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Abstract J. Borśık and J. Doboš studied the problem of how to merge a family
of metric spaces into a single one through a function. They called such functions
metric preserving and provided a characterization of them in terms of the so-
called triangle triplets. Since then, different papers have extended their study to
the case of generalized metric spaces. Concretely, in 2010, G. Mayor and O. Valero
provided two characterizations of those functions, called quasi-metric aggregation
functions, that allows us to merge a collection of quasi-metric spaces into a new
one. In 2012, S. Massanet and O. Valero gave a characterization of the functions,
called partial metric aggregation function, that are useful for merging a collection
of partial metric spaces into single one as final output.

Inspired by the preceding work, in 2013, J. Mart́ın, G. Mayor and O. Valero ad-
dressed the problem of constructing metrics from quasi-metrics, in a general way,
using a class of functions that they called metric generating functions. In particu-
lar, they solved the posed problem providing a characterization of such functions
and, thus, all ways under which a metric can be induced from a quasi-metric from
an aggregation viewpoint. Following this idea, we propose the same problem in
the framework of partial metric spaces. So, we characterize those functions that
are able to generate a quasi-metric from a partial metric, and conversely, in such
a way that Matthews’ relationship between both type of generalized metrics is
retrieved as a particular case. Moreover, we study if both, the partial order and
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the topology induced by a partial metric or a quasi-metric, respectively, are pre-
served by the new method in the spirit of Matthews. Furthermore, we discuss the
relationship between the new functions and those families introduced in the liter-
ature, i.e., metric preserving functions, quasi-metric aggregation functions, partial
metric aggregation functions and metric generating functions.

Keywords partial metric space · quasi-metric space · aggregation function ·
quasi-metric generating · partial metric generating

Mathematics Subject Classification (2010) 06A06 · 54A10 · 54C30 · 54E40 ·
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1 Introduction and Preliminaries

In 1981, J. Borśık and J. Doboš addressed in [3] the issue of how to merge a
family of metric spaces into a single one through a function. They solved such a
problem characterizing the class of real-valued functions whose composition with
each family of metrics provide a single one metric as output. They called such
functions metric preserving (metric aggregation functions in [16]).

Let us recall that a function Φ : R2
+ → R+ is a metric aggregation function

provided that the function dΦ : X × X → R+ is a metric for every pair of met-
ric spaces (X1, d1) and (X2, d2), where X = X1 × X2 and dΦ((x, y), (z, w)) =
Φ(d1(x, z), d2(y, w)) for all (x, y), (z, w) ∈ X. Of course the letter R+ denotes
the set of nonnegative real numbers and R2

+ = {(a, b) : a, b ∈ R+}. Notice that
we will keep the name of metric preserving function for one dimensional metric
aggregation functions.

A first description of metric aggregation functions was made by Borśık and
Doboš in [3] (see, also, [5]). In order to introduce such a description, let us recall
a few pertinent notions.

According to [3], we will denote by O the set of all functions Φ : R2
+ → R+

satisfying: Φ(a, b) = 0⇔ a = b = 0. Moreover, a function Φ : R2
+ → R+ is said to

be monotone provided that Φ(a, b) ≤ Φ(c, d) for all (a, b), (c, d) ∈ R2
+ with (a, b) �

(c, d), where � is defined by (a, b) � (c, d) ⇔ a ≤ c and b ≤ d. Furthermore, a
function Φ : R2

+ → R+ is said to be subadditive if Φ((a, b)+(c, d)) ≤ Φ(a, b)+Φ(c, d)
for all (a, b), (c, d) ∈ R2

+, where + stands for the usual addition on R2
+.

Taking into account the preceding concepts, the aforementioned description is
given by the next results.

Proposition 1 If Φ is a metric aggregation function, then Φ ∈ O.

Proposition 2 Let Φ ∈ O. If Φ is monotone and subadditive, then Φ is a metric
aggregation function.

The preceding results give a method to generate functions that merge two
metrics into a new one. They motivate the question of whether the converse of
Proposition 2 is true in general and, thus, metric aggregation functions are always
monotone and subadditive. However, there are aggregation functions which are
not monotone (see, [5,16]). Inspired, in part by the last fact, Borśık and Doboš
proved a characterization of metric aggregation functions in terms of the so-called
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triangle triplets, where a triplet (a, b, c), with a, b, c ∈ R+, forms a triangle triplet
whenever a ≤ b+ c, b ≤ a+ c and c ≤ b+ a. The aforementioned characterization
can be stated as follows:

Theorem 1 Let Φ : R2
+ → R+. Then the below assertions are equivalent:

(1) Φ is a metric aggregation function.
(2) Φ holds the following properties:

(2.1) Φ ∈ O.
(2.2) Let a, b, c, d, f, g ∈ R+. If (a, b, c) and (d, f, g) are triangle triplets, then so

is (Φ(a, d), Φ(b, f), Φ(c, g)).

From the preceding result one can immediately obtain the below consequence:

Corollary 1 Every metric aggregation function is subadditive.

It must be stressed that, for simplicity, the above result is presented only for
two metrics. However, the original Borśık and Doboš result can be stated for a
collection (non necessarily finite) of metrics.

Since Borśık and Doboš solved the metric aggregation problem, different papers
have extended their study to the case of generalized metric spaces. Concretely, such
a study has been explored in the framework of quasi-metric spaces and partial
metic spaces.

In 2010, G. Mayor and O. Valero motivated, on the one hand, by the utility
of quasi-metrics in several fields of Artificial Intelligence and Computer Science
(see, for instance, [6,7,10,18–25] and, on the other hand, by the seminal work of
Borśık and Doboš, provided two characterizations of those functions, called quasi-
metric aggregation functions, that allows us to merge a collection of quasi-metric
spaces into a new one ([16]). Next we recall a few pertinent notions with the aim
of introducing such characterizations.

On account of [4], a quasi-metric space is a pair (X, q), where X is a non-empty
set and q is a function on X×X such that, for all x, y, z ∈ X, the following axioms
are satisfied:

(Q1) q(x, y) = 0 = q(y, x)⇔ x = y;
(Q2) q(x, z) ≤ q(x, y) + q(y, z).

According to [16], a function Φ : R2
+ → R+ is a quasi-metric aggregation

function if the function qΦ : X × X → R+ is a quasi-metric for every pair of
quasi-metric spaces (X1, q1) and (X2, q2), where X = X1 ×X2 and

qΦ((x, y), (z, w)) = Φ(q1(x, z), q2(y, w))

for all (x, y), (z, w) ∈ X.
Similar to the metric case the following description of quasi-metric aggregation

functions can be provided ([16]).

Theorem 2 Let Φ : R2
+ → R+. Then the below assertions are equivalent:

(1) Φ is a quasi-metric aggregation function.
(2) Φ ∈ O, and Φ is subadditive and monotone.
(3) Φ holds the following properties:
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(2.1) Φ ∈ O.
(2.2) Let a, b, c, d, f, g ∈ R+. If (a, d) � (b, f) + (c, g), then Φ(a, d) ≤ Φ(b, f) +

Φ(c, g).

Observe that from the preceding characterizations we obtain that every quasi-
metric aggregation function is a metric aggregation function. However, there are
metric aggregation functions which are not quasi-metric aggregation functions (see
[16]). Again, we only consider two quasi-metrics in the statement of the preceding
result but it can be stated for a collection (non necessarily finite) of quasi-metrics.
Applications of quasi-metric aggregation functions to asymptotic complexity anal-
ysis of algorithms and denotational semantics can be found in [12].

In 1994, S.G. Matthews introduced a new metric notion, which is known as
partial metric, in order to provide a mathematical framework to model several
computational processes that arise in a natural way in Computer Science ([14]).
Nowadays, the applicability of partial metric spaces covers areas like fixed point
theory, denotational semantics for programming languages, parallel processing,
complexity analysis and logic programming (see, for example, [2,9,10,14,15,17,
26]). Recall that, following [14], a partial metric space is a pair (X, p), where X is
a non-empty set and p is a function on X ×X such that, for all x, y, z ∈ X, the
following axioms are fulfilled:

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(P2) 0 ≤ p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

In 2012, S. Massanet and O. Valero tackled the partial metric aggregation
problem. Thus the notion of partial metric aggregation functions was introduced
as follows ([13]):

A function Φ : R2
+ → R+ is a partial metric aggregation function if the function

pΦ : X×X → R+ is a partial metric for every pair of partial metric spaces (X1, p1)
and (X2, p2), where X = X1 ×X2 and

pΦ((x, y), (z, w)) = Φ(p1(x, z), p2(y, w))

for all (x, y), (z, w) ∈ X. A characterization of this new type of functions was
provided in [13] as follows:

Theorem 3 Let Φ : R2
+ → R+. Then Φ is a partial metric aggregation function if

and only if it satisfies the following two properties for all a, b, c, d, e, f, g, h ∈ R+.

(1) Φ(a, b) + Φ(c, d) ≤ Φ(e, f) + Φ(g, h) whenever (a, b) + (c, d) � (e, f) + (g, h),
(c, d) � (e, f) and (c, d) � (g, h).

(2) If (c, d) � (a, b), (e, f) � (a, b) and Φ(a, b) = Φ(c, d) = Φ(e, f), then (a, b) =
(c, d) = (e, f).

One more time we only consider two partial metrics in the definition of partial
aggregation function and in the statement of the preceding result but it can be
stated for a collection (non necessarily finite) of partial metrics. Notice that from
the preceding characterization we obtain the next consequences:

Corollary 2 Let Φ : R2
+ → R+. If Φ is a partial metric aggregation function, then

the following statements hold:
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(1) Φ is monotone.
(2) If there exists (a, b) ∈ R2

+ such that Φ(a, b) = 0, then a = b = 0.
(3) Φ is subadditive.

In the light of the above results it seems natural to wonder what is the re-
lationship between partial metric aggregation functions, metric aggregation func-
tions and metric aggregation functions. The response to such a question was given
in [13]. Specifically there exist partial metric aggregation functions that are not
either metric aggregation functions or quasi-metric aggregation functions and vice
versa. However, the next result shows a relationship in a specific case.

Proposition 3 Let Φ : R2
+ → R+ be a partial metric aggregation function such

that Φ(0, 0) = 0. Then Φ is a quasi-metric aggregation function and, thus, a metric
aggregation function.

It is a well-known fact that given a quasi-metric q on X, we can symmetrize it
by means of two typical constructions. Indeed, we can construct from q the met-
rics dmax

q , d+q on X defined by dmax
q (x, y) = max{q(x, y), q(y, x)} and d+q (x, y) =

q(x, y) + q(y, x) for each x, y ∈ X. This way of constructing a metric from a quasi-
metric is obtained making use of an appropriate aggregation function acting on the
numerical values q(x, y) and q(y, x). In fact, dmax

q (x, y) = Φmax(q(x, y), q(y, x)) and
d+q (x, y) = Φ+(q(x, y), q(y, x)), where Φmax(a, b) = max{a, b} and Φ+(a, b) = a+ b
for all a, b ∈ R+. Taking into account this fact, J. Mart́ın, G. Mayori and O.
Valero gave a general method of symmetrization of quasi-metrics based on the use
of aggregation in [11]. To this end, they introduced the so-called metric generating
functions which are defined as follows:

A function Φ : R2
+ → R+ is called a metric generating function if dΦ : X×X →

R+ is a metric on X for every quasi-metric space (X, q), where the function dΦ is
defined, for each x, y ∈ X, by

dΦ(x, y) = Φ(q(x, y), q(y, x)).

A characterization of metric generating functions was given in [11] in terms of
mixed triplets, where the triplets (a, b, c) and (d, f, g), with a, b, c, d, f, g ∈ R+, are
called mixed provided that the following inequalities hold:

a ≤ b+ c, b ≤ a+ f, c ≤ g + a,

d ≤ f + g, f ≤ d+ b, g ≤ c+ d.

The mentioned characterization can be stated as follows:

Theorem 4 Let Φ : R2
+ → R+. Then the below assertions are equivalent:

(1) Φ is a metric generating function.
(2) Φ holds the following properties:

(2.1) Φ ∈ O.
(2.2) Φ is symmetric, i.e., Φ(a, b) = Φ(b, a) for all (a, b) ∈ R2

+.
(2.3) Φ(a, d) ≤ Φ(b, g) + Φ(c, f) for all a, b, c, d, f, g ∈ R+ such that (a, b, c) and

(d, f, g) are mixed triplets.
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It deserves to be pointed out that the above result gives a general mathematical
method to symmetrize quasi-metrics giving as a result a metric and, thus, it solves
formally the problem of how to metrize a quasi-metric.

Theorem 3 yields the next consequences:

Corollary 3 Let Φ : R2
+ → R+. If Φ is a metric generating function, then Φ is

subadditive.

The relationship between the class of metric generating functions and the class
of quasi-metric aggregation functions were deeply explored in [11]. Concretely the
following was obtained.

Proposition 4 Let Φ : R2
+ → R+. If Φ is a symmetric quasi-metric aggregation

function, then Φ is a metric generating function.

Theorem 5 Let Φ : R2
+ → R+ be a metric generating function. Then the following

assertions are equivalent:

(1) Φ is a quasi-metric aggregation function.
(2) Φ is monotone.

In [14], Matthews introduced a method to generate a quasi-metric from a par-
tial metric and vice versa. Indeed, given a partial metric p on a non-empty set
X, then a quasi-metric qp can be induced on X by qp(x, y) = p(x, y) − p(x, x)
for each x, y ∈ X. Moreover, a technique for the construction of a partial metric
from a quasi-metric was also given in [14]. In order to introduce such a technique
let us recall that a weighted quasi-metric space is a tern (X, q, wq), where q is a
quasi-metric on X and wq is a function wq : X → R+ satisfying, for each x, y ∈ X,
that

q(x, y) + wq(x) = q(y, x) + wq(y).

The mapping wq is known as the weight function associated to the quasi-metric
q. Thus, given a weighted quasi-metric space (X, q, wq), a partial metric pq,wq on
X can be defined, for each x, y ∈ X, by

pq,wq (x, y) = q(x, y) + wq(x).

In the light of the exposed facts, it seems natural to wonder whether the
possible techniques for generating a partial metric from a quasi-metric and vice
versa are reduced to the above exposed. So far as we know there are not, except for
the Matthews one, any comprehensive study on a general technique to construct
partial metrics and quasi-metrics, one from the other. Motivated by this fact, in
this paper, we approach the posed question following the ideas presented in [11]
and, thus, an aggregation viewpoint. In fact, notice that

pq,wq (x, y) = Φ+ (q(x, y), wq(x)) and qp(x, y) = Φ−(p(x, y), p(x, x)),

where Φ−(a, b) = a− b for each a, b ∈ R+.
In particular, we study a general method to generate a quasi-metric form a

partial metric and vice versa by means of a real-valued function. To this end,
we introduce the notions of quasi-metric generating function and partial metric
generating function. Then, we characterize both new type of functions in terms
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of triplets. Moreover, we also go one step further studying whenever the general
method preserves the main structures that quasi-metrics and partial metrics in-
duce on a set (in the spirit of [14]), which are the partially order and the topology.
Furthermore, we establish a relationship between the new functions, metric aggre-
gation functions, quasi-metric aggregation functions, partial metric aggregation
functions and metric generating functions.

The structure of the paper is as follows. Section 2 is devoted to characterize
those functions, that we have called quasi-metric generating functions, that trans-
form a partial metric in a weighted quasi-metric. In the same section, it is showed
that such functions preserve the partially order induced by a partial metric, but
not the topology. Moreover, a characterization of those quasi-metric generating
functions that preserve the topologies is provided. Sections 2 ends with a dis-
cussion about the relationship between quasi-metric generating functions, metric
aggregation functions, quasi-metric aggregation functions, partial metric aggre-
gation functions and metric generating functions. Whereas, Section 3 is devoted
to develop the reciprocal study. So, the partial quasi-metric functions are char-
acterized. Moreover, the facts that partial metric generating functions preserve
the partial order induced by a quasi-metric but not the topology are proved. Sec-
tion 3 ends characterizing those partial metric generating functions that preserve
the topology and exploring the relationship between this kind of functions and
metric aggregation functions, quasi-metric aggregation functions, partial metric
aggregation functions and metric generating functions.

2 A general method for generating quasi-metrics from partial metrics

This section is devoted to provide a general method to generate a quasi-metric
from a partial metric in such a way that the technique introduced by Matthews
can be retrieved as a particular case . To this end, D will denote the subset of R2

+

given by D = {(a, b) ∈ R2
+ : a ≥ b}.

The next notion will be crucial in order to get the solution to the posed problem
from the aggregation perspective.

Definition 1 We will say that a function Φ : D→ R+ is a quasi-metric generating
function (briefly, a qmg-function) if for each partial metric space (X, p) the function
qΦ,p : X ×X → R+ is a quasi-metric on X, where qΦ,p(x, y) = Φ(p(x, y), p(x, x))
for each x, y ∈ X.

The next example shows that the Matthews technique is a particular case of
the exposed approach (see Section 1).

Example 1 Let Φ− : D → R+ given by Φ−(a, b) = a − b. Then, Φ− is a qmg-
function. Indeed, given a partial metric space (X, p) we have that qΦ−,p(x, y) =
p(x, y)− p(x, x) for each x, y ∈ X, which is the well-known weighted quasi-metric
qp induced by the partial metric p.

The next example provides an alternative way of generating a quasi-metric from
a partial metric which is based on the use of quasi-metric generating functions.
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Example 2 Let Φ−, 1
2

: D→ R+ given by

Φ−, 1
2
(x, y) =

{
0, if x = y = 0
x− y

2 , otherwise
.

Then, Φ−, 1
2

is a qmg-function. Indeed, given a partial metric space (X, p),

it is not hard to check that qΦ−, 1
2
,p is a quasi-metric on X with qΦ−, 1

2
,p(x, y) =

p(x, y)− p(x,x)
2 for each x, y ∈ X with x 6= y, and qΦ−, 1

2
,p(x, x) = 0 for each x ∈ X.

Proposition 6, below, also yields a way of building quasi-metrics from partial
metrics which differs from the Matthews technique.

The next concept will be play a central role in order to characterize those
functions Φ : D→ R+ which are qmg-functions.

Definition 2 We will say that (x1, x2, x3) ∈ R3
+ is a quadrangular triplet on

(y1, y2, y3) ∈ R3
+ if the following conditions are satisfied:

(i) x1 ≥ max{y1, y3}, with x1 > y1 or x1 > y3, and x1 + y2 ≤ x2 + x3;
(ii) x2 ≥ max{y2, y1}, with x2 > y2 or x2 > y1, and x2 + y3 ≤ x3 + x1;
(iii) x3 ≥ max{y3, y2}, with x3 > y3 or x3 > y2, and x3 + y1 ≤ x1 + x2.

It is not har to check that (2, 1, 2) is a quadrangular triplet on (0, 1, 2). Notice
that (0, 1, 2) is not a quadrangular triplet on (2, 1, 2).

The next theorem provides a characterization of qmg-functions by means of
quadrangular triplets and, thus, a general method to generate a quasi-metric from
a partial metric.

Theorem 6 Let Φ : D → R+ be a function. The the following assertions are
equivalent:

(1) Φ is a qmg-function.
(2) Φ satisfies:

(i) Φ−1(0) = {(x, y) ∈ D : x = y};
(ii) Φ(x1, y1) ≤ Φ(x2, y1) + Φ(x3, y2), whenever (x1, x2, x3) ∈ R3

+ is a quad-
rangular triplet on (y1, y2, y3) ∈ R3

+.

Proof (1)⇒ (2). Let Φ : D→ R+ be a qmg-function.

Next we show that Φ satisfies condition (i). Suppose that Φ(x, y) = 0 for some
x, y ∈ D. Consider (R, py) the partial metric space where py(a, b) = |a − b| + y
for each a, b ∈ R, where R stands for the real number set. Taking into account
that Φ is a qmg-function, then qΦ,py : R× R→ R+ is a quasi metric on R, where
qΦ,py (a, b) = Φ(py(a, b), py(a, a)) for each a, b ∈ R.

Since x ≥ y we have that py(y, x) = py(x, y) = |x − y| + y = x. In addition,
py(x, x) = |x− x|+ y = y and py(y, y) = |y − y|+ y = y.

Attending to the above observations and taking into account our assump-
tions, we have that qΦ,py (x, y) = Φ(py(x, y), py(x, x)) = Φ(x, y) = 0. Moreover,
qΦ,py (y, x) = Φ(py(y, x), py(y, y)) = Φ(x, y) = 0. Thus, (Q1) implies x = y.

Next we show that Φ satisfies condition (ii). To this end, suppose that (x1, x2, x3) ∈
R3

+ is a quadrangular triplet on (y1, y2, y3) ∈ R3
+.
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In the following we construct a partial metric space in order to show that
Φ(x1, y1) ≤ Φ(x2, y1) + Φ(x3, y2).

Let X = {a, b, c} be a set of three points. We define p : X×X → R+ as follows:

p(a, c) = p(c, a) = x1 and p(a, a) = y1;

p(a, b) = p(b, a) = x2 and p(b, b) = y2;

p(b, c) = p(c, b) = x3 and p(c, c) = y3.

It is not hard to check that (X, p) is a partial metric space, since (x1, x2, x3)
is a quadrangular triplet on (y1, y2, y3).

By our hypothesis, qΦ,p : X × X → R+ is a quasi-metric, where qΦ,p(u, v) =
Φ(p(u, v), p(u, u)) for each u, v ∈ X. Then

qΦ,p(a, c) ≤ qΦ,p(a, b) + qΦ,p(b, c),

which is equivalent to

Φ(p(a, c), p(a, a)) ≤ Φ(p(a, b), p(a, a)) + Φ(p(b, c), p(b, b)).

Therefore, by definition of p, we have that

Φ(x1, y1) ≤ Φ(x2, y1) + Φ(x3, y2).

(2)⇒ (1). Assume that Φ : D→ R+ is a function satisfying conditions (i) and
(ii). Let (X, p) be a partial metric space, we will show that qΦ,p is a quasi-metric
on X, where qΦ,p(x, y) = Φ(p(x, y), p(x, x)) for each x, y ∈ X.

First we suppose that qΦ,p(x, y) = 0 = qΦ,p(y, x) for some x, y ∈ X. Then,

Φ(p(x, y), p(x, x)) = qΦ,p(x, y) = 0,

and
Φ(p(y, x), p(y, y)) = qΦ,p(y, x) = 0.

Condition (i) implies that p(x, y) = p(x, x) and p(y, x) = p(y, y). Taking into
account that p is a partial metric on X we have that p(x, y) = p(x, x) = p(y, y),
and so x = y. Since Φ satisfies (i) we deduce that qΦ,p(x, y) = 0 = qΦ,p(y, x)
provided that x = y. Thus qΦ,p satisfies axiom (Q1) of quasi-metrics.

It remains to prove that qΦ,p fulfils the triangle inequality, i.e., axiom (Q2)
of quasi-metrics. With this aim, let x, y, z ∈ X. We sill show that qΦ,p(x, z) ≤
qΦ,p(x, y) + qΦ,p(y, z). Observe that the cases x = y, y = z or x = z are obvious.
So, we assume that x 6= y, x 6= z and y 6= z. In such a case we obtain:

p(x, z) > p(x, x) or p(x, z) > p(z, z) and p(x, z) ≥ max{p(x, x), p(z, z)};

p(x, y) > p(x, x) or p(x, y) > p(y, y) and p(x, y) ≥ max{p(x, x), p(y, y)};

p(y, z) > p(y, y) or p(y, z) > p(z, z) and p(y, z) ≥ max{p(y, y), p(z, z)}.

Moreover, by axiom (P4) of partial metrics, we have that

p(x, z) + p(y, y) ≤ p(x, y) + p(y, z);

p(x, y) + p(z, z) ≤ p(x, z) + p(z, y);
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p(y, z) + p(x, x) ≤ p(y, x) + p(x, z).

Then, (p(x, z), p(x, y), p(y, z)) ∈ R3
+ is quadrangular triplet on (p(x, x), p(y, y), p(z, z)) ∈

R3
+. Thus, by condition (ii), we have that

Φ(p(x, z), p(x, x)) ≤ Φ(p(x, y), p(x, x)) + Φ(p(y, z), p(y, y)),

and so

qΦ,p(x, z) ≤ qΦ,p(x, y) + qΦ,p(y, z).

According to [8], given a quasi-metric sapce (X, q), then q induces a partial
order �q on X given by x �q y ⇔ q(x, y) = 0. In [14], Matthews showed that given
a partial metric space (X, p), then p also induces a partial order �p on X given by
x �p y ⇔ p(x, y) = p(x, x). Moreover, in the same reference, it was proved that
�qp=�p.

In the light of the preceding facts, it seems natural to discuss whether, given
a qmg-function Φ : D → R+ and a partial metric space (X, p), the partial orders
�qΦ,p and �p are exactly the same on X, i.e., whether a qmg-function preserves
the order induced by the partial metric that it transforms. The next result gives
a positive answer to the questions under consideration.

Proposition 5 Let Φ : D → R+ be a qmg-function and let (X, p) be a partial
metric space. Then �qΦ,p=�p.

Proof Let x, y ∈ X .On the one hand, we have that x �p y ⇔ p(x, x) = p(x, y). On
the other hand, we have that x �qΦ,p y ⇔ qΦ,p(x, y) = 0. Theorem 6 guarantees
that Φ−1(0) = {(x, y) ∈ D : x = y} and, thus, that x �p y ⇔ x �qΦ,p y as claimed.

Following [8], each quasi-metric q on X induces a T0 topology T (q) on X
which has as a base the family of open balls {Bq(x; ε) : x ∈ X, ε > 0}, where
Bq(x; ε) = {y ∈ X : q(x, y) < ε}. Moreover, according to [14], each partial metric
p on X induces a T0 topology T (p) on X which has as a base the family of open
balls {Bp(x; ε) : x ∈ X, ε > 0}, where Bp(x; ε) = {y ∈ X : p(x, y) < p(x, x)+ε}. As
in the case of the partial order, Matthews proved that the topology induced by a
partial metric p and by the associated quasi-metric qp coincide, i.e., T (p) = T (qp).

Similarly to the partial order case, it seems natural to ask if the same situation
happens in our context, i.e., if a qmg-function Φ preserves the topology induced
by the partial metric p which it transforms and, thus, T (p) = T (qΦ,p). Neverthe-
less, the behaviour of qmg-functions regarding the preservation of the topology
is slightly different. In fact, the answer to the question posed is negative such as
Example 3 reveals.

The next proposition will be crucial to show, by means of Example 3, that the
topology induced by a partial metric p on a set X does not coincide, in general,
with the topology induced by the generated quasi-metric qΦ,p.

Proposition 6 Let Φ2 : D → R+ be the function given by Φ(0, 0) = 0 and
Φ2(x, y) = x−y

x for each (x, y) ∈ D \ {(0, 0)}. Then Φ2 is a qmg-function.

Proof First of all, we observe that Φ2(x, y) ≥ 0, for each (x, y) ∈ D. Now, we show
that Φ satisfies conditions (i) and (ii) in the statement of Theorem 6.
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Clearly, by definition, Φ(0, 0) = 0. Next suppose that Φ2(x, y) = 0 for some
(x, y) ∈ D \ {(0, 0)}. Then x−y

x = 0. The last equality is held if and only if x = y.
Thus the aforesaid condition (i) is satisfied by Φ.

In order to prove that Φ fulfils condition (ii), assume that (x1, x2, x3) ∈ R3
+ is

a quadrangular triplet on (y1, y2, y3) ∈ R3
+. It remains to show that Φ2(x1, y1) ≤

Φ2(x2, y1) + Φ2(x3, y2). First, observe that, by definition of quadrangular triplet
(x1, x2, x3) 6= (0, 0, 0). So, Φ2(x1, y1) = x1−y1

x1
, Φ2(x2, y1) = x2−y1

x2
and Φ2(x3, y2) =

x3−y2
x3

. Now, we distinguish two possible cases:

Case 1. x1 ≥ max{x2, x3}. On the one hand, we have that

Φ2(x1, y1) =
x1 − y1
x1

≤ x1 − y1
max{x2, x3}

and

Φ2(x2, y1) + Φ2(x3, y2) =
x2 − y1
x2

+
x3 − y2
x3

≥ x2 − y1
max{x2, x3}

+
x3 − y2

max{x2, x3}
.

On the other hand x1−y1 ≤ x2−y1+x3−y2, since (x1, x2, x3) is a quadrangular
triplet on (y1, y2, y3). It follows that

x1 − y1
max{x2, x3}

≤ x2 − y1
max{x2, x3}

+
x3 − y2

max{x2, x3}

and, hence, that
Φ2(x1, y1) ≤ Φ2(x2, y1) + Φ(x3, y2).

Case 2. x1 < max{x2, x3}. Put x′1 = max{x2, x3}. It is a routine to check
that (x′1, x2, x3) is a quadrangular triplet on (y1, y2, y3), since x′1 > x1 ≥
max{y1, y3} and x′1 + y2 ≤ x2 + x3. Therefore, by Case 1, we deduce that
Φ2(x′1, y1) ≤ Φ2(x2, y1) + Φ2(x3, y2). Moreover, we observe that, for each
a, b, α ∈ R+ with a ≤ b, we have that a

b ≤
a+α
b+α .

Letting α = max{x2, x3} − x1 and x′1 = max{x2, x3} we obtain that

Φ2(x1, y1) =
x1 − y1
x1

≤ x1 − y1 + α

x1 + α
=

max{x2, x3} − y1
max{x2, x3}

= Φ2(x′1, y1).

Thus, Φ2(x1, y1) ≤ Φ2(x2, y1) + Φ2(x3, y2).

Consequently Φ fulfils condition (ii) in Theorem 6. Hence, we deduce that Φ
is a qmg-function.

As announced before, the next example shows that, in general, a qmg-function
Φ does not preserve the topology induced by the partial metric p which it trans-
forms and, thus, that T (p) 6= T (qΦ,p) in general.

Example 3 Let (R+, pm) be the partial metric space such that pm(x, y) = max{x, y}
for each x, y ∈ R+. It is not hard to verify that, for each x ∈ R+ and ε > 0, the
open ball centred at x with radius ε is given by Bpm(x; ε) = [0, x+ ε[.

It is clear that the quasi-metric generated by means of the function Φ2 (intro-
duced in Proposition 6) from pm is given by qΦ2,pm(0, 0) = 0 and qΦ2,pm(x, y) =
max{x,y}−x
max{x,y} for each (x, y) ∈ D\{(0, 0)}. Then qΦ2,pm(0, y) = 1, for each y ∈]0,∞[

and, hence, BqΦ2,pm
(0; ε) = {0} for each ε ∈]0, 1[. Hence, BqΦ2,pm

(0; ε) 6∈ T (pm)
and, therefore, T (pm) 6= T (qΦ2,pm).
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On account of the above example, we focus our effort on seeking conditions
on qmg-functions Φ in order to ensure that, for each partial metric space (X, p),
T (p) = T (qΦ,p). To this end, we introduce the next concept.

Definition 3 Let Φ : D→ R+ be a qmg-function. We will say that Φ is a strongly
quasi-metric generating function (sqmg-function for short) if for each partial met-
ric space (X, p) we have that T (p) = T (qΦ,p).

It must be stressed that the name of strongly quasi-metric generating function
has been inspired by strongly metric preserving functions introduced in [5].

In the light of the preceding definition, an instance of sqmg-functions is given
by the function Φ− introduced in Examples 1.

The next result will be essential for getting a characterization of those qmg-
functions that are sqmg-functions.

Lemma 1 Let Φ : D→ R+ be a qmg-function. Then, Φ is increasing in the first
component, i.e., Φ(x, z) ≥ Φ(y, z) whenever x ≥ y.

Proof Let (x, z), (y, z) ∈ D with x ≥ y. It is clear that if x = y, then Φ(x, z) =
Φ(y, z). So we assume that x > y. Moreover, we can consider that y > 0 because
otherwise we have that y = z = 0 and, thus, that Φ(x, z) ≥ Φ(y, z) = Φ(0, 0) = 0.
Consider the terns (y, x, x − y), (z, x − y, 0) ∈ R3

+. It is not hard to see that
(y, x, x− y) is a quadrangular triplet on (z, x− y, 0). Therefore, by Theorem 6, we
have that

Φ(y, z) ≤ Φ(x, z) + Φ(x− y, x− y) = Φ(x, z).

Thus, Φ is increasing in the first component.

Although qmg-functions do not preserve the topology of the partial metric that
they transform, we have always that the topology induced by the quasi-metric qΦ,p
generated from a qmg-function Φ is finer than the topology induced by the partial
metric p from which it is constructed. Let us recall a topology T1 is said to be
finer than a topology T2 provided that each open set in T2 it is so in T1 (see, for
instance, [1]). From now on, the fact that a topology T1 is finer that a topology
T2 will be denoted by T2 ⊆ T1.

Theorem 7 Let Φ : D→ R+ be a qmg-function and let (X, p) be a partial metric
space. Then, T (p) ⊆ T (qΦ,p).

Proof Consider x ∈ X and the real number ε > 0. Put δ = Φ(p(x, x) + ε, p(x, x)).
Then δ > 0. Next we prove that BqΦ,p(x; δ) ⊆ Bp(x; ε). Indeed, let y ∈ BqΦ,p(x; δ).
Then Φ(p(x, y), p(x, x)) < δ = Φ(p(x, x) + ε, p(x, x)). Assume for the purpose of
contradiction that p(x, y) − p(x, x) ≥ ε. By Lemma 1 we obtain that Φ(p(x, x) +
ε, p(x, x)) ≤ Φ(p(x, y), p(x, x)) < Φ(p(x, x) + ε, p(x, x)) which is not possible. It
follows that p(x, y)− p(x, x) < ε and, hence, that y ∈ Bp(x; ε). Therefore, T (p) ⊆
T (qΦ,p) as claimed.

The next theorem characterizes sqmg-functions.

Theorem 8 Let Φ : D → R+ be a qmg-function. Then the following assertions
are equivalent:
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(1) Φ is a sqmg-function.
(2) For each a ∈ R+, the function Φa : R+ → R+ is continuous at 0, where

Φa(x) = Φ(x+ a, a) for each x ∈ R+.

Proof (1) ⇒ (2). Suppose for the purpose of contradiction that there exists a0 ∈
R+ such that Φa0 is not continuous at 0. Next we see that Φ is not a sqmg-function.

Since Φa0 is not continuous at 0, then there exist ε0 > 0 such that for each
δ > 0 we can find xδ ∈ [0, δ[ satisfying Φa0(xδ) ≥ ε0 (observe that Φa0(0) = 0).

Consider the partial metric space (R+, pm) introduced in Example 3 and take
x = a0. Clearly, for each δ > 0 we have that yδ = xδ + a0 /∈ BqΦ,pm (x; ε0), since

qΦ,pm(x, yδ) = Φ(pm(x, yδ), pm{x, x}) = Φ(xδ + a0, a0) = Φa0(xδ) ≥ ε0.

It follows that T (p) 6= T (qΦ,p) becauseBqΦ,pm (x; ε0) ∈ T (qΦ,p) andBqΦ,pm (x; ε0) /∈
T (p). Indeed, for each δ > 0, we have that pm(x, yδ)− pm(x, x) = xδ + a0 − a0 =
xδ < δ and, thus, yδ ∈ Bpm(x; δ) but yδ /∈ BqΦ,pm (x; ε0). Consequently, Φ is not a
sqmg-function which is a contradiction.

(2) ⇒ (1). By Theorem 7 we have, for each partial metric space (X, p), that
T (p) ⊆ T (qΦ,p). It remains to prove that T (qΦ,p) ⊆ T (p). With this aim we show
that, for each x ∈ X, given ε > 0 there exists δ > 0 such thatBp(x; δ) ⊆ BqΦ,p(x; ε).
Indeed, by the continuity of Φp(x,x) at 0, there exists δ > 0 such that, for each
α ∈ [0, δ[, we have that Φp(x,x)(α) < ε. It follows that Bp(x; δ) ⊆ BqΦ,p(x; ε). Hence
if y ∈ Bp(x; δ), then p(x, y)− p(x, x) < δ and so p(x, y)− p(x, x) ∈ [0, δ[. Whence,
qΦ,p(x, y) = Φ(p(x, y), p(x, x)) = Φp(x,x)(p(x, y) − p(x, x)) < ε and, therefore,
y ∈ BqΦ,p(x; ε). This ends the proof.

As a consequence of the previous theorem, we can show that the function Φ−, 1
2

introduced in Example 2 also constitutes an instance of sqmg-function. Indeed, on
the one hand,

Φ(−, 12 )
0

(x) =

{
0, if x = 0
x
2 , otherwise

,

and, on the other hand, for each a ∈]0,∞[, Φ(−, 12 )
a

(x) = x + a
2 . Then, for each

a ∈ R+, we have that Φ(−, 12 )
a

is continuous at 0 and so, by Theorem 8, we conclude

that Φ−, 1
2

is a sqmg-function. However, the function Φ2, given in Proposition 6,

is not a sqmg-function because Φ20 is not continuous at 0.
We finish this section exploring the relationship between qmg-functions, (quasi-

)metric aggregation functions, partial metric aggregation functions and metric
generating functions, whenever all of them are defined on D.

Recall that Theorems 1 and 2 states that metric aggregation functions and
quasi-metric aggregations functions belong to O. Proposition 6 shows that there
are qmg-functions that are neither metric aggregation functions nor quasi-metric
aggregations functions because Φ2 /∈ O. By Theorem 3 we know that metric gen-
erating functions also belong to O, and thus, Proposition 6 gives an instance,
namely Φ2, of qmg-functions which does not belong to O and, in addition, it
is not a metric generating function. By Corollary 2, partial metric aggregation
functions are monotone and, therefore, qmg-functions are not, in general, partial
metric aggregation functions. Indeed, the aforesaid mapping Φ2 is not monotone,
since (2, 1) � (2, 2) and 1

2 = Φ2(2, 1) 6≤ Φ2(2, 2) = 0.
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Reciprocally we analyze if (quasi-)metric aggregation functions, partial metric
aggregation functions and metric generating functions are qmg-functions.

The next example shows that there are metric and quasi-metric aggregation
functions that are not qmg-functions.

Example 4 Consider the function Φ0,1 : D→ R+ defined by

Φ0,1(a, b) =

{
0 if a = b = 0
1 otherwise.

Since Φ0,1 is monotone, subadditive and Φ0,1 ∈ O we have, by Theorems 1 and 2,
that it is a metric and quasi-metric aggregation function. However, Φ0,1(1, 1) = 1
and thus, by Theorem 6, it is not a qmg-function.

Next we show that there are partial metric aggregation functions that are not
qmg-functions.

Example 5 Consider the function Φ+1 : D→ R+ defined by Φ+1(a, b) = a+ b+ 1
for all (a, b) ∈ D. It is clear that the function Φ+1 fulfils conditions in the statement
of Theorem 3 and, thus, it is a partial metric aggregation function. Nevertheless,
Φ+1(1, 1) = 3 and thus, by Theorem 6, it is not a qmg-function.

The next example gives an instance of metric generating function which is not
a qmg-function.

Example 6 Consider the function Φmed : D → R+ given by Φmed(a, b) = a+b
2 for

all a, b. It is not har to check that Φmed satisfies Theorem 4 and, hence, that it is a
metric generating function. However, Φmed(1, 1) = 1

2 and, therefore, by Theorem
6 it is not a qmg-function.

Despite the above exposed facts, surprisingly, qmg-functions can be useful to
construct (quasi-)metric preserving functions, i.e., one dimensional (quasi-)metric
aggregation functions, such as the next result shows.

Proposition 7 Let Φ : D → R+ be a qmg-function. Then, for each a ∈ R+, the
function Φa : R+ → R+ is a quasi-metric preserving function, where Φa(x) =
Φ(x+ a, a) for each x ∈ R+

Proof Fix a ∈ R+. Since Φ : D→ R+ is a qmg-function we have that Φ−1
a (0) = {0}

Lemma 1 ensures that Φa is increasing. So, we only need to show that Φa is also
subadditive. To this end, consider x, y ∈ R+ with x 6= 0 and y 6= 0 (the case x = 0
or y = 0 is obvious). It is not hard to check that (x + y + a, x + a, y + a) is a
quadrangular triplet on (a, a, a). Then, by Theorem 6, we deduce that

Φa(x+ y) = Φ(x+ y + a, a) ≤ Φ(x+ a, a) + Φ(y + a, a) = Φa(x) + Φa(y).

Thus, by Theorem 2, we obtain that Φa is a quasi-metric preserving function.

Since every quasi-metric preserving function is a metric preserving function
(see Theorems 1 and 2) we obtain immediately from Proposition 7 the next con-
sequence.
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Corollary 4 Let Φ : D → R+ be a qmg-function. Then, for each a ∈ R+, the
function Φa : R+ → R+ is a metric preserving function, where Φa(x) = Φ(x+a, a)
for each x ∈ R+

Examples 1 and 2 provide instances of qmg-functions that, by Proposition 7
and Corollary 4, allow us to induce (quasi-)metric preserving functions.

Observe that Proposition 7 does not allows us to generate, in general, partial
metric preserving functions (one dimensional partial metric aggregation functions).
To clarify this assertion it is sufficient that we consider, again, the function Φ2

given in Proposition 6. Then Φ20(x) = 1 for all x ∈ R+. By Theorem 3 we have
that Φ20 is not a partial metric preserving function because 1 ≤ 3, 2 ≤ 3 and
Φ20(3) = Φ20(1) = Φ20(2).

3 A general method for generating partial metrics from quasi-metrics

The aim of this section is to introduce a general method to generate a partial metric
from a quasi-metric in such a way that the technique introduced by Matthews
can be recovered as a particular case. With this objective, we introduce the next
concept which will be essential for tackling the posed problem.

Definition 4 We will say that a function Ψ : R2
+ → R+ is a partial metric

generating function (briefly, pmg-fucntion) if for each weighted quasi-metric space
(X, q, wq) the function pΨ,q,wq : X × X → R+ is a partial metric on X, where
pΨ,q,wq (x, y) = Ψ(q(x, y), wq(x)) for each x, y ∈ X.

The next example shows that the Matthews technique is a particular case of
the exposed approach (see Section 1).

Example 7 Let Ψ+ : R2
+ → R+ given by Ψ+(a, α) = a+α for each a, α ∈ R+. Then,

Ψ+ is a pmg-function. Indeed, given a weighted quasi-metric space (X, q, wq) we
have that pΨ+,q,wq (x, y) = q(x, y) + wq(x) for each x, y ∈ X, which is the well-
known partial metric pq,wq induced by the weighted quasi-metric space q.

The next example provides an alternative way of generating a partial met-
ric from a quasi-metric which is based on the use of partial metric generating
functions.

Example 8 Define Ψ+1 : R2
+ → R+ by Ψ+1(a, α) = a + α + 1. It is not hard to

check that Ψ+1 is a pmg-function. Indeed, given a weighted quasi-metric space
(X, q, wq), an easy verification shows that pΨ+1,q,wq is a partial metric on X with
pΨ+1,q,wq (x, y) = q(x, y) + wq(x) + 1 for each x, y ∈ X.

The so-called upper quasi-metric space will be crucial in order to achieve our
target. Let recall that the upper quasi-metric space is the weighted quasi-metric
space given by the tern (R+, qu, wqu) such that qu(x, y) = max{y − x, 0} for each
x, y ∈ X and wqu(x) = x for each x ∈ R+.

The next result will be crucial in order to yield a characterization of pmg-
functions later on.

Lemma 2 Let Ψ : R2
+ → R+ be a pmg-function and α ∈ R+. Then Ψ is increasing

in the first component.



16 Juan-José Miñana, Oscar Valero

Proof Fix α ∈ R+. Since Ψ is a pmg-function we have that, given (R+, qu, wqu), the
function pΨ,qu,wqu is a partial metric on R2

+. Let a, b ∈ R+ and assume that a ≤ b.
Then, qu(α, a + α) = a, qu(α, α) = 0, qu(α, b + α) = b and qu(b + α, a + α) = 0.
So, on the one hand, we have that

Ψ(a, α) + Ψ(0, b+ α) =

Ψ(qu(α, a+ α), wqu(α)) + Ψ(qu(b+ α, b+ α), wqu(b+ α)) =

pΨ,qu,wqu (α, a+ α) + pΨ,qu,wqu (b+ α, b+ α).

On the other hand, we have that

Ψ(b, α) + Ψ(0, b+ α) =

Ψ(qu(α, b+ α), wqu(α)) + Ψ(qu(b+ α, a+ α), wqu(b+ α)) =

pΨ,qu,wqu (α, b+ α) + pΨ,qu,wqu (b+ α, a+ α).

Now, since pΨ,qu,wqu is a partial metric on R+ we have that

pΨ,qu,wqu (α, a+α)+pΨ,qu,wqu (b+α, b+α) ≤ pΨ,qu,wqu (α, b+α)+pΨ,qu,wqu (b+α, a+α).

It follows that

Ψ(a, α) + Ψ(0, b+ α) ≤ Ψ(b, α) + Ψ(0, b+ α).

This last inequality implies Ψ(a, α) ≤ Ψ(b, α), as we claimed.

The next theorem provides a characterization of the class of pmg-functions and,
thus, a general method to generate a partial metric from a (weighted) quasi-metric.

Theorem 9 Let Ψ : R2
+ → R+ be a function. The the following assertions are

equivalent:

(1) Ψ is a pmg-function.
(2) Ψ satisfies, for each a, b, c, α, β ∈ R+, the following conditions:

(i) Ψ(a, α) = Ψ(a+ α− β, β), whenever a+ α ≥ β;
(ii) Ψ(c, α) + Ψ(0, β) ≤ Ψ(a, α) + Ψ(b, β), whenever c ≤ a+ b and β ≤ a+ α;

(iii) If Ψ(0, α) = Ψ(a, α) = Ψ(0, β) and a+ α ≥ β, then a = 0 and α = β.

Proof (1)⇒ (2).Let a, b, c, α, β ∈ R+.
In order to prove (i), consider that a+ α ≥ β. Notice that the case a = 0 and

the case α = β are obvious. So, we suppose that a > 0 or α 6= β.
Consider the set X = {x, y, z} and define the function q on X ×X as follows:

q(x, y) = a; q(y, x) = a+ α− β; q(x, z) = 2a+ α− β;

q(z, x) = 2a+ 2α− β; q(y, z) = a+ α− β; q(z, y) = a+ α;

q(x, x) = q(y, y) = q(z, z) = 0.

It is not hard to verify that q is a quasi-metric on X. Besides, if we define the
function wq on X given by

wq(x) = α; wq(y) = β and wQ(z) = 0,
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we have that

q(x, y) + wq(x) = a+ α = a+ α− β + β = q(y, x) + wq(y);

q(x, z) + wq(x) = 2a+ α− β + α = 2a+ 2α− β = q(z, x) + wq(z)

and

q(y, z) + wq(y) = a+ α− β + β = a+ α = q(z, y) + wq(z).

Therefore, (X, q, wq) is a weighted quasi-metric space.
Now, by hypothesis, pΨ,q,wq is a partial metric on X, where pΨ,q,wq (u, v) =

Ψ(q(u, v), wq(u)) for each u, v ∈ X. Then, pΨ,q,wq (u, v) = pΨ,q,wq (v, u), for each
u, v ∈ X. Hence

Ψ(a, α) = Ψ(q(x, y), wq(x)) =

pΨ,q,wq (x, y) = pΨ,q,wq (y, x) =

Ψ(q(y, x), wq(y)) = Ψ(a+ α− β, β).

Next we show that Φ fulfils (ii). To this end, let a, b, c, α, β ∈ R+ with c ≤ a+b
and β ≤ a + α. Lemma 2 ensures that the inequality under consideration is hold
for the case a = 0 and α = β, and for the case b = β = 0. So, we suppose that
a > 0 or α 6= β, and b > 0 or β > 0. First, we will prove that the next inequality
is fulfilled

Ψ(a+ b, α) + Ψ(0, β) ≤ Ψ(a, α) + Ψ(b, β).

With this purpose we consider the set X = {x, y, z}. Define the function q on
X ×X by:

q(x, y) = a; q(y, x) = a+ α− β; q(y, z) = b; q(z, y) = b+ β;

q(x, z) = a+ b; q(z, x) = a+ b+ α;

and

q(x, x) = q(y, y) = q(z, z) = 0.

Then one can verify that q is a quasi-metric on X. Even more, if we define wq(x) =
α, wq(y) = β and wq(z) = 0, then

q(x, y) + wq(x) = a+ α = a+ α− β + β = q(y, x) + wq(y);

q(x, z) + wq(x) = a+ b+ α = q(z, x) + wq(z)

and

q(y, z) + wq(y) = b+ β = q(z, y) + wq(z).

Therefore, (X, q, wq) is a weighted quasi-metric space.
Since Ψ is a pmg-function we have that pΨ,q,wq is a partial metric on X, where

pΨ,q,wq (u, v) = Ψ(q(u, v), wq(u)) for each u, v ∈ X. From this fact we deduce, on
the one hand, that

Ψ(a+ b, α) + Ψ(0, β) = Ψ(q(x, z), wq(x)) + Ψ(q(y, y), wq(y)) =

pΨ,q,wq (x, z) + pΨ,q,wq (y, y),
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and, on the other hand, that

Ψ(a, α) + Ψ(b, β) = Ψ(q(x, y), wq(x)) + Ψ(q(y, z), wq(y)) = pΨ,q(x, y) + pΨ,q(y, z).

Since pΨ,q(x, z) + pΨ,q(y, y) ≤ pΨ,q(x, y) + pΨ,q(y, z), we obtain that

Ψ(a+ b, α) + Ψ(0, β) ≤ Ψ(a, α) + Ψ(b, β).

Thus, by Lemma 2, we conclude that

Ψ(c, α) + Ψ(0, β) ≤ Ψ(a+ b, α) + Ψ(0, β) ≤ Ψ(a, α) + Ψ(b, β).

It remains to prove condition (iii). Suppose that Ψ(0, α) = Ψ(a, α) = Ψ(0, β)
and a+ α ≥ β.

Consider the weighted quasi-metric space (R+, qu, wqu). Then, pΨ,qu,wqu is a
partial metric on R+, where pΨ,qu,wqu (x, y) = Ψ(qu(x, y), wqu(x)) for each x, y ∈
R+.

First, we will see that α = β. Suppose that α ≥ β (the proof for the case β ≥ α
runs following similar arguments). In such a case,

pΨ,qu,wqu (α, α) = Ψ(qu(α, α), wqu(α)) = Ψ(0, α);

pΨ,qu,wqu (β, β) = Ψ(qu(β, β), wqu(β)) = Ψ(0, β);

pΨ,qu(α, β) = Ψ(qu(α, β), wqu(α)) = Ψ(max{β − α, 0}, α) = Ψ(0, α).

Since pψ,qu,wqu is a partial metric then pΨ,quwqu (α, β) = pΨ,qu,wqu (β, α) and, hence,

pΨ,q,wqu (α, α) = pΨ,q,wqu (α, β) = pΨ,q,wqu (β, β),

and so α = β.
Now, for the purpose of contradiction, we assume that a > 0. Consider the set

X = {x, y, z} with x 6= y. Define the function q on X ×X by:

q(x, y) = q(z, y) = q(y, x) = q(y, z) = a; q(x, z) = q(z, x) = 2a;

and
q(x, x) = q(y, y) = q(z, z) = 0.

One can verify that q is a quasi-metric on X. Moreover, if we define wq(x) =
wq(y) = wq(z) = α, we have that

q(x, y) + wq(x) = a+ α = a+ α = q(y, x) + wq(y);

q(x, z) + wq(x) = 2a+ α = q(z, x) + wq(z)

and
q(y, z) + wq(y) = a+ α = q(z, y) + wq(z).

Therefore, (X, q, wq) is a weighted quasi-metric space. Then, pΨ,q,wq is a partial
metric on X, where pΨ,q,wq (u, v) = Ψ(q(u, v), wq(u)) for each u, v ∈ X. Further-
more we have

pΨ,q,wq (x, x) = Ψ(q(x, x), wq(x)) = Ψ(0, α);

pΨ,q,wq (x, y) = Ψ(q(x, y), wq(x)) = Ψ(a, α);
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and
pΨ,q,wq (y, y) = Ψ(q(y, y), wq(y)) = Ψ(0, α).

Since Ψ(0, α) = Ψ(a, α) we obtain that

pΨ,q,wq (x, x) = pΨ,q,wq (x, y) = pΨ,q,wq (y, y)

and, thus, that x = y, which is a contradiction.

(2)⇒ (1). Let (X, q, wq) be a weighted quasi-metric space. Define pΨ,q,wq (x, y) =
Ψ(q(x, y), wq(x)) for each x, y ∈ X. Next we show that pΨ,q,wq is a partial metric
on X. To this aim, let x, y, z ∈ X.

Suppose that pΨ,q,wq (x, x) = pΨ,q,wq (x, y) = pΨ,q,wq (y, y). By construction of
pΨ,q,wq we have that

Ψ(0, wq(x)) = Ψ(q(x, x), wq(x)) = Ψ(q(x, y), wq(x)) =

Ψ(q(y, y), wq(y)) = Ψ(0, wq(y))
.

Besides q(x, y)+wq(x) ≥ wq(y), since q(x, y)+wq(x) = q(y, x)+wq(y). Whence we
deduce that q(x, y) = 0 and wq(x) = wq(y), because of Ψ satisfies (iii). Moreover,
in such a case we have that wq(x) = q(y, x)+wq(y), which implies that q(y, x) = 0.
Thus, q(x, y) = q(y, x) = 0 and so x = y. Obviously, if x = y we have that
pΨ,q,wq (x, x) = pΨ,q,wq (x, y) = pΨ,q,wq (y, y). We conclude that pΨ,q,wq satisfies
axiom (P1) of partial metrics.

The definition of Ψ gives that pΨ,q,wq (x, x) = Ψ(0, wq(x)) ≥ 0. Moreover,
Lemma 2 guarantees that

pΨ,q,wq (x, x) = Ψ(0, wq(x)) ≤ Ψ(q(x, y), wq(x)) = pΨ,q,wq (x, y).

It follows that pΨ,q,wq satisfies axiom (P2) of partial metrics.
Since q(x, y) +wq(x) ≥ wq(y) and q(x, y) +wq(x) = q(y, x) +wq(y) we obtain

from condition (i) that

pΨ,q,wq (x, y) = Ψ(q(x, y), wq(x)) = Ψ(q(y, x), wq(y)) = pΨ,q,wq (y, x).

So pΨ,q,wq fulfils axiom (P3) of partial metrics.
Finally we show that pΨ,q,wq satisfies axiom (P4) of partial metrics. On the

one hand,

pΨ,q,wq (x, z) + pΨ,q,wq (y, y) =

Ψ(q(x, z), wq(x)) + Ψ(q(y, y), wq(y)) =

Ψ(q(x, z), wq(x)) + Ψ(0, wq(y)).

On the other hand,

pΨ,q,wq (x, y) + pΨ,q,wq (y, z) = Ψ(q(x, y), wq(x)) + Ψ(q(y, z), wq(y)).

Since q(x, z) ≤ q(x, y) + q(y, z) and wq(y) ≤ q(x, y) + wq(x), we deduce from
condition (ii) that
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Ψ(q(x, z), wq(x)) + Ψ(0, wq(y)) ≤ Ψ(q(x, y), wq(x)) + Ψ(q(y, z), wq(y)).

Hence we conclude that

pΨ,q,wq (x, z) + pΨ,q,wq (y, y) ≤ pΨ,q,wq (x, y) + pΨ,q,wq (y, z).

Therefore pΨ,q,wq is a partial metric on X, and this ends the proof.

An immediate consequence of the above characterization is given by the fol-
lowing result which will be key in our subsequent discussion.

Corollary 5 Let Ψ : R2
+ → R+ be a pmg-function and let α, a ∈ R+. If Ψ(a, α) =

Ψ(0, α), then a = 0.

Proof Suppose that Ψ(a, α) = Ψ(0, α). Set a+α = β. By condition (i) in the state-
ment of Theorem 9 we have that Ψ(a, α) = Ψ(0, a + α). Consequently, Ψ(a, α) =
Ψ(0, α) = Ψ(0, a+ α) and, by condition (iiii) in the aforesaid theorem we deduce
that a = 0.

Similar to the case of quasi-metric generating functions one can explore whether,
given a pmg-function Φ : R2

+ → R+ and a weighted quasi-metric space (X, q, wq),
the partial orders �pΨ,q,wq and �q are exactly the same on X, i.e., whether a pmg-
function preserves the order induced by the quasi-metric that it transforms. The
next result gives a positive answer to the posed inquiry.

Proposition 8 Let Φ : R2
+ → R+ be a pmg-function and let (X, q, wq) a weighted

quasi-metric space. Then �pΨ,q,wq=�q.

Proof Let x, y ∈ X. Suppose that x �q y. Then q(x, y) = 0 and, thus, we have
that

pΨ,q,wq (x, y) = Ψ(q(x, y), wq(x)) = Ψ(0, wq(x)) = Ψ(q(x, x), wq(x)) = pΨ,q,wq (x, x).

Whence we get that x �pΨ,q,wq y. Next assume that x �pΨ,q,wq y. Then pΨ,q,wq (x, y) =
pΨ,q,wq (x, x). Hence we have that Ψ(q(x, y), wq(x)) = Ψ(q(x, x), wq(x)) = Ψ(0, wq(x)).
Corollary 5 ensures that q(x, y) = 0 and, thus, that x �q y.

Similarly to the the qmg-functions, it seems natural to wonder if a pmg-function
Φ preserves the topology induced by the weighted quasi-metric q that it transforms
and, hence, T (q) = T (pΨ,q,wq ). However, the next example shows that this is not
the case.

Example 9 Define Ψ1 : R2
+ → R+ by Ψ1(0, 0) = 0 and Ψ1(a, α) = a+ α+ 1 other-

wise. A straightforward computation gives that Ψ1 is a pmg-function. Consider the
weighted quasi-metric (R+, qu, wqu). It is not hard to check that, for each x ∈ R+

and ε > 0, the open ball centered at x with radius ε is given by Bqu(x; ε) = [0, x+ε[.
However, BpΨ1,qu,wqu

(0; ε) = {0} for each ε ∈]0, 1[. Hence, BpΨ1,qu,wqu
(0; ε) 6∈ T (qu)

and, therefore, T (qu) 6= T (pΦ1,qu,wqu
).

In the light of the preceding example we focus our effort on characterizing
those pmg-functions which preserve the topology of the weighted quasi-metric
that it transforms. With this aim we introduce the notion below.
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Definition 5 Let Ψ : R2
+ → R+ be a pmg-function. We will say that Ψ is a

strongly partial metric generating function (spmg-function for short) if for each
weighted quasi-metric space (X, q, wq) we have that T (q) = T (pΨ,q,wq ).

It is easily seen that Examples 7 and 8 provide instances of spmg-functions.

Similar to qmp-functions, we have that the topology induced by the partial
metric pΨ,q,wq generated from a pmg-function Ψ is always finer than the topology
induced by the weighted quasi-metric q from which it is constructed. The next
result states such an affirmation.

Theorem 10 Let Ψ : R2
+ → R+ be a pmg-function and let (X, q, wq) be a weighted

quasi-metric space. Then, T (q) ⊆ T (pΨ,q,wq ).

Proof Consider x ∈ X and the real number ε > 0. Put δ = Ψ(ε, wq(x)) −
Ψ(0, wq(x)). Corollary 5 guarantees that δ > 0. Next we show that BpΨ,q,wq (x; δ) ⊂
Bq(x; ε). Let y ∈ BpΨ,q,wq (x; δ). Then, pΨ,q,wq (x, y) < pΨ,q,wq (x, x) + δ. Then

Ψ(q(x, y), wq(x)) < Ψ(0, wq(x)) + δ = Ψ(ε, wq(x)).

Now, by Lemma 2, we deduce that q(x, y) < ε. Therefore, y ∈ Bq(x; ε).

The next theorem characterizes spmg-functions.

Theorem 11 Let Ψ : R2
+ → R+ be a pmg-function. Then the following assertions

are equivalent:

(1) Ψ is a spmg-function.
(2) For each α ∈ R+, the function Ψα : R+ → R+ is continuous at 0, where

Ψα(a) = Ψ(a, α) for each a ∈ R+.

Proof (1) ⇒ (2). Suppose for the purpose of contradiction that there exists α0 ∈
R+ such Ψα0 is not continuous at 0. Next we show that Ψ is not a spmg-function.

Since Ψα0 is not continuous at 0, then there exist ε0 > 0 such that for each
δ > 0 we can find aδ ∈ [0, δ[ satisfying Ψα0(aδ) − Ψα0(0) ≥ ε0 (observe that
Ψα0(0) ≤ Ψα0(aδ) by Lemma 2).

Consider the weighted quasi-metric space (R+, qu, wqu). Take x = α0. Then
T (qu) 6= T (pΨ,qu,wqu ), since we have that BpΨ,qu,wq (x; ε0) ∈ T (pΨ,qu,wqu ) but
BpΨ,qu,wq (x; ε0) 6∈ T (qu). Indeed, for each δ > 0, put yδ = aδ + α0. Then yδ ∈
Bqu(x; δ), since qu(x, yδ) = max{yδ − x, 0} = aδ < δ. Nevertheless, we have that
yδ 6∈ BpΨα0 ,qu,wqu

(x; ε0) because

pΨ,qu,wqu (x, yδ) = Ψ(qu(x, yδ), wqu(x)) = Ψ(aδ, α0) = Ψα0(aδ) ≥

Ψα0(0) + ε0 = Ψ(0, wqu(α0)) + ε0 = pΨ,qu,wqu (x, x) + ε0.

Therefore, Ψ is not a spmg-function which is a contradiction.

(2) ⇒ (1). Let (X, q, wq) be a weighted quasi-metric space. Suppose that, for
each α ∈ R+, the function Ψα is continuous at 0. By Theorem 10 we deduce that
T (q) ⊆ T (pΨ,q,wq ). So we just need to show that T (pΨ,q,wq ) ⊆ T (q). Next we
prove that, given x ∈ X we have that, for each real number ε > 0 there exist a real
number δ > 0 such that Bq(x; δ) ⊆ BpΨ,q,wq (x; ε). Since Ψwq(x) is continuous at 0,
there exists δ > 0 such that, for each a ∈ [0, δ[ we have that Ψwq(x)(a)−Ψwq(x)(0) <
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ε. In such a case, Bq(x; δ) ⊆ BpΨ,q,wq (x; ε). Indeed, if y ∈ Bq(x; δ), then q(x, y) < δ
and, in addition, pΨ,q,wq (x, y) − pΨ,q,wq (x, x) = Ψwq(x)(q(x, y)) − Ψwq(x)(0) < ε.
Therefore y ∈ BpΨ,q,wq (x; ε).

Note that the pgm-function Ψ1 introduced in Example 9 fulfils that the function
Ψ0 is not continuous at 0, which agrees with the fact that Ψ1 is not a spgm-function.

We conclude this section discussing the relationship between pmg-functions,
(quasi-)metric aggregation functions, partial metric aggregation functions and
metric generating functions.

Example 8 shows that there are pmg-functions that are neither (quasi-)metric
aggregation functions nor metric generating functions because the function Ψ+1

introduced in Example 8 fulfils that Ψ+1 /∈ O. Let us recall that Theorems 1, 2 and
4 state that (quasi-)metric aggregation functions and metric generating functions
belong to O.

Nevertheless, the next result shows that every pmg-function is always a partial
metric aggregation function.

Proposition 9 Let Ψ : R2
+ → R+ be a pmg-function. Then Ψ is a partial metric

aggregation function.

Proof We prove that Ψ satisfies (1) and (2) in Theorem 3. To this end, assume
that (x1, x2), (y1, y2), (z1, z2), (w1, w2) ∈ R2

+, with (x1, x2) + (y1, y2) � (z1, z2) +
(w1, w2), (y1, y2) � (z1, z2) and (y1, y2) � (w1, w2). Next we show that

Ψ(x1, x2) + Ψ(y1, y2) ≤ Ψ(z1, z2) + Ψ(w1, w2).

Set c = x1 + x2, a = z1 + z2, b = w1 + w2 − y1 − y2, α = 0 and β = y1 + y2.
Then, c, a, b, α, β ∈ R+, c ≤ a + b and a + α ≥ β. So, by (ii) in Theorem 9, we
have that

Ψ(x1 + x2, 0) + Ψ(0, y1 + y2) ≤ Ψ(z1 + z2, 0) + Ψ(w1 + w2 − y1 − y2, y1 + y2).

Besides, by (i) in Theorem 9, we have that Ψ(x1+x2, 0) = Ψ(x1, x2), Ψ(0, y1+y2) =
Ψ(y1, y2), Ψ(z1 + z2, 0) = Ψ(z1, z2) and Ψ(w1, w2) = Ψ(w1 +w2− y1− y2, y1 + y2).
Therefore we obtain that Ψ(x1, x2) + Ψ(y1, y2) ≤ Ψ(z1, z2) + Ψ(w1, w2) and, thus,
that (1) in Theorem 3 is satisfied.

Next we show that Ψ satisfies (2) in Theorem 3. Let (x1, x2), (y1, y2), (z1, z2) ∈
R2

+, with (x1, x2) � (z1, z2) and (y1, y2) � (z1, z2), such that Ψ(x1, x2) = Ψ(y1, y2) =
Ψ(z1, z2). We claim that (x1, x2) = (y1, y2) = (z1, z2).

Consider a = z1 +z2−x1−x2, α = x1 +x2 and β = y1 +y2. Then a, α, β ∈ R+

and a + α ≥ β. By (i) in Theorem 9, we have that Ψ(0, α) = Ψ(0, x1 + x2) =
Ψ(x1, x2), Ψ(a, α) = Ψ(z1 + z2 − x1 − x2, x1 + x2) = Ψ(z1, z2) and Ψ(0, β) =
Ψ(0, y1 + y2) = Ψ(y1, y2). Then Ψ(0, α) = Ψ(a, α) = Ψ(0, β). Hence, by (iii)
in Theorem 9, we obtain that z1 + z2 = x1 + x2 = y1 + y2. Moreover one can
show easily that z1 = x1 = y1 and z2 = x2 = y2, since z1 ≥ max{x1, y1} and
z2 ≥ max{x2, y2}. Therefore, (x1, x2) = (y1, y2) = (z1, z2) as we claimed.

Conversely we analyze if (quasi-)metric aggregation functions, partial metric
aggregation functions and metric generating functions are pmg-functions.

The next example shows that there are metric and quasi-metric aggregation
functions that are not qmg-functions.
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Example 10 Consider the function Ψ0,1 : R2
+ → R+ defined by

Ψ0,1(a, b) =

{
0 if a = b = 0
1 otherwise.

Clearly Ψ0,1 is monotone, subadditive and Ψ0,1 ∈ O. By Theorems 1 and 2 we have
that it is a metric and quasi-metric aggregation function. However, Ψ0,1 is not a
pmg-function. Indeed, Ψ0,1(0, 1) = Ψ0,1(2, 1) = Ψ0,1(0, 12 ) = 1 and, in addition,
1
2 ≤ 1 + 2 but 2 6= 0. So, Ψ0,1 does not satisfy condition (iii) in the statement of
Theorem 9.

Next we show that there are partial metric aggregation functions that are not
pmg-functions.

Example 11 Consider the function Ψ 1
2

: R2
+ → R+ defined by Ψ 1

2
(a, b) = a + b

2

for all (a, b) ∈ R2
+. It is clear that the function Ψ 1

2
fulfils the conditions in the

statement of Theorem 3 and, thus, it is a partial metric aggregation function.
However, Ψ 1

2
does not satisfies condition (iii) in the statement of Theorem 9 and,

hence, it is not a pmg-function. Notice that 0 ≤ 1+1 and that Ψ 1
2
(1, 1) 6= Ψ 1

2
(2, 0).

The next example gives an instance of metric generating function which is not
a pmg-function.

Example 12 Consider the function Ψmax : R2
+ → R+ given by Ψmax(a, b) =

max{a, b} for all a, b ∈ R+. It is not har to check that Ψmax satisfies Theorem
4 and, hence, that it is a metric generating function. Moreover, 0 ≤ 1 + 1 and
Ψmax(1, 1) 6= Ψmax(2, 0). This Ψmax does not satisfy condition (iii) in Theorem 9
and, therefore, it is not a pmg-function.

Similar to the (quasi-)metric preserving approach, a method for generating
partial metric preserving functions from pmg-functions can be obtained such as
the next result shows.

Theorem 12 Let Ψ : R+ → R+ be a pmg-function. Then for each α ∈ R+, the
function Ψα : R+ → R+ is a partial metric preserving function, where Ψα(a) =
Ψ(a, α) for each a ∈ R+.

Proof Fix α ∈ R+. First we show that Ψα satisfies condition (1) in statement of
Theorem 3. Let x, y, z, w ∈ R+ such that x + y ≤ z + w and y ≤ min{z, w}. Set
a = z, b = w−y, c = x and β = y+α. It follows that that c ≤ a+ b and β ≤ a+α
and, by condition (i) in Theorem 9, that Ψ(0, β) = Ψ(y, α) and Ψ(b, β) = Ψ(w,α).
By condition (ii) in Theorem 9 we deduce that

Ψα(x) + Ψα(y) = Ψ(c, α) + Ψ(0, β) ≤ Ψ(a, α) + Ψ(b, β) = Ψα(z) + Ψα(w).

Next we prove that Ψα satisfies condition (ii) in statement of Theorem 3. Let
x, y, z ∈ R+, with x ≥ max{y, z}, and suppose that Ψα(x) = Ψα(y) = Ψα(z). Set
a = x−y, α′ = y+α and β = z+α. In such a case, we have that Ψ(a, α′) = Ψ(x, α),
Ψ(0, α′) = Ψ(y, α) and Ψ(0, β) = Ψ(z, α) because of Ψ satisfies condition (i) in
Theorem 9. Then we obtain that Ψ(a, α′) = Ψ(0, α′) = Ψ(0, β) and a + α′ ≥ β.
So, a = 0 and α′ = β due to Ψ satisfies condition (iii) in Theorem 9. Hence,
x = y = z. This ends the proof.
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As an immediate consequence of Theorem 12 and Propositoin 3 we obtain
a method for generating (quasi-)metric metric preserving functions from pmg-
functions.

Corollary 6 Let Ψ : R2
+ → R+ be a pmg-function such that ψ(0, 0) = 0. Then for

each α ∈ R+, the function Ψα : R+ → R+ is a quasi-metric preserving function
and, thus, a metric preserving function, where Ψα(a) = Ψ(a, α) for each a ∈ R+.

Notice that Examples 8 gives an instance of pmg-functions that allows us to
induce, following Proposition 12, a partial metric aggregation function. In addition,
Examples 7 and 9 yield instances of pmg-functions which are able to generate,
according to Corollary 6, partial metric aggregation functions that are at the
same time (quasi-)metric preserving functions.

4 Further work

According to the method introduced by Matthews in [14] (see Section 1), given a
partial metric space (X, p), the function qp is a quasi-metric on X where qp(x, y) =
p(x, y)−p(x, x) for each x, y ∈ X. Clearly, the induced quasi-metric qp is weighted
with weight function wqp given by wqp(x) = p(x, x). Of course, the preceding
method has been generalized in Section 2 by means of qmg-functions and, in addi-
tion, a characterization of such functions has been given in the same section. How-
ever, such a general method does not produce in general weighted quasi-metrics.
Indeed if we consider the mapping Ψ2 introduced in Proposition 6 and the partial
metric space (R+, pmax), then it is not hard to verify that the induced quasi-metric
space (R+, qΦ2,pmax

) is not weighted. Therefore, it remains, as an open question,
to characterize those qmg-functions that generate always weighted quasi-metrics.
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