ 1, and gas behaves incompressibly (Ballesteros-Paredes et al. 2007;

Vazquez-Semadeni 2012). Velocity fluctuations in this phase often cause density increases

by pushing gas into thermally unstable regimes where it will then cool rapidly into colder,

denser phases (Ballesteros-Paredes et al. 2007). In warm and hot ionized components of

the ISM, turbulence is transsonic or subsonic and nearly incompressible (Vazquez-Semadeni

2012). Smaller scales are subsonic, with the exact scale depending on the ISM phase (Falceta-

Gonçalves et al. 2014). Molecular clouds have subsonic turbulence at scales less than a parsec

while warm and neutral diffuse phases are subsonic at a few parsec (because the local sound

speeds are greater) (Falceta-Gonçalves et al. 2014). Observations show that the diffuse ISM

is turbulent at scales > 150 pc and has a velocity dispersion of ≥ 50 km/s (Falceta-Gonçalves
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et al. 2014). Modeling the ISM with first order energy injections of supernova driven out-

flows, galactic shear, and magneto-rotational instability and second order energy injections

of local stellar feedback fit well to this data (Falceta-Gonçalves et al. 2014).

Line-width relations and power spectra illustrate the dominance of MHD turbulence in

molecular clouds; MHD turbulence has been observed on scales of entire molecular clouds

down to their cores (Ballesteros-Paredes et al. 2007; Burkhart et al. 2013). MHD turbulence

not only governs molecular cloud formation and behavior but also affects the star formation

processes; the elongation of eddies from MHD turbulence inhibits the collapse of molecular

cores, decreases angular momentum, and builds filamentary structures which mediate the

accretion rate of gas onto protostellar cores (Elmegreen & Scalo 2004; Ballesteros-Paredes

et al. 2007). However, it does not inhibit global cloud collapse or align cloud fragments

(Ballesteros-Paredes et al. 2007).

Supersonic and super-Alfvénic turbulence in dense molecular clouds generates further

over-densities from which cores develop (Ballesteros-Paredes et al. 2007). These cores will

eventually collapse to form stars. However, the process of star formation from the collapse

of molecular clouds is inefficient; not all of the gas in molecular clouds ends up as stars

(Vazquez-Semadeni 2012). The efficiency of molecular cloud mass to stellar mass conversion

depends on both stellar feedback evaporating the surrounding molecular cloud material and

the presence of magnetic fields (Ballesteros-Paredes et al. 2007). MHD turbulence contributes

to low star formation efficiency by preventing large scale cloud collapse by transferring energy

to fragments of smaller and smaller scales (Elmegreen & Scalo 2004; Ballesteros-Paredes

et al. 2007; McKee & Ostriker 2007). However, MHD turbulence also encourages small scale

collapse by small scale scattered ram-pressure compressions, which generate a greater range

of gas densities, including densities that can collapse into stars and subsequently determining

the lifetime of the cloud and its star formation rate (Ballesteros-Paredes et al. 2007; McKee



– 26 –

& Ostriker 2007; Vazquez-Semadeni 2012).

1.5. The Interstellar Magnetic Field

Our Galactic magnetic field is thought to be generated by a hydrodynamic dynamo

(Ferrière 2001). Dynamo theory describes how motions of a conducting fluid embedded

in a magnetic field can generate electric currents, which can amplify an original magnetic

field. Our Galaxy’s dynamo process is its large scale differential rotation, complemented by

small scale turbulent motions (Ferrière 2001). The Galactic dynamo still requires an original,

“seed” magnetic field. This seed could have been an extragalactic magnetic field that existed

before our Galaxy formed, a field that arose in protogalaxy formation, or fields from first

generation stars which were spread into the ISM by winds and supernovae (Ferrière 2001).

Most of the galactic disk’s magnetic field has an intensity of ∼ 10 − 15µG (Falceta-

Gonçalves et al. 2014). In contrast, Earth has a field of ∼ 0.3 G, the Sun, ∼ 1− 103 G, and

pulsars ∼ 108−1013 G (Ferrière 2001). HI regions have a magnetic field intensity of 2−10µG,

and dense, molecular clouds have field intensities that increase with the square root of their

density, somewhere on the order of µG to mG (Haverkorn 2014). Locally, the interstellar

magnetic field is parallel to the galactic plane and the large scale magnetic field component

is ∼ 6µG (Ferrière 2001; Haverkorn 2014). Towards the center of our Galaxy, the field

strength increases independently of ISM density, reaching ∼ 10µG (Haverkorn 2014). Away

from the center, the magnetic field follows the spiral arms of our Galaxy and is symmetric

with respect to the Galactic plane (Haverkorn 2014). The magnetic field in Galactic halo

is between 2 − 12µG (Haverkorn 2014). Large scale reversals of magnetic field lines exist

though their exact locations are debatable (Haverkorn 2014). Figure 7 shows a projected

sky map of dust polarization, indicating magnetic field information for our Galaxy.
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Traditionally, galactic magnetic fields are discussed as either small-scale and large-scale

fields, though newer research includes a third, “random” component (Haverkorn 2014). Dif-

ferent names for these components are used in the literature, and are reproduced here for

clarity. Large-scale/regular/uniform/coherent fields are coherent on length scales on the or-

der of a galaxy and follow either the galaxy’s spiral arms or a ring shape (Haverkorn 2014).

They are generated by galactic rotation and shear (a process that occurs when there is a ve-

locity difference at the intersection of two fluids) (Falceta-Gonçalves et al. 2014; Haverkorn

2014). Small-scale/random/tangled/turbulent fields are associated with molecular clouds

and star forming regions (Falceta-Gonçalves et al. 2014; Haverkorn 2014). They are gener-

ated by interstellar turbulence, supernovae, and remnants of shock waves, and are subject

to the energy cascade (see Section 1.2) (Falceta-Gonçalves et al. 2014; Haverkorn 2014).

Anisotropic random/ordered random/striated fields have a variable direction on small scales

but a constant orientation on large scales (Haverkorn 2014). These fields stem from com-

pression onto a 2D structure like in supernovae remnant shocks, spiral arm density waves,

and/or galactic shears (Haverkorn 2014).

Magnetic fields affect their environment by inflicting a magnetic tension on embedded

objects (Ferrière 2001). ISM clouds, for example, are threaded and connected by magnetic

fields to intercloud medium and neighboring clouds (Ferrière 2001). The movement of any one

cloud causes a deformity in the magnetic field lines and a tension/torque that restrains the

cloud’s movement (Ferrière 2001). This restraint transfers the linear or angular momentum

of a cloud to its environment (Ferrière 2001). This is a mechanism that is important for

protestellar cores and star formation (Ferrière 2001). In HII regions, magnetic fields can

exert a pressure on shells from bubbles and superbubbles, halting their expansion or collapse

(Ferrière 2001). This results in thicker shells and quicker shell mergers (Ferrière 2001).
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1.6. The Challenges of Observing Magnetic Fields

MHD turbulence plays fundamental roles in the ISM, star formation, and galaxy evo-

lution. Studying it requires knowledge of interstellar magnetic fields. Dust polarization is

considered the first solid evidence that the ISM is permeated by coherent magnetic fields

(Ferrière 2001). The magnetic field in the ISM can be observed through techniques involving

dust polarization, Faraday rotation, synchrotron emission polarization, Zeeman Splitting,

the Goldreich-Kylafis effect, and the Chandrasekhar-Fermi method (Falceta-Gonçalves et al.

2014; Haverkorn 2014). Very occasionally, maser emission exists and these bright sources

can also be used (Falceta-Gonçalves et al. 2014).

Many of the techniques for observing interstellar magnetic fields involves polarization,

a fundamental property of electromagnetic radiation. Polarized light is detected when either

the internal geometry of a radiation source or its local surroundings cause the light to prefer

a particular orientation for its electric field vectors. Generally, interstellar radiation is ellipti-

cally polarized (its electric field vectors trace out an ellipse while propagating) (Trippe 2014).

Light can also be linearly polarized and circularly polarized. In astronomy, the polarization

state of a wave is most often described by its Stokes parameters, or characteristic intensities

(Trippe 2014).

The starlight astronomers observe is usually linearly polarized by a few percent and

proportional to the amount of extinction observed (Dyson & Williams 1997). Linear polar-

ization occurs if dust grains are elongated (are cylindrically or elliptically shaped) and are

oriented along a preferred direction (probably by magnetic fields) (Ferrière 2001; Dyson &

Williams 1997; Trippe 2014). The dust then absorbs radiation as a function of the radia-

tion’s orientation to the magnetic field, leaving behind linearly polarized light (Trippe 2014).

Figure 6 illustrates a simple model of linear polarization, and Figure 7 displays polarization

data from the Milky Way.
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Fig. 6.—: A visual representation of linear polarization. The polarization of background

stellar light can be caused by interstellar dust aligning similarly to the wire frame displayed

on this image (Wikimedia Commons 2006).

The observation of the polarization of dust thermal emission is either in the far infrared

and its absorption is in the visible and near infrared (Falceta-Gonçalves et al. 2014). Long

axis aligned dust grains are perpendicular to the magnetic field and induce polarization

parallel to the magnetic field (Falceta-Gonçalves et al. 2008). The mean polarization angle

detected indicates the orientation of a large scale magnetic field (Falceta-Gonçalves et al.

2008). In addition, the polarization dispersion about the mean gives a value of the turbulent

energy of the field, as further discussed in Section 1.2 (Falceta-Gonçalves et al. 2008).

Another line of sight magnetic field indicator is Faraday rotation. Faraday rotation

occurs when waves propagate through a plasma within a magnetic field (Rybicki & Light-

man 2007; Trippe 2014). In a magnetic field, plasma becomes dichrotic (absorbing radiation

anisotropically, or more in one component than another) with respect to circular polarization
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Fig. 7.—: ESA’s Planck satellite observed polarization from cosmic dust during its mission

to map the cosmic microwave background radiation. Polarization emission can be used as

a stand-in to trace the Galaxy’s magnetic field. In this image, color pertains to emission

intensity and texture the magnetic field direction, which is perpendicular to the polarization

direction (ESA & the Planck Collaboration 2015).

(Rybicki & Lightman 2007; Trippe 2014). Thus, the properties of waves depend on the di-

rection of propagation as related to the direction of the magnetic field (Rybicki & Lightman

2007; Trippe 2014). Because of this discrimination between different polarizations, different

polarizations will travel at different velocities in magnetized plasmas (Rybicki & Lightman

2007). A plane polarized wave, or a linear superposition of right-hand and left-hand polar-

ized waves, will not keep a constant plane of polarization but rather one that rotates as it

propagates, since either the right or left-hand polarization will travel at a greater velocity

and receive a net phase shift (see Figure 8) (Rybicki & Lightman 2007).

Sources of linear polarization for Faraday rotation measurements are often pulsars or

extragalactic radio continuum sources (Ferrière 2001). Pulsar observations are particularly

helpful. Knowing the distance to a pulsar and calculating the rotation measure divided by

the emission dispersion yields a weighted average of the strength of the magnetic field along
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Fig. 8.—: Visualization of Faraday rotation, showing the net change in polarization an-

gle (β) after the light has passed through a plasma with a magnetic field. Figure from

Wikimedia Commons (2007).

the line of sight (Ferrière 2001).

Drawbacks of Faraday rotation measurements include its limitation to warm ionized

medium (which has the most free electrons) and line of sight magnetic field components

(Ferrière 2001). Synchrotron emission is often preferred as an alternative (Ferrière 2001).

Interstellar magnetic fields act on charged particles in the ISM through the Lorentz

force. In all of the ISM except for the densest and coldest clouds (cores of molecular clouds)

the gas is ionized enough for the neutral gas components to remain coupled with the ionized

gas (via ion-neutral collisions), effectively “frozen” into the magnetic field (Dyson & Williams

1997; Haverkorn 2014). This allows astronomers to use observations of charged particles as

a tracer for magnetic fields.

Electrons, gyrating around magnetic field lines at relativistic velocities, emit synchrotron

radiation in a narrow cone along the particle’s trajectory (see Figure 9) (Rybicki & Lightman

2007; Sutton 2011; Trippe 2014). Synchrotron emission is polarized in the plane perpendic-
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ular to the magnetic field and is mapped in order to probe the geometry of field lines in the

plane of the sky (Falceta-Gonçalves et al. 2014). Both Faraday rotation and synchrotron

emission probe the diffuse ionized medium to measure large scale magnetic fields but are not

useful for denser and neutral phases of the ISM (Falceta-Gonçalves et al. 2014).

Fig. 9.—: Visualization of synchrotron radiation. If the magnetic field is in the x direction,

towards the observer in this figure, the magnetic Lorentz force causes a circular motion of

electrons in the y-z plane (Trippe 2014). A traveling electron in the x direction will then

have a helical trajectory. For a stationary observer, the radiation will look like it is in a

forward facing cone shape. When projected against the plane of the sky, the radiation looks

elliptically polarized. Figure from (Rybicki & Lightman 2007).

While the polarization of thermal emission from dust grains, Faraday rotation, and

synchrotron radiation measure the direction of magnetic fields, Zeeman splitting, the Chan-

draskher and Fermi (1953) technique and the Goldreich-Kylafis effect measure magnetic field

strength.

Zeeman splitting is the splitting of atomic or molecular emission/absorption lines due

to the presence of an external magnetic field (Ferrière 2001; Sutton 2011; Trippe 2014). The

magnetic field causes a splitting of previously degenerate (giving the same spectral lines)
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energy levels, yielding disparate spectral lines (Ferrière 2001; Sutton 2011; Trippe 2014). If

the line of sight of the observer is perpendicular to the magnetic field lines, the spectral lines

will appear linearly polarized (Trippe 2014). If the line of sight is parallel to the magnetic

field lines, then the spectral lines will appear as circularly polarized (Trippe 2014). The

amplitude of the splitting is directly proportional to the magnetic field strength (Ferrière

2001). Though the Zeeman effect can be observed from radio to UV in both atoms and

molecules, Zeeman-splitting measurements are biased towards regions with high HI column

densities and narrow 21cm line widths (towards cold neutral clouds) (Ferrière 2001). The

Zeeman effect is also observed in CN for these high density regions, and in neutral hydrogen

and OH in lower density regions (Sutton 2011; Falceta-Gonçalves et al. 2014).

Using the Zeeman effect to measure magnetic field strength is helpful for investigating

the dense and cold ISM (Falceta-Gonçalves et al. 2014). When combined with dust/stellar

polarization maps, Zeeman measurements are also useful for developing a 3D map of magnetic

fields in molecular clouds (Falceta-Gonçalves et al. 2014). However, the Zeeman effect cannot

be applied for clouds where line emission is weak (Falceta-Gonçalves et al. 2008).

When the Zeeman effect is weak, the Goldreich-Kylafis (GK) effect can be useful for

tracing magnetic fields (Trippe 2014). If the radiation field is anisotropic, certain emission

and absorption lines are excited preferentially (Trippe 2014). The resulting linear polariza-

tion is either parallel or perpendicular to magnetic field lines (Trippe 2014). GK polarization

also depends on the velocity of the emission line profile, so it additionally contains velocity

information along the line of sight (Trippe 2014).

If the ISM of interest is turbulent (See Section 1.2), the Chandraskher and Fermi (1953)

technique (CF method) can be used. The CF method estimates the strength of an interstellar

magnetic field along the plane of the sky by comparing linear or synchrotron polarization

data with the velocity field (McKee & Ostriker 2007; Falceta-Gonçalves et al. 2014). Linear
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polarization from dust emission or synchrotron radiation in a magnetized and turbulent

plasma is effected by the strength of turbulence and the magnetic field (Trippe 2014). The

CF method works on the assumption that the magnetic and kinetic pressures in the field are

large, causing gas motions to be coupled to or “frozen” in with the magnetic field lines such

that perturbations of the gas result in perturbations of the magnetic field lines (Falceta-

Gonçalves et al. 2014; Trippe 2014). Using the dispersion of polarization angles and gas

velocity fluctuations in the plane of the sky, assuming the magnetic/polarization fluctuations

are Alfvénic (are like Alfvén waves) and the RMS velocity is isotropic, the strength of the

magnetic field can be predicted (Falceta-Gonçalves et al. 2008). For weak magnetic fields,

turbulent gasses drag the field lines around as they churn, yielding a large rms dispersion in

polarization angles (Trippe 2014). For strong magnetic fields, the field lines are undisturbed

by turbulence, yielding small values of polarization dispersion (Trippe 2014).

Unfortunately, all of these magnetic field observations tend to detect either one com-

ponent of the field, like strength or the direction parallel or perpendicular to the line of

sight, and/or in one particular tracer: ionized gas, dense cold gas, dense dust, diffuse dust

(Haverkorn 2014). Our vantage point in the Milky Way also makes it difficult to observe the

galactic magnetic field— making a 3D picture from 2D tracers involves many assumptions

about the field, such as thermal and cosmic ray electron distributions, and local interstellar

objects are hard to model (Haverkorn 2014). In practice, these techniques are often time

consuming, involve complex and difficult data reduction, and require a great amount of tele-

scope time (Esquivel & Lazarian 2011). Often, the resulting observations are insensitive

and the resolution inadequate for the smaller scale structure where turbulence is studied

(Esquivel & Lazarian 2011).

Consequentially, astronomers seek to deduce the magnetic field of a region by exam-

ining the statistical properties of emission line data (Esquivel & Lazarian 2011). If such a
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method, like the VAT, were robustly developed, it would cut time and expenses in exploring

interstellar magnetic fields.

1.7. Turbulence Statistics as Alternatives

Statistical descriptors which reveal the fundamental anisotropies in the ISM, like the

VAT, can be used to study interstellar MHD turbulence. The turbulence power spectrum,

which quantifies how much energy resides in a given eddy scale and is easily relatable to

theoretical predictions, is an ideal statistical measure to have (Burkhart 2014). Typically,

Fourier power spectra, in the form of spatial and velocity power spectra are often the statistics

used (Burkhart 2014; Falceta-Gonçalves et al. 2014).

The 2D spatial power spectrum, which characterizes energy distribution over spatial

scales, is perhaps the most common tool for studying MHD turbulence in the ISM (Burkhart

2014). From it, we can deduce the energy injection scale, inertial range, and dissipation

range of turbulence (Burkhart 2014). A spatial power spectrum is computed from the slope

of the Fourier transform of the two point autocorrelation function applied to integrated

column density maps, and this slope depends on the Sonic Mach number of the turbulence

(Burkhart 2014).

Density is a less direct measure of turbulence compared to velocity, but it is readily

available from observations of column densities (Burkhart 2014). The velocity power spectra

is preferable, but it is not as easily created as the density power spectra. Spectroscopic

imaging measures line intensity as a function of position on the sky and velocity along an

axis (Heyer et al. 2008). However, the shape of a line profile is dependent on density, the

projected velocity component, temperature, chemical abundance, line excitation, and opacity

(Heyer et al. 2008). It is also integrated along the line of sight, complicating the analysis
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with projection effects (Heyer et al. 2008).

Both of these density and velocity power spectra have drawbacks— they use only the

amplitudes of their Fourier transforms and ignore phase information, and are insensitive

to magnetic field influences, so other statistical tools are sought out (Burkhart et al. 2013;

Burkhart 2014).

Many statistical tools have been used to study turbulence, and an active goal of tur-

bulence simulations is to provide as many of these descriptors as possible for the particular

ISM region modeled (Elmegreen & Scalo 2004; McKee & Ostriker 2007; Burkhart et al. 2013;

Burkhart 2014). In this thesis, we focus on the VAT as our descriptive statistic. Alongside of

and within the VAT, we use structure functions of the distribution of radial velocity, princi-

pal component analysis, Sonic and Alfvénic Mach numbers. Brief overviews of the VAT, its

structure functions, and PCA, with which we compare our results for the Taurus Molecular

Cloud, are provided in Sections 1.7.1 and 1.7.2.

1.7.1. Velocity Anisotropy Technique (VAT)

In turbulence, order exists as scale dependent spatial correlations (McKee & Ostriker

2007). The goal of statistics for MHD turbulence is to determine the anisotropy of the cloud

or cell. The challenge is discovering useful ways of analyzing available turbulence data to

constrain MHD turbulence model predictions (Heyer & Brunt 2007). Anisotropies, as either

larger dispersions or more power condensed perpendicularly to the magnetic field, can be

revealed by comparison of the two points (Esquivel & Lazarian 2011). Two point statistics

like power spectra, correlation functions, or structure functions can distinguish between K41

turbulence and GS95 anisotropic turbulence by calculating the inertial range slopes (Esquivel

& Lazarian 2011). We use velocity structure functions in the VAT.
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Spectroscopic rotational CO line emissions are the primary measurements for turbu-

lence in the ISM, and a velocity structure function is one way of determining the degree of

spatial correlation of velocities in these data (Heyer & Brunt 2007). The velocity structure

function is a statistical measure of the nth order of velocity differences as a function of spatial

displacement, or lag (Heyer & Brunt 2007). In the inertial turbulence range, the structure

function should vary as a power law with spatial lag (Heyer & Brunt 2007). The power law

index is a measure of this spatial correlation and is what different turbulence models make

predictions of (K41 predicts an index of 1/3, for example) (Heyer & Brunt 2007).

We define our two-dimensional structure function as

SF (r) = 〈[f(x)− f(x + r)]2〉 (4)

and use it to compute velocity anisotropy. Here, x is the location of the measurement and

r is the distance between measurements, or spatial lag.

Velocity anisotropy is the difference of either directional power spectra or structure func-

tions along two orthogonal directions of the velocity field. The degree of velocity anisotropy

aligned with the magnetic field detected in a turbulent material can be used to indirectly

measure the influence of an interstellar magnetic field on the ISM (Burkhart 2014). Large

degrees of velocity anisotropy will occur when the magnetic field is strong and the Alfvén

Mach number less than one (Heyer & Brunt 2011).

If the turbulence were isotropic (like K41 turbulence), the structure function would

only depend on the distance between any two points (Lazarian 2004). In this case, plotting

the structure function of a velocity centroid would reveal circular contours (Lazarian 2004).

Because MHD turbulence is anisotropic, these contours become elongated along the magnetic

field axis, forming elliptical contours and revealing the presence of the magnetic field (see

Figure 10) (Lazarian 2004).
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Fig. 10.—: A model of velocity anisotropy, showing an elongated eddy in the direction of

the magnetic field. Here, Λ is the scale parallel and λ the scale perpendicular to the mean

magnetic field. Figure from Blakesley Burkhart, CfA.

Commonly, velocity centroids, or the first moment maps, are used to obtain these veloc-

ity statistics when density fluctuations are minimal (Lazarian & Esquivel 2003). We create

the velocity centroids by taking the product of intensity and velocity and then integrating

over all velocities. Though velocity centroids are often used with two point statistics like

structure functions to find velocity anisotropy, the effects of including radiative transfer on

velocity anisotropy technique are unknown. Discovering these effects is another motivation

of this thesis.

Constructing structure functions would be simple if we observed velocity fields rather

than spectral line emission, which is a combination of line of sight density, velocity, temper-

ature integration, and noise (Heyer & Brunt 2007). Position-Position-Velocity (PPV) data

cubes are often reduced into a 2D image where each pixel is an estimate of the velocity

centroid of the line emission (which are determined by fitting a line profile to the line emis-

sion) (Heyer & Brunt 2007). The statistics of velocity centroids can be related to that of

3D velocity fields, so velocity centroid images can be used to generate a power spectrum for

which to apply a structure function meaningfully (Heyer & Brunt 2007).
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1.7.2. Principal Component Analysis (PCA)

Principal component analysis, or PCA, is another technique for identifying anisotropy.

PCA also seeks to recover the length scale dependence of turbulent velocity fluctuations, and

is particularly advantageous for low signal-to-noise data (Brunt & Heyer 2013) It can obtain

the velocity spectrum and Alfvénic Mach number for a region of MHD turbulence (Burkhart

2014).

PCA transforms data to a new set of variables, the principal components, which are

linearly uncorrelated and ordered so that the first few retain most of the variation present

in all of the original variables (Jolliffe 2002). All of the principal components are orthogonal

eigenvectors of a covariance matrix, so PCA determines set of orthogonal axes along which

data variance is maximized (Jolliffe 2002; Burkhart 2014). In this way, PCA reduces the

dimension of a data set of many correlated variables to linearly uncorrelated ones while

retaining as much of the variation in the data set as possible (Jolliffe 2002). For ellipsoids,

the first principal component would be the major axis, because it would have the largest

variance, and the second principal component would be the minor axis (Jolliffe 2002). For

velocity data, the principal components would be the velocity channels (Burkhart 2014).

Drawbacks of PCA include its dependence on the scaling of the original data, its lack

of orientation constraints which can dilute anisotropic data, and its reliance on an empirical

calibration to translate the PCA power law index calculated from the velocity structure

function or power spectrum to the true power law index in synthetic and real turbulence

observations (Jolliffe 2002; Heyer et al. 2008; Brunt & Heyer 2013)

Using a structure function requires an averaging to create velocity centroids, but PCA

is applied to data in Position-Position-Velocity (PPV) space. This has the advantage of

avoiding loss of information from averaging. For a PPV velocity data cube, the spectrum/line

profile of at each spatial grid point is the quantity subjected to the PCA (Brunt & Heyer
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2013).

The PPV data cube is rearranged into sets of eigenvectors and eigenimages (Heyer &

Brunt 2007; Heyer et al. 2008). The eigenvector is a velocity function that describes the

velocity magnitude of line profile differences due to turbulence and other effects (Brunt &

Heyer 2013). An eigenimage is a spatial function which indicates where in the sky these line

profile differences occur (Brunt & Heyer 2013). The eigenimage is the integration of data

over the velocity axis with the eigenvector acting as a weight (Brunt & Heyer 2013). The

first two eigenimages are closely related to the 0th moment (integral of T (v)) and 1st moment

(integral T (v)v), but with an additional velocity weight (Brunt & Heyer 2013). Together,

eigenvectors and eigenimages are a principal component (Brunt & Heyer 2013).

If our data cube is represented as T (ri, vj) = Tij, where ri is the spatial coordinate of

the ith spectrum in the data cube, then the covariance matrix can be calculated as:

Sjk = S(vj, vk) =
1

n

n∑
i=1

TijTik

where n is the number of spectra in the cube (Brunt & Heyer 2013). An eigenvalue equation

for the covariance matrix,

Sjkumj = λmumj

can be solved for a set of eigenvectors, umj = um(vj), and eigenvalues, λm, which is the

amount of variance projected onto its eigenvector (Brunt & Heyer 2013). Eigenimages,

Im(ri) can be constructed from projected values of the data cube onto the eigenvectors:

Im(ri) =

p∑
j=1

Tijumj

where p is the number of spectroscopic channels per spectra in the data cube (Brunt & Heyer

2013).
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The velocity differences and spatial scales are then derived for each principal component

and linked to a velocity structure function through comparison with model velocity and

density fields (Heyer & Brunt 2007; Heyer et al. 2008).

Heyer & Brunt (2011) uses PCA on the Taurus Molecular Cloud. We aim to compare

the results of our velocity anistropy technique with their PCA results on the same data.

2. The Scope of this Thesis

Developing and testing of techniques such as the VAT allows for more flexibility and

potentially better accuracy when describing the ISM throughout our galaxy. Additionally,

statistical testing provides cost and time advantages over direct observation of regions with

magnetic fields and can use publicly available surveys. With this in mind, we investigate the

results of the VAT for the first time on both CO radiative transfer simulations (Burkhart et al.

2014) and CO emission line data from the the Five College Radio Astronomy Observatory

(FCRAO) Survey of the Taurus Molecular Cloud (Narayanan et al. 2008). By applying the

VAT for the first time to CO radiative transfer MHD simulations, we can assess the effects

of optical depth on measurements of the magnetic field strength. By applying the VAT to

real molecular cloud data for the first time, we can test the feasibility of this statistic and

develop practical methods for its application to real data.

First, we apply our structure function (see equation 4) to compressible MHD turbulence

simulations with and without radiative transfer, to establish if there is a trend between

velocity anisotropy and Sonic Mach number for various parameters of MHD turbulence. We

begin with a discussion on the usefulness and computation of MHD turbulence simulations, in

Section 3.1. Then we apply the VAT to emission line measurements in the Taurus Molecular

Cloud. The data are described in Section 3.2. The methodology of the VAT for both
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applications is described in Section 4 and the results are given in Section 5. We conclude by

comparing our results with previous PCA anisotropy measurements on the same data from

Heyer & Brunt (2011).

3. The Data

3.1. Simulating MHD Turbulence with Radiative Transfer

Observations of turbulent ISM regions are not the most helpful in understanding MHD

turbulence; they yield only a snapshot of the effects of turbulence, are spatially limited, only

include line of sight motions, and tend to be noisy (Esquivel & Lazarian 2011). In addition,

the anisotropy information that is available through observational data is averaged along

the line of sight, and is in reference to the mean magnetic fields of the field rather than the

local magnetic field within the eddies, which is where the GS95 theory becomes important

(Esquivel & Lazarian 2011; Burkhart 2014).

Numerical simulations are particularly helpful for modeling MHD turbulence because

they can reproduce the structures and scaling laws we see in the ISM while showing us

the values of underlying parameters (Burkhart 2014; Falceta-Gonçalves et al. 2014). These

parameters include the Reynolds number, the Sonic and Alfvénic Mach number, energy

injection scale, equation of state, and radiative transfer (Burkhart 2014). It is the comparison

of turbulent MHD numerical simulations with different parameters to observations that helps

researchers model MHD turbulence. Going one step further, the comparison of statistical

test results to the parameters of these numerical simulations helps researchers design good

statistical tests for MHD turbulence (Burkhart 2014).

Developing numerical simulations of interstellar turbulence is a way of observing turbu-

lence in action. Though the simulations are simplified, they are beneficial in that they have
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only user specified noise and spatial limitations and any existing anisotropies can be seen

in reference to the local magnetic field (Esquivel & Lazarian 2011). As these simulations

grow in sophistication, realistic cooling, ionization, chemistry, radiative transfer, ambipolar

diffusion, magnetic reconnections, and realistic forcing can be incorporated, giving us an

increasingly better model of MHD turbulence in the ISM. The simulations used in this the-

sis include the physical processes of thermal line broadening, cloud boundaries, noise, and

radiative transfer effects.

The biggest drawback to numerical simulations is that current computational resources

cannot generate a resolution that would yield Reynolds numbers like those observed in the

ISM (Burkhart 2014). Nevertheless, the simulations can still be beneficial if the inertial

range of the turbulence is resolved (see Figure 4) and the energy flux through the inertial

range is constant (Burkhart 2014).

For this thesis, we use 3D MHD simulations of isothermal compressible turbulence gen-

erated from the Cho & Lazarian (2003) MHD code. We drive the turbulence with large-scale

solonoidal forcing, and vary the input values for the sonic and Alfvénic Mach numbers (Ms

and MA). We include sub-Alfvénic (B0 = 1.0), and super-Alfvénic (B0 = 0.1) simulations,

as well as the effects of thermal broadening.

The code is a second-order-accurate hybrid essentially nonoscillatory (ENO) scheme

(Cho & Lazarian 2003). It solves the ideal MHD equations in a periodic box:

∂ρ

∂t
+∇ · (ρv) = 0, (5)

∂ρv

∂t
+∇ ·

[
ρvv +

(
p+

B2

8π

)
I− 1

4π
BB

]
= f , (6)

∂B

∂t
−∇× (v ×B) = 0, (7)

with the zero-divergence condition, ∇ ·B = 0, and an isothermal equation of state p = C2
sρ,

where p is the gas pressure. The magnetic field, initially b = 0, consists of the uniform
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background field plus a fluctuating field: B = Bext + b.

The turbulence was driven solenoidally, at wave scale k equal to about 2.5 (2.5 times

smaller than the size of the box), which defines the injection scale in our models in Fourier

space and minimizes the influence of the forcing on the generation of density structures.

In the equations above, the source term is f , and is a random large-scale driving force

(f = ρdv/dt).

As the MHD waves in the simulation interact, density fluctuations are generated. The

length, L, is in units of the energy injection scale. The time, t, is in units of the large eddy

turnover time.

The models were grouped corresponding to sub-Alfvénic (Bext = 1.0) and super-Alfvénic

(Bext = 0.1) turbulence. In each group, models were computed with different values of gas

pressure, P (the control parameter that sets the sonic Mach number).

Resolutions of 5123 and 2563, run time t ∼ 5 crossing times so that the energy cascade

is fully developed, and rms velocities close to unity (vrms ∼ 0.7) were used. Initial conditions

include ρ = 1 and the Alfvén speed va = |B|/
√

4πρ.

Numerical modeling of MHD turbulence is done in 3D (Burkhart 2014). In order to

compare the models with real observations, the 3D simulations are transformed into “syn-

thetic” observations, by adding effects you would see when using a telescope, like noise, beam

smoothing, radiative transfer, 2D projection effects, and etc. (Burkhart 2014). The output

of this transformation can be a column density map, integrated intensity map, spectral line,

or position-position-velocity (PPV) data cube (Burkhart 2014). The synthetic observations

used in this thesis are PPV cubes, which we use to make synthetic velocity centroid maps.

Parameters for these simulations are provided in Table 2.

After the PPV cubes were generated, the SimLine-3D radiative transfer algorithm (see
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(Ossenkopf 2002)) was applied (Burkhart et al. 2013). This code computes the local exci-

tation of molecules from collisions with the surrounding gas. It also computes the radiative

excitation at the frequencies of the molecular transitions through line and continuum radi-

ation from the environment (Burkhart et al. 2013). This code is an approximation, but it

has an expected accuracy of better than 10 %, which is on par with observational calibration

error (Burkhart et al. 2013).

For the SimLine-3D radiative transfer algorithm, the number density scaling factor

(in units of cm−3 and denoted with the symbol n) and the molecular abundance (CO/H2,

denoted with the symbol ab) were varied. This varied the optical depth, τ , generating both

optically thin and thick models. Integrated intensity maps that show the variation caused

by adjusting density and abundance values for these simulations and are given in Section 6.

For further details on these simulations see Burkhart et al. (2014); Cho & Lazarian

(2003); Kowal et al. (2007); Burkhart et al. (2009); Esquivel & Lazarian (2011). Some

simulations used were previously developed as a part of Burkhart et al. (2014).

3.2. Taurus Molecular Cloud Emission Data

Turbulence plays an important, though not well described role in the formation and

evolution of molecular clouds. Molecular clouds are present in the spiral arms of the Milky

Way and are the first indications of gravitational instabilities in our Galaxy (Ballesteros-

Paredes et al. 2007). These instabilities drive spiral density waves, or density perturbation

which move along at different velocities than those of the objects within it, and causes local

gravitational collapse (Ballesteros-Paredes et al. 2007). These density waves are also what

gives the Milky Way and other galaxies their spiral arms (Ballesteros-Paredes et al. 2007).

We observe molecular clouds by interpreting optical absorption lines, UV spectra, and
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Model B0 〈Pgas,0〉 Ms MA Resolution

L2 0.1 0.01 ∼5.7 ∼5.7 5123

L5 0.1 0.1 ∼1.8 ∼5.8 5123

L6 0.1 1.0 ∼0.6 ∼5.8 5123

L10 1.0 0.01 ∼5.5 ∼0.5 5123

L13 1.0 0.1 ∼1.8 ∼0.6 5123

L14 1.0 1.0 ∼0.6 ∼0.6 5123

Table 2:: MHD Simulation Parameters. This table is recreated in part from Burkhart et al.

2014 where those simulations have been included. 〈Pgas,0〉 and B0 correspond to the initial

gas pressure and magnetic field. Units for these quantities are dimensionless code units.

They can be converted with the use of appendix A of Hill et al. (2008). The simulations

used in this thesis were converted to physical units after the application of the SimLine-3D

radiative transfer algorithm.
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radio waves. The most abundant interstellar molecule is H2, which is observable from UV

spectra (Ferrière 2001). Unfortunately, UV spectra cannot be obtained for the interior of

dense molecular clouds due to dust extinction (Ferrière 2001). As an alternative, radio waves,

which have longer wavelengths and so are unaffected by dust, can be used to study molecular

clouds. Since H2 is diatomic, it is not observable in radio. CO, which has a J = 1 → 0

rotational transition at a radio wavelength of 2.6 mm is often used instead to trace molecular

gas (Ferrière 2001).

By using CO as a tracer for molecular clouds, astronomers have deduced that most

molecular gas in the Milky Way is in a ring from 3.5 kpc to 7 kpc from the Galactic center

and in a disk interior to 0.4 kpc (Ferrière 2001). Most of the remaining molecular gas is in the

spiral arms (Ferrière 2001). Figure 11 illustrates the observed molecular cloud placements

in the Milky Way.

The Taurus Molecular Cloud is a well observed molecular cloud, primarily due to its

position. It is ∼ 140 pc away and displaced from the Galactic plane by about −19 degrees

(Narayanan et al. 2008). This displacement allows for higher spatial resolution with lit-

tle confusion with background objects, unlike most molecular clouds we see in Figure 11

(Narayanan et al. 2008).

Previous observations have shown the Taurus Molecular Cloud to have significant veloc-

ity dispersion anisotropy, indicating a GS95 type turbulence (Heyer & Brunt 2011; Falceta-

Gonçalves et al. 2014). It has been found that the densest regions of the cloud have super-

Alfvénic turbulence and the less dense surrounding materials have sub-Alfvénic turbulence

(Heyer & Brunt 2011).

The data are wide field spectroscopic imaging of 12CO and 13CO J = 1−0 emission from

the Five College Radio Astronomy Observatory (FCRAO) Survey of the Taurus Molecular

Cloud described by Narayanan et al. (2008). The survey imaged 96 square degrees of the
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Taurus cloud with 45” (0.02 pc) resolution on the FCRAO 14 meter telescope Narayanan

et al. (2008). The data were collected over two observing seasons (Nov. 2003 - May 2005)

and the 12CO and 13CO line emission were observed simultaneously Narayanan et al. (2008).

The FCRAO 14 meter telescope front-end had a 32 element focal plane array re-

ceiver, SEQUOIA, that fed a set of 64 autocorrelation back-end spectrometers configured

with a spectral resolution of 25 MHz and 1024 channels for both observed line transitions

(Narayanan et al. 2008). The FWHM beam sizes of the telescope at the observed frequencies

are 45” (115.27 GHz) and 47” (110.201GHz), the beam efficiencies 0.45 and 0.5 (calibrated

to Jupiter), and spectral resolution of 0.076 km/s and 0.080 km/s, respectively (Narayanan

et al. 2008).

The 98 square degree map was divided into 256 submaps, 30’x30’ in size, and observed

using an On-The-Fly (OTF) mapping technique (Narayanan et al. 2008). The data were

deconvolved to account for contributions of antenna beam error and the line spectra resam-

pled on the same spectral grid with 0.1 km/s spacing, due to the OTF technique generating

irregularly sampled data (Narayanan et al. 2008). The data were outputted in 88 cubes

without overlapping regions and with estimated calibration uncertainties of 0.87 km/s and

0.43 km/s for 12CO and 13CO, respectively (Narayanan et al. 2008).

The 12CO line emission traces a diffuse molecular envelope, has low surface brightness,

low visual extinction, and low gas volume density while the 13CO line emission is relatively

optically thin and associated with dense filaments (Narayanan et al. 2008). Heyer & Brunt

(2011) found little velocity anisotropy in the 13CO emission data set but did find anisotropy

with super Alfvénic motions for 12CO emission. This variation of anisotropy may be due to

ionization changes from the diffuse envelope to denser filaments and core regions, or it may

indicate the transition of MHD flow and illuminate the evolution of the cloud and the role

of the magnetic field within it (Heyer & Brunt 2011).
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We apply the same processes to the Taurus molecular cloud 12CO and 13CO J = 1− 0

emission maps presented by Heyer & Brunt (2011). We compare our results with previously

observed optical polarization.

4. Method of Applying VAT

For our synthetic observations, we began by calculating the PPV cubes with the intensity

distribution

I(X) ≡
∫
ρsdVLOS

where ρs is the intensity values or density of emitters of the 3D PPV data cube, X the

position on the plane of the sky, and VLOS the line of sight velocity-axis. We integrate in

velocity for the entire line of sight.

We next calculated the velocity centroid maps as the ideal centroid/first moment from

the synthetic and observed PPV cubes as:

Cz(x, y) ≡
∫
ρ(x, y, z)Vz(x, y, z)dz∫

ρ(x, y, z)dz
(8)

We applied our two-dimensional structure function (Equation 4) to the velocity centroid

maps in Fourier space.

We then fit an ellipse to the outermost closed contour of each structure function map 1.

The contour levels were generated arbitrarily, as they were only used to determine the

angle of the major and minor axes. Taking the major and minor axes of this ellipse, we

1An interactive python code for this analysis is hosted at https://github.com/

mmcintosh27/velocity_anisotropy/blob/master/Structure%20Function.ipynb

https://github.com/mmcintosh27/velocity_anisotropy/blob/master/Structure%20Function.ipynb
https://github.com/mmcintosh27/velocity_anisotropy/blob/master/Structure%20Function.ipynb
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calculated an anisotropy index as the average ratio of the structure functions in these two

perpendicular directions to the line of sight (See Figure 12). For our simulations, this is the

average ratio of eddy elongation along the horizontal and vertical axes:

SFC,z(x, 0)/SFC,z(0, y) (9)

For the Taurus data (which was broken up into regions, see Figure 14a), the major and

minor axes did not always line up with the vertical and horizontal axes (See Appendix), so

a key function of the code was to calculate the offset angle of the axes with the horizontal.

With the angle known, the correct axes could be selected to compute the average ratio of

eddy elongation, yielding the average anisotropy index.

The anisotropy index lets us quantify an anisotropy increase with increasing magnetic

field. For an isotropic contour (which would be generated by K41 turbulence), the anisotropy

index would be one. For an infinitely anisotropic contour (a line), the anisotropy index would

be zero. We compare the anisotropy index with the Sonic Mach number (See Figure 13),

for our all of our simulations. We compare our anisotropy index for the Taurus Molecular

Cloud regions with the anisotropy reported by Heyer & Brunt (2011).

5. Results

First, we applied our structure function to compressible MHD turbulence simulations to

establish if there is a trend between velocity anisotropy and Sonic Mach number for various

parameters of MHD turbulence. Our results are displayed in Figure 13.

We see that for the optically thick case (τ > 1) that the different magnetic field regimes

are discernible and the velocity anisotropy generally increases with the Sonic Mach number.

We see that for the optically thin case (τ < 1) the nonradiative transfer simulations have

a distinguishable regime per magnetic field value, but the radiative transfer simulations do
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Fig. 12.—: One of the synthetic moment maps (B = 0.1, P = 0.01, and ab=8, for mag-

netic field, pressure, and abundance, respectively) (a) used with its accompanying structure

function contour plot (b) and anisotropy index versus scale (c). The contour for which our

measurement of the anisotropies extended to is highlighted in blue in figure (b). The average

of the anisotropy was taken from the range in between the solid red lines in figure (c).

not.

This indicates that VAT may be most helpful for optically thick cases of MHD turbulence

in the ISM. For molecular clouds, this means that 12CO emission may be a better tracer for

the VAT than the optically thinner 13CO emission. To begin to quantify this relation, further

simulations for which to apply the VAT could be produced with a greater range of optical

thickness levels.

The anisotropy for nine regions in the emission data for the Taurus Molecular Cloud

were calculated and are displayed in Figure 14a. These regions in Taurus proved to be mostly

isotropic, with the lowest value of anisotropy being ∼ 0.7. This tells us that there is some

variation in the magnetic field in the Taurus Molecular Cloud and that most regions are

super-Alfvénic.
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Fig. 13.—: The anisotropy index versus the Sonic Mach number for MHD radiative transfer

simulations with various densities (“dn”) and abundances (“ab”) as well as nonradiative

transfer simulations (“velocity centroid”) for different magnetic field strengths.



– 54 –

Structure Function Contours for 12 CO
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(a) First moment map for 12CO emission of the Taurus Molecular Cloud and accompanying structure

function contour plot. The listed anisotropy is the average, and the contour levels on the structure

function plots are arbitrary.
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(b) For 13CO emission

Fig. 14.—: Moment Maps and Contour Plots for 12CO and 13CO Taurus Molecular Cloud
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In their analysis of the Taurus Molecular Cloud emission data, Heyer & Brunt (2011)

fit the phase and amplitude such that the degree of anisotropy was at a maximum. They

did not account for projected substructure and so their anisotropy measurements are lower

limits.

Heyer & Brunt (2011) found that in the Taurus Molecular Cloud, where surface bright-

ness emission is low, the velocity anisotropy is largest. This corresponds to low gas column

density or visual extinction areas. Our results did not reproduce this, though we used larger

regions than Heyer & Brunt (2011). Using similar regions may show that the VAT fol-

lows anisotropy similarly to PCA, which would provide a check for the technique. However,

Heyer & Brunt (2011) found that the north-east sector of the image has the strongest ve-

locity anisotropy amplitudes, which is replicated in our results. We also found, like Heyer &

Brunt (2011), that 12CO emission showed more velocity anisotropy than 13CO emission.

Further analysis for VAT results in the Taurus Molecular Cloud could include a com-

parison with known polarization data (see Figure 15) and an estimate of the Alfvénic Mach

number of the regions.

6. Conclusion

In this thesis we presented a novel technique for measuring interstellar magnetic fields

using velocity anisotropy. This technique is motivated by the cost and difficulty of obtaining

direct magnetic field observations for studying MHD turublence, a process that is funda-

mental to ISM dynamics, star formation, and the evolution of our Galaxy. We applied the

VAT technique to radiative transfer MHD simulations and actual data for the first time.

We placed the importance of the VAT and studying MHD turbulence in the ISM in

context by providing background on the ISM, its role in the Milky Way, its phases, structures,
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Fig. 15.—: Magnetic field and column density measured by Planck towards the Taurus

Molecular Cloud. The colours represent column density and the The line pattern shows the

orientation of magnetic field lines, orthogonal to the orientation of the dust polarization.

Further analysis for VAT results in the Taurus Molecular Cloud could include a comparison

with known polarization data such as this. Image and caption information from Planck

Collaboration et al. (2016)

stellar interactions, molecular clouds, turbulent nature, and magnetic fields. We discussed

turbulence theory, its resulting anisotropy which indirectly measures magnetic fields, and

the challenges of producing direct magnetic field observations. We discussed the role of

numerical simulations in studying MHD turbulence, the creation of synthetic observations,

and various statistics for describing MHD turbulence with a focus on the VAT and PCA
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technique.

We applied the VAT radiative transfer compressible MHD simulations and found that

for the optically thick case (τ > 1), the different magnetic field regimes are discernible and

the degree of anisotropy generally increases with the Sonic Mach number. For the optically

thin case (τ < 1), the nonradiative transfer simulations have a distinguishable regime per

magnetic field value, but the radiative transfer simulations do not. This has important

implications for the sort of data (optically thick data, specifically) for which the VAT should

be applied when using it to study MHD turbulence in the ISM. Further analysis steps with

synthetic data could include generating simulations with a greater variation in optical depth

parameters for which to apply the VAT. This could define more precisely what at optical

depths the VAT traces turbulence effectively.

We then applied the VAT to 12CO and 13CO emission data from the Taurus Molecular

Cloud. We developed an ellipse fitting routine to locate the structure function contour major

and minor axes in observational data with which to compute the anisotropy index. This code

was made public for future use.

In comparison to the PCA technique as presented by Heyer & Brunt (2011), we found

our velocity anisotropy measurements did not also correspond to low gas column density

or visual extinction areas, though this may be due to using larger regions for our structure

function calculations. We did find that the north-east sector of the image has the strongest

velocity anisotropy amplitudes, which is replicated in Heyer & Brunt (2011). We also found,

like Heyer & Brunt (2011), that 12CO emission showed more velocity anisotropy than 13CO

emission.

Further analysis steps for the Taurus Molecular Cloud data could include a comparison

with known polarization data, using smaller regions, and calculating an estimate of the

Alfvénic Mach number of the regions.
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This study, and other future studies of MHD turbulence statistics allow us to derive

magnetic field information from emission line observations, rather than more costly and time

intensive direct magnetic field observations. Studying MHD turbulence in the ISM extends

our knowledge of MHD turbulence, its effects on star formation, and its subsequent influence

on the evolution of our Galaxy, underscoring the importance of developing techniques like

the VAT.
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Appendix

Fig. 16.—: MHD Radiative Transfer Simulations for increasing magnetic field values and

pressures and various density and abundance values (which alter the opacity). Corresponding

structure function contour plots and anisotropy versus scale are displayed. The axes of the

moment maps and structure function plots are in pixels. The axes of the anisotropy versus

scale are simply the anisotropy index and distance from the contour center.
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Fig. 18.—: Taurus 12CO and 13CO emission moment maps and their corresponding structure

function contour and anisotropy versus scale plots. The axes of the moment maps and

structure function plots are in pixels. The axes of the anisotropy versus scale are simply the

anisotropy index and distance from the contour center.
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