Published April 12, 2018 | Version v1
Dataset Open

Data from: Urbanization as a facilitator of gene flow in a human health pest

  • 1. Virginia Commonwealth University
  • 2. Arizona State University

Description

Urban fragmentation can reduce gene flow that isolates populations, reduces genetic diversity and increases population differentiation, all of which have negative conservation implications. Alternatively, gene flow may actually be increased among urban areas consistent with an urban facilitation model. In fact, urban adapter pests are able to thrive in the urban environment and may be experiencing human-mediated transport. Here, we used social network theory with a population genetic approach to investigate the impact of urbanization on genetic connectivity in the Western black widow spider, as an urban pest model of human health concern. We collected genomewide SNP variation from mitochondrial and nuclear ddRAD sequence datasets from 210 individuals sampled from 11 urban and 10 non-urban locales across its distribution of the Western U.S. From urban and non-urban contrasts of population, phylogenetic, and network analyses, urban locales have higher within-population genetic diversity, lower between-population genetic differentiation, and higher estimates of genetic connectivity. Social network analyses show that urban locales not only have more connections, but can act as hubs that drive connectivity among non-urban locales, which show signatures of historical isolation. These results are consistent with an urban facilitation model of gene flow, and demonstrate the importance of sampling multiple cities and markers to identify the role that urbanization has had on larger spatial scales. As the urban landscape continues to grow, this approach will help determine what factors influence the spread and adaptation of pests, like the venomous black widow spider, in building policies for human and biodiversity health.

Notes

Files

Files (211.3 MB)

Name Size Download all
md5:87d712fdc5041a43c7688e088a0a145a
108.8 kB Download
md5:4ebd2e5f5d7a0db7043cc3d0a2a4b366
8.6 kB Download
md5:f756af6e18fd1f1105de8b1b482b23dd
211.2 MB Download

Additional details

Related works

Is cited by
10.1111/mec.14783 (DOI)