

Hydro-economic optimization under inflow uncertainty using the SDP_GAMS generalized optimization tool

Hector Macian-Sorribes and Manuel Pulido-Velazquez

Research Institute of Water and Environmental Engineering (IIAMA). Universitat Politècnica de València. Email: hecmasor@upv.es

Bologna IAHS 2014 6th IAHS-EGU International Symposium on Integrated Water Resources Management Bologna 4-6 June 2014

River Reno close to Bologna Source: Panoramio

2. The SDP_GAMS tool

3. Case study: Mijares River Basin (Jucar RBD)

CONTENT

4. Conclusions

Main advantages:

The SDP approach

Able to handle non-linearities

Takes into account inflow uncertainty

Decision-making process treated sequentially

Main disadvantages:

Requires uncertainty descriptor (Markov Chain)

The computational burden increases exponentially with the system size: curse of dimensionality

INTRODUCTION

The curse of dimensionality has been worked out by:

Simplifying the system (decomposition techniques)

Using interpolation techniques

The SDP approach

Employing alternative approaches (RL, SSDP, SDDP, etc.)

INTRODUCTION

Stochastic dynamic programming developments in multireservoir systems based on *ad-hoc* codes

Goal: develop a general-purpose DSS code to solve the SDP algorithm in any multipurpose multireservoir system

Approach: use GAMS supported by GAMS – MS Excel links

Outline and Flowchart THE SDP_GAMS TOOL

Data entry module

Calls from Excel to GAMS to introduce:

- System features (physical, economic and environmental)
- Discrete variables and Markov Chain
- Reoptimization data
- Convergence control parameters

MODEL GENERAL FEATURES

Type of problem	Maximization
Recursion primary convergence limit (Benefits)	0.01
Recursion maximum number of iterations	20
Optimization module previously executed?	Yes
Recursion module previously executed?	Yes
Reoptimization desired?	Yes
Optimization module quick mode	Enabled
Reoptimization interpolation mechanism	Piecewise linear
Reoptimization module reservoir prevalence mode	Enabled
Type of reoptimization desired	Stochastic

SYSTEM FEATURES	
Number of temporal stages per recursive cycle (t)	12
Number of inverted temporal stages per cycle (r)	12
Number of nodes in the system (nod)	7
Number of reservoirs in the system (e)	2
Coefficients of reservoir's volumen-surface curves (g)	3
Number of inflows entry points (p)	2
Maximum number of inflow branches (br)	4
Number of demands (d)	4
Coefficients of demand benefit curves (gd)	4
Number of discrete inflow classes per temporal stage (a)	16
Number of discrete volume classes per temporal stage (v)	91
Number of cycles of the reoptimized series (cycle)	69

THE SDP GAMS TOOL

Optimization module THE SDP_GAMS TOOL

GAMS solver (CONOPT, CPLEX) -> optimal immediate benefits associated to each possible combination between discrete state variables

Longest computational time

For reservoirs in series, a "quick mode" can be activated to save computation time

Recursion module

Solves backwards the Bellman recursive equation using the optimization results

THE SDP GAMS TOOL

$$F_{t}(S_{t}, Q_{t}) = \max_{D_{t}} \left[\begin{array}{c} B(S_{t}, Q_{t}, D_{t}) + \sum_{q} P_{p,q} \cdot F_{t+1}(S_{t+1}, Q_{t+1}) \\ Optimization \\ module results \end{array} \right]$$

Features:

- Two convergence criteria: steady benefits (primary) and steady policies (secondary)
- Each iteration corresponds to a year
- □ Results: steady-state optimal policies (D_t) and steady-state benefit-to-go values (F_{t+1}) for all the discrete states (S_t)

Reoptimization module THE SDP_GAMS TOOL

GAMS solver (CONOPT, CPLEX) to solve forward the Bellman recursive equation using the benefit-to-go function values obtained in the recursion module

$$F_{t}(S_{t}, Q_{t}) = \max_{D_{t}} \left[B(S_{t}, Q_{t}, D_{t}) + \sum_{q} P_{p,q} \cdot F_{t+1}(S_{t+1}, Q_{t+1}) \right]$$
Recursion

module results

Results: time series of

Storages

- Demand deliveries
- Flows in the system
- Benefits obtained
- Marginal water values

Results retrieval module THE SDP_GAMS TOOL

Call-back from GAMS to Excel to show:

- Recursion module results
- Reoptimization module results

Recursion status report

ACHIEVED	FIRST CONVERGENCE CRITERIA STATUS
ACHIEVED	SECOND CONVERGENCE CRITERIA STATUS
20	NUMBER OF ITERATIONS DONE
12	ITERATION IN WHICH SECOND CONVERGENCE ACHIEVED
0.0100	FIRST CONVERGENCE ERROR
63.8000	EXPECTED VALUE
0	NUMBER OF NON-NORMAL SOLVER TERMINATIONS

Recursion optimal benefits

Stage	Reservoir_1	Reservoir_2	Inflow_1	Inflow_2	Short_Benefits	Long_Benefits	Total_Benefits
t1	2.00	3.00	5.09	0.00	1.51	44.5	46.01
t1	2.00	3.00	5.09	1.00	2.02	44.74	46.75
t1	2.00	3.00	5.09	2.70	2.93	46 57	49.5
(t1)	2.00	3.00	5.09	29.88	6.74	56.07	62.82
t1	2.00	3.00	7.66	0.00	2.86	47.33	50.19
Time stag	Time stage		tem state	1.00	Immediate -		49.38
		- iiitiai 3y3		2.70	22222	Benefits-to-go	52.69
t1	2.00	3.00	7.66	29.88	benefits	57.29	63.67
t1	2.00	3.00	9.60	0.00	3.93	54.22	58.15

General view CASE STUDY: MIJARES RIVER

NAME	CAPACITY	START	MAIN USE	DEMAND	
Arenós	93.00	1959	Agricultural	120 10	
Sichar	49.00	1980	Agricultural	120.18	
MEA	196.00				

Units in Mm³

Sichar

Arenós

Source: CEDEX

Purpose: test the performance of the tool in the Mijares river

Approach: to build the following models:

- A hydro-economic SDP model
- A hydro-economic deterministic optimization model
- A simulation model

And compare their economic performance

Model features CASE STUDY: MIJARES RIVER

Historical data records for the 1940-2010 period

System features included:

- Physical: connectivity matrices, sub-basins, storage features, stream features, demand features, etc.
- Economic: demand curves, network costs, etc.
- Environmental: minimum flows and storages

State variables discretization:

- Storage: 91-point discrete grid
- Inflows: 16-point discrete grid
- Lag-1 Markov Chain

CASE STUDY: MIJARES RIVER Comparison for the 1940-2010 period

All demands are fully met except during large droughts (steady inflows)

SDP performance between simulation (non-optimal policies) and deterministic optimization (with perfect foresight). It covers 60% of the gap

Comparison for the 1977-1986 period (the worst drought)

Results

CASE STUDY: MIJARES RIVER

SDP covers 62% of the gap (similar than the whole period)

Economic differences between alternatives grow: optimal policies specially improve drought management

Advantages / disadvantages

Advantages of SDP_GAMS

- Friendly user interface
- General-purpose
- GAMS skills are not required
- Modular structure saves time

Disadvantages of SDP_GAMS

- Curse of dimensionality
- Hard constraints (inflows & storages)

CONCLUSIONS

- Demand curves as polynomials
- No aquifers

Further developments

- Improve the interface (GUI)
- Overcome the curse of dimensionality (switching from SDP to SDDP)

CONCLUSIONS

- Include aquifer and stream-aquifer interactions (embedded multireservoir or eigenvalue models)
- Adaptation of the tool to explore climate change effects
- Coupled quantity-quality analysis
- Etc.

THAR AGONI ON THINK OF THE STORE OF THE STOR

Hector Macian-Sorribes and Manuel Pulido-Velazquez

Research Institute of Water and Environmental Engineering (IIAMA). Universitat Politècnica de València. Email: hecmasor@upv.es

Bologna IAHS 2014 6th IAHS-EGU International Symposium on Integrated Water Resources Management Bologna 4-6 June 2014

River Reno close to Bologna Source: Panoramio