Journal article Open Access

On Matthews' Relationship Between Quasi-Metrics and Partial Metrics: An Aggregation Perspective

Juan José Miñana; Óscar Valero


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">quasi-metrics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">partial metrics</subfield>
  </datafield>
  <controlfield tag="005">20210617014819.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This is a preprint of the publication available from https://link.springer.com/article/10.1007/s00025-020-1173-x. This work is also supported by project PGC2018-095709-B-C21 (MCIU/AEI/FEDER, UE), and PROCOE/4/2017 (Govern Balear, 50% P.O. FEDER 2014-2020 Illes Balears).</subfield>
  </datafield>
  <controlfield tag="001">4967489</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of the Balearic Islands</subfield>
    <subfield code="a">Óscar Valero</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">317901</subfield>
    <subfield code="z">md5:e4f352942642db2921a70f606e09540b</subfield>
    <subfield code="u">https://zenodo.org/record/4967489/files/jjm_results in mathematics_2020.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-03-09</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4967489</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">47</subfield>
    <subfield code="v">75</subfield>
    <subfield code="p">Results in Mathematics</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of the Balearic Islands</subfield>
    <subfield code="a">Juan José Miñana</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">On Matthews' Relationship Between Quasi-Metrics and Partial Metrics: An Aggregation Perspective</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">779776</subfield>
    <subfield code="a">Robotics Technology for Inspection of Ships</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">871260</subfield>
    <subfield code="a">Autonomous Robotic Inspection and Maintenance on Ship Hulls and Storage Tanks</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Bors&amp;iacute;k and Dobo&amp;scaron; studied the problem of how to merge a family of metric spaces into a single one through a function. They called such functions metric preserving and provided a characterization of them in terms of the so-called triangle triplets. Since then, different papers have extended their study to the case of generalized metric spaces. Concretely, Mayor and Valero (Inf Sci 180:803&amp;ndash;812, 2010) provided two characterizations of those functions, called quasi-metric aggregation functions, that allows us to merge a collection of quasi-metric spaces into a new one. In Massanet and Valero (in: Sainz-Palmero et al (eds) Proceedings of the 16th Spanish conference on fuzzy technology and fuzzy logic, European Society for Fuzzy Logic and Techonology, Valladolid, 2012) gave a characterization of the functions, called partial metric aggregation function, that are useful for merging a collection of partial metric spaces into single one as final output. Inspired by the preceding work, Mart&amp;iacute;n et al. (in: Bustince et al (eds) Aggregation functions in theory and in practice. Advances in intelligent systems and computing, vol 228, Springer, Berlin, 2013) addressed the problem of constructing metrics from quasi-metrics, in a general way, using a class of functions that they called metric generating functions. In particular, they solved the posed problem providing a characterization of such functions and, thus, all ways under which a metric can be induced from a quasi-metric from an aggregation viewpoint. Following this idea, we propose the same problem in the framework of partial metric spaces. So, we characterize those functions that are able to generate a quasi-metric from a partial metric, and conversely, in such a way that Matthews&amp;rsquo; relationship between both type of generalized metrics is retrieved as a particular case. Moreover, we study if both, the partial order and the topology induced by a partial metric or a quasi-metric, respectively, are preserved by the new method in the spirit of Matthews. Furthermore, we discuss the relationship between the new functions and those families introduced in the literature, i.e., metric preserving functions, quasi-metric aggregation functions, partial metric aggregation functions and metric generating functions.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4967488</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4967489</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
28
29
views
downloads
All versions This version
Views 2828
Downloads 2929
Data volume 9.2 MB9.2 MB
Unique views 2424
Unique downloads 2626

Share

Cite as