
Code Augmentation for Detecting Covert Channels
Targeting the IPv6 Flow Label

Luca Caviglione1, Marco Zuppelli1, Wojciech Mazurczyk2,3, Andreas Schaffhauser2, Matteo Repetto1
1Institute for Applied Mathematics and Information Technologies, Italy
{luca.caviglione, matteo.repetto, marco.zuppelli}@ge.imati.cnr.it

2FernUniversität in Hagen, Germany
{wojciech.mazurczyk, andreas.schaffhauser}@fernuni-hagen.de

3Warsaw University of Technology, Poland

Abstract—Information hiding is at the basis of a new-wave
of malware able to elude common detection mechanisms or
remain unnoticed for long periods. To this aim, a key approach
exploits network covert channels, i.e., abusive communication
paths nested within a legitimate traffic flow. The increasing
diffusion of IPv6 makes it attractive for an attacker, especially for
the presence of the Flow Label field, which can be manipulated
to contain up to 20 secret bits per packet. Unfortunately,
gathering data to implement a standalone detection mechanism
or to support third-party security tools is a poorly generalizable
process and often leads to scalability issues. This paper showcases
how to take advantage of code augmentation features (i.e.,
the extended Berkeley Packet Filter) to detect covert channels
targeting the IPv6 Flow Label. To prove its effectiveness, the
proposed approach has been tested against Internet-wide traffic
traces collected in the wild. Results indicate that it is possible to
spot the channel while mitigating the computational burden and
the memory footprint.

Index Terms—code augmentation, stegomalware, network
covert channels, IPv6, detection.

I. INTRODUCTION

The increasing complexity of new malware as well as the
proliferation of advanced attack schemes are severely chal-
lenging classical security appliances and mitigation method-
ologies, such as intrusion detection systems (IDS), firewalls
and anomaly detection tools [1]. Among the various emerging
threats, stegomalware, i.e., malicious software endowed with
some form of steganography or information hiding techniques,
is becoming a prime concern [2]. Stegomalware can exploit a
vast array of techniques to improve its stealthiness or to bypass
local security policies enforced via sandboxes. To this aim, a
typical approach relies on the creation of a covert channel, i.e.,
a hidden communication path nested within a suitable carrier.
Typical examples are processes or virtual machines colluding
by exchanging information through the manipulation of shared
hardware resources or software artifacts (see, e.g., [3] and
[4]). From the perspective of an attacker, network traffic is
very attractive: it can be used to remotely “transport” hidden
information while offering a boundless and ubiquitous carrier
[5]. There are several applications of network covert channels

The final publication will be available at IEEE Xplore.

to support attacks: they can be used to exfiltrate stolen infor-
mation, orchestrate nodes of a botnet or implement multi-stage
loading architectures to extend malware functionalities at run-
time [1]. Network covert channels can be created by directly
hiding information in header fields, altering the structure of the
packet, modulating the temporal evolution of the flow (e.g., the
throughput or the jitter) or by exploiting complex interplays
among multiple layers of the stack [6].

To have advantages over the defendant, attackers are con-
stantly searching for new carriers. The momentum gained by
IPv6 is expected to lead to malware capable of establishing
new hidden communication paths. Its feature-rich nature offers
several opportunities for hiding data [7]. However, measure-
ments in real-world scenarios limit the choice only to a few
fields, as traffic characteristics and transitional mechanisms
may impair the channel or reduce its stealthiness [8]. Among
the others, methods targeting the Flow Label proven to
be suitable for creating capacious and robust covert channels.
Intended to help the network in routing operations, the Flow
Label is seldom used in real-world deployments thus it can
be manipulated for storing secret data [7], [8].

As a consequence, detection and mitigation of network
covert channels are prime tasks to fully address the security of
modern network scenarios. Unfortunately, literature mainly fo-
cused on threats exploiting IPv4, hence leaving the IPv6 coun-
terpart largely unexplored [6], [9]–[11]. Besides, the inspection
process is often tightly coupled with the used information
hiding method: this makes the detection poorly generalizable
and could lead to non-negligible computational burdens (e.g.,
to check protocol fields via deep packet inspection [12]).

A promising approach for counteracting stegomalware
leverages code augmentation features offered by the Linux
kernel [13]. Specifically, the extended Berkeley Packet Filter
(eBPF) appears to be suitable for gathering at run-time infor-
mation on different protocol behaviors to enable the detection
of covert communications [14]. Therefore, in this paper we
present a method that uses the eBPF to monitor the usage of
the IPv6 Flow Label in a computational-efficient manner.
Such data can be combined with information provided by
other monitoring or security tools deployed in the network
(e.g., firewalls and IDS), which are insensitive to covert978-1-6654-0522-5/21/$31.00 ©2021 IEEE



Malware C&C ServerFirewall

Secret
Sender

Network Traffic

Secret
ReceiverNetwork Covert Channel

IPv6 Flow

Warden

eBPF Filter

Flow Label
IPv6 Datagram

Fi
re

w
al

l /
 ID

S

Network Analytics

Fig. 1. Attack model and reference scenario considered in this work. Black
squares denote a Flow Label altered to contain secret information.

channels targeting IPv6 [8]. According to [16], the algorithm
implemented in many operating systems for generating the
Flow Label could be flawed, thus the inspection of its
behavior can further improve the overall security.

The contribution of this work is twofold. First, it proposes
a lightweight method for spotting the presence of a covert
communication hidden in the Flow Label field, also taking
into account measurements provided by other security and
monitoring tools. This is of prime importance, since modern
intrusion detection systems are affected by major drawbacks
when handling IPv6 traffic [15]. Second, it contains a thorough
set of tests performed with real traffic traces.

The rest of the paper is structured as follows. Section II
introduces the attack model and the reference scenario, while
Section III discusses the data gathering strategy implemented
via code augmentation and the related detection methodology.
Section IV showcases numerical results. Finally, Section V
concludes the paper.

II. ATTACK MODEL AND REFERENCE SCENARIO

The attack model considers two secret endpoints that want
to remotely communicate. To this aim, they create a covert
channel by eavesdropping an existing overt IPv6 flow from
the bulk of network traffic, and then inject secret information
within the Flow Label. To improve both confidentiality
and security of the hidden communication, secrets can be
encrypted. This threat model is usually exploited by an attacker
wanting to exchange data from the host/device of the victim
towards a remote Command & Control (C&C) server while
avoiding detection or blockages. As a possible example, the
attacker can inoculate a malware via a phishing campaign and
then exfiltrate sensitive data or retrieve an additional payload
[1], [2]. Figure 1 depicts the general attack model.

Concerning the reference scenario, we assume that a war-
den, i.e., a node able to inspect the traffic containing the covert
channel, is present somewhere in the network. For the sake of
simplicity, Figure 1 portraits a warden deployed at the end
of the covert channel. Typically, the placement of the warden
can be arbitrary, except when the attacker uses some form of
reversibility for restoring datagrams to their original form [17].
Since reversible channels have not been observed in the wild,

X

B

…

S

X

IPv6 Traffic

Flow Label 

X

Fig. 2. Mapping of the IPv6 Flow Label field in the bin space. Black
squares denote a Flow Label altered to contain secret information.

this work will not consider such a class of threats. To spot
the channel, we consider a warden that inspects all packets of
the incoming network stream through an eBPF program and
creates statistics about the usage of Flow Label values. The
warden also teams up with a network analysis or security tool
(e.g., an IDS), which provides standard measures.

III. PACKET INSPECTION AND DETECTION
METHODOLOGY

In this section, we present how information on the Flow
Label is collected and organized. Then, we showcase the
proposed detection methodology.

A. Packet Inspection and Organization

For the case of detecting covert channels targeting the Flow
Label, we developed a specific tool that creates statistics
about the usage of such values1. As hinted earlier, packet
inspection is implemented through eBPF. In essence, this
framework allows to extend the kernel to count the occurrence
of Flow Label values. To provide scalability properties and
prevent performance degradation in presence of large volumes
of traffic, the 20-bit space of possible values is mapped into a
bin-based data structure composed of B equally-capable bins,
as depicted in Fig. 2. The mapping is based on the first log2B
bits of the Flow Label, which are used to index the array
of bins. With S we denote the size in bits of each bin: in our
case, S = 220/B bits.

The bin data structure is located in a shared memory area.
Data is then periodically collected by a user-space utility (see
[13] for more details). We denote with ∆t the time in seconds
between two consecutive readings of such a map. The same
utility computes the number N of non-empty bins, i.e., “dirty”
bins that have been flagged by the inspection code.

As it will be discussed in Section IV, N provides an
estimate of the current number of flows. This is only an
approximation, because different Flow Label values share
the same bin, thus causing collisions. Greater values of B
reduce such a probability and improve the precision, but at the
price of a higher memory burden. In addition, the estimation

1bpfstego tool available online: https://github.com/mattereppe/bpfstego



is subject to “saturate” to B, while the bins are gradually
flagged. To avoid such an effect, bins are periodically emptied
and the value of N is accordingly restored to 0. As it will be
detailed in the following, a suitable tradeoff between accuracy
and performances should be searched for. Figure 2 depicts the
resulting data structure.

As an example, let us consider the case of B = 212 bins
with a size S = 28 values. If a packet with a Flow Label
value equal to 337 (i.e., 0x00151) is observed, the second
bin is flagged since it is the one containing values in the 256−
511 range (indexed by the 0x001 prefix). Accordingly, N is
incremented by 1.

B. Detection Methodology

Our detection methodology is based on the coarse grained
estimation N of the number of flows, computed from the
statistics gathered in the bin-based data structure. To avoid
burdening the notation, we will drop any dependence on time
t, except when doubts arise.

Since each IPv6 conversation is identified via a fixed, unique
Flow Label value generated according to a uniform distri-
bution [18], N can provide a coarse estimate of the number of
flows. Recalling that measurements are retrieved from eBPF
every ∆t and bins are periodically emptied to avoid saturation,
we considered two different windowing mechanisms, based
on a fixed temporal duration or a fixed number of samples,
denoted with T and W , respectively. As a consequence of
this “grouping” scheme, the meaningful values of N are those
available at the end of each window, i.e., just before values
are reset. The presence of an anomalous behavior in the
usage of the Flow Label can be then detected by observing
deviations of N from an expected value, for instance by
feeding a model based on past observations, or by comparison
with network analytics reports provided by a complementary
tool (see Figure 1 as a paradigmatic example). Without loss
of generality, we assume to have periodical measurements on
the number of active IPv6 flows in the network, denoted as F ,
which is a metric commonly available from several security
appliances.

Figure 3 depicts an example when measurements on non-
empty bins are grouped in a window of T seconds. As shown,
the basic idea is that if the number of flagged bins (e.g., those
for which the corresponding Flow Label values have been
observed in the considered window) is greater than the number
of observed active IPv6 flows, a covert communication could
be present and an alarm is raised. To adjust the responsiveness
of the approach (e.g., to limit false positives), with ξ we denote
a guard threshold that has to be exceeded.

Unfortunately, a direct comparison between N and F (in-
cluding the guard ξ) is seldom possible in real deployments. In
fact, huge traffic volumes could account for several concurrent
flows (i.e., high values of F ), thus requiring a fine-grained
bin partitioning. Indeed, large bins (i.e., small B) may cause
masking phenomena, as a single bin can represent up to S
different flows/values. Therefore, we introduce a scale factor
for adjusting the impact of the imperfect partitioning caused

time [s]

N.
 A

ct
ive

 F
lo

w
s

TΔt

F

N

ξ
F+ ξ

Alarm

Fig. 3. Detection strategy based on the bin-based Flow Label partitioning.

by B < 20, collisions of real or artificial Flow Label values
populating the same bin, and non-optimal matching between
the traffic volume and the parameters ruling the detection, i.e.,
W , T , and ∆t. The channel is considered present when the
following equation holds:

αN>F + ξ (1)

where, α is the scale factor to balance the flow/bin propor-
tion. We point out that, for the sake of brevity, in the following,
we will not consider the impact of ξ, which is left as a future
development.

IV. EXPERIMENTAL RESULTS

To quantify the effectiveness of the proposed approach
for detecting covert channels, we carried out a thorough
performance evaluation campaign. In the following, we first
review the experimental testbed, then we discuss numerical
results.

A. Testbed Preparation
To conduct trials, we considered two secret endpoints

exchanging data through a covert channel targeting the
Flow Label field of IPv6. The communicating peers have
been implemented via two virtual machines running Debian
GNU/Linux 10 (kernel 4.20.9), with 1 virtual core and 4 GB
of RAM. A third virtual machine with the same characteristics
has been deployed to route the traffic, run eBPF scripts
and the user-space daemon written in Python. To run the
virtual machines, a host with a 3.60 GHz Intel i9-9900KF
CPU, 32 GB of RAM and Ubuntu 20.4 (Linux kernel 5.8.0)
has been used. Measurements (i.e., the values of N ) are
sampled every ∆t = 100 ms. We point out that, in realistic
network conditions, sampling intervals could be less tight:
this value has been selected to have a worst-case in terms
of computational burden. To implement the covert channel,
we created an ad-hoc Python module using Scapy 2.4.3 for
manipulating packets and NetfilterQueue 0.8.1 for intercepting
the network traffic.

To test our idea in realistic network conditions, we repli-
cated legitimate background conversations from traffic col-
lected on a OC192 link between Sao Paulo and New York



0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

time [s]

0

1

2

3

4

5

x103

no
. a

ct
iv

e 
flo

ws
N, B=210

N, B=212

N, B=214

N, B=216

N, B=218

F

(a) T = 10

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

time [s]

0

1

2

3

4

5

x103

no
. a

ct
iv

e 
flo

ws

N, B=210

N, B=212

N, B=214

N, B=216

N, B=218

F

(b) T = 15

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

time [s]

0

1

2

3

4

5

x103

no
. a

ct
iv

e 
flo

ws

N, B=210

N, B=212

N, B=214

N, B=216

N, B=218

F

(c) T = 30

Fig. 4. Number of changing bins of the observed traffic for different values of T . The red area denotes when a covert communication is present.

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

time [s]

0

5

10

15

20

x103

no
. a

ct
iv

e 
flo

ws

N, B=210

N, B=212

N, B=214

N, B=216

N, B=218

F

(a) W = 10

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

time [s]

0

5

10

15

20

25

30

x103

no
. a

ct
iv

e 
flo

ws

N, B=210

N, B=212

N, B=214

N, B=216

N, B=218

F

(b) W = 15

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

time [s]

0

5

10

15

20

25

30

35

40

x103

no
. a

ct
iv

e 
flo

ws

N, B=210

N, B=212

N, B=214

N, B=216

N, B=218

F

(c) W = 30

Fig. 5. Number of changing bins of the observed traffic for different values of W . The red area denotes when a covert communication is present.

on January 17, 2019 from 14:00 to 15:00 CET and made
available by the Center for Applied Internet Data Analysis2.
Without loss of generality and to prevent burdening our trials,
we removed packets with a Flow Label value equal to 0,
ICMPv6 traffic and single-datagram UDP conversations. The
resulting dataset was solely composed of IPv6 traffic with
∼3, 000 active connections, on average. Traces have been
then processed via tcprewrite to rebuild the payload and
properly assign MAC values. The resulting traffic has been
transmitted with tcpreplay. The overt IPv6 flow used by
the secret endpoints to implement the covert channel has
been produced via an scp transfer with a length adequate
for containing secret messages of 65, 130, and 327 kbit. To
prevent having a favorable setting, the content of messages
have been randomly generated. This models an attacker who
adopts an additional encryption layer or scrambling scheme to
mimic the random nature of legitimate Flow Label values,
in order to avoid statistical signatures that can make the
detection easier [8]–[11].

To have a fair comparison, the background traffic has been
limited to 2 Mbit/s, whereas the overt traffic to 500 kbit/s.
Such values allowed to model a stegomalware acting into a
medium-sized deployment trying to exfiltrate some sensitive
data, retrieve a payload containing many sophisticated attack
routines, or exchange commands multiplexed in a unique

2The CAIDA Anonymized Internet Traces Dataset (April 2008 -
January 2019) - Used traces: Jan. 17th 2019. Available online:
https://www.caida.org/data/monitors/passive-equinix-nyc.xml [Last Accessed:
Feb. 2021].

hidden stream with a C&C server to orchestrate a botnet.
As discussed, our method can be jointly used with other

network monitoring tools. In our trials, we used nProbePro3

to inspect the traffic in real-time and compute the number of
active IPv6 flows F . According to additional tests, the number
of active flows reported by nProbePro is insensitive to the
presence of IPv6 covert channels. This further supports the
need of teaming up with a specific solution when IPv6 Flow
Label channels have to be detected. In our testbed, a new
measure of F is provided by nProbePro every 30 s, thus
we assume such a value as the best granularity for network
analytics information.

B. Sensitivity Analysis

The first round of tests aimed at understanding the behavior
of the proposed framework when changing different parame-
ters ruling the detection, namely the number of bins B and
the window size T and W . To this aim, we considered a
mapping space composed of B = 210, 212, 214, 216, and 218

bins. For what concerns how to group measurements and
reset the number of active flows, we considered windows of
different durations, i.e., T = 10, 15, and 30 s, and of different
sizes, i.e., W = 10, 15, and 30 samples. This round of tests
lasted 8 minutes and considered a covert transmission of 65
kbit. Figure 4 and Figure 5 showcase the obtained results. In
all trials, the scale factor α has been set equal to 1.

3nProbePro v. 9.5.210129, https://www.ntop.org/products/netflow/nprobe/
[Last Accessed: Feb. 2021].



First, we elaborate on the impact of the number of bins B
over the accuracy of the estimation. In general, higher values
of B lead to a number of non-empty bins that efficiently
reflect the evolution of active IPv6 flows. In other words, the
trend of N is close to the one of F as B increases. However,
when the number of bins is smaller than the average number
of flows composing the traffic, the bulk of Flow Label
quickly saturates the few bins available: this effect is largely
predominant in case of longer windows, e.g., see the case
B = 210 for T = 30 s in Figure 4(c).

As a possible workaround, one might reduce the length
of the window (see Figures 4(a) and 4(b)) but at the price
of discarding measurements too often. Consequently, N is
not able to “follow” with a sufficient precision the trend of
measured active IPv6 flows F provided by nProbePro. As
it will be discussed, this mismatch can be partially mitigated
via the α scale parameter.

Figure 5 investigates the same issues when a fixed number
of samples is collected (i.e., W increases). In general, similar
considerations can be drawn as in the previous case. For
instance, the longer the window used to spot the presence of
the channel, the better the ability to estimate network condi-
tions. However, the “saturation” effect of using an insufficient
number of bins is less visible in this case, because of the
scale. Instead, it is possible to observe that the “sawtooth”
behavior becomes less evident and in some scenarios (e.g.,
B = 218 and W = 30 depicted in Figure 5(c)) the evolution
of N exhibits an apparent unbounded growth. This can be
ascribed to performance issues. Specifically, even if the desired
sampling time is set to ∆t = 100 ms, it turned out that
the user-space daemon was not able to dump measurements
collected by the eBPF with such a frequency, mainly due to the
delay introduced by the huge number of memory operations
(especially for B = 216 and B = 218). As a consequence,
samples for N are produced with a slow dynamic and the time
to collect W values increases, and the corresponding “resetting
interval” is postponed. Therefore, the number of flows actually
captured in the bin-based structure is greater than the one
of the corresponding time-limited window. Figure 5 clearly
shows, for the case of B = 218, a trend of N that overestimates
the number of flows. This is due to the time needed to read the
bin structure, which in turn extends the windows with the side
effect of considering more flows. Instead, the desired sampling
time has been guaranteed only with the lower number of bins:
this leads to the more regular and smooth evolution of N .

C. Covert Channel Detection

The second round of tests aimed at quantifying the effective-
ness of the bin-mapping scheme to spot the presence of IPv6
covert channels. In this case, we consider two different hidden
communication attempts: a single exfiltration of 130 kbit of
information (e.g., a document), and two communications of 65
kbit and 327 kbit, respectively (e.g., exchange of parameters
for configuring a backdoor and the download of a remote mali-
cious payload). Attacks will be performed in a timeframe of 15
minutes. For the sake of compactness, as discussed in Section

time [s]

al
er

t/n
o 

al
er

t
0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

72
0

78
0

84
0

90
0

time [s]

0
2
4
6
8

x103

no
. a

ct
iv

e 
flo

ws N, B=214

N, B=215

N, B=216

F

Fig. 6. Detection of a covert channel transmitting 130 kbit of secret data.
The red area denotes when a covert communication is present.

IV-B, we limit our investigation to B = 214, 215, and 216 and
T = 30 seconds as to have a one-to-one temporal matching
with the value F provided by nProbePro.

Concerning the single-channel case, Figure 6 depicts the
outcomes of the detection when the rule defined in Eq. (1)
is used, with α = 1. As shown, higher values of B tends
to generate many false positives, as the number of bins
overestimates the amount of active IPv6 conversations. Yet,
when the covert communication is present, the higher number
of Flow Label values generated by the injection of the
secret data is correctly reflected into greater values of N .
Similar behaviors can be observed when in the presence of two
different covert channels as shown in Figure 7. Specifically,
B = 216 leads to a larger number of false positives, which
can be mitigated by a suitable choice of ξ. However, defining
such a parameter a priori is a difficult task as it depends on
the scenario (e.g., the characteristics of the background traffic)
and the design choices of the overall detector, such as ∆t,
T and B. This investigation is part of our ongoing research.
Instead, B = 215 naturally offers the best matching between
the volume of conversations composing the IPv6 traffic and the
number of bins, thus leading to best performances in terms of
steadiness of the detection.

Figure 8 showcases the impact of the parameter α on the
performance in terms of detection of the covert channel. In this
case, by using T = 15 s, it is possible to capture the evolution
of the traffic with a more fine-grained dynamic compared to
the case of T = 30 s. However, smaller timeframes account for
a more frequent “reset” of the bin-based scheme and N tends
to underestimate the amount of active IPv6 conversations.
Thus, it is not possible to directly compare N with the
measurement F provided by nProbePro. To this aim, α
can correct this mismatch by magnifying the obtained values.
Unfortunately, this also amplifies possible measurement errors
and leads to further false positives. As shown, with α = 1.4,
an adequate tradeoff in terms of detection (i.e., the channel is
correctly spotted for almost its entirety) and false positive is



time [s]

al
er

t/n
o 

al
er

t
0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

72
0

78
0

84
0

90
0

time [s]

0
2
4
6
8

x103

no
. a

ct
iv

e 
flo

ws N, B=214

N, B=215

N, B=216

F

Fig. 7. Detection of two covert channels transmitting 65 and 327 kbit of
secret data, respectively. The red areas denote when a covert communication
is present.

time [s]

al
er

t/n
o 

al
er

t
0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

72
0

78
0

84
0

90
0

time [s]

0

2

4

6

x103

no
. a

ct
iv

e 
flo

ws

N, =1.0
N, =1.4
N, =1.7
F

Fig. 8. Detection of a covert channel transmitting 130 kbit of secret data. Size
of window T = 15 s. The red area denotes when a covert communication is
present.

found.

D. Resource Utilization and Scalability

We also investigated the performances of the proposed code
augmentation approach, by evaluating both the impact of the
eBPF filter and the user-space program. In particular, we
measured the CPU usage and the memory consumption with
different values of B. It turned out that, with lower values of
B, the amount of resources required by the user-space program
is minimal, i.e., with B = 210, the used CPU is approximately
7.3%, whereas with B = 218, it rises up to 20%.

For higher values of B, the user-space program is not able
to sustain the chosen sampling interval, i.e., ∆t = 100 ms.
For low values of B (i.e., B = 210), the actual sampling time
was equal to 154 ms, on average. Instead, with B = 218, the
user-space program was unable to provide measurements in
a timely manner, thus inflating the ∆t to ∼26 seconds, on

average. This can be also observed in Figure 4 and Figure 5:
the lack of a precise timing accounts for temporal evolutions of
N with less/more samples. Further tests revealed that a prime
impact on the scalability of the approach is rooted in the static
eBPF map used to store data, which leads to a non-negligible
amount of information to be transfered on the file system.
Removing such a limit is part of our future developments.

E. Discussion and Limits

As shown, code augmentation is suitable for developing
simple filters able to inspect network traffic and detect covert
channels. In general, adding a filter requires to write small
portions of code and multiple filters can be deployed to
concurrently gather data from different portions of the traffic,
which is vital when the target of the covert communication is
unknown. This paradigm can also help to “enrich” information
provided by an IDS, firewalls and network monitoring tools
insensitive to information-hiding-capable attacks or not ready
to fully handle IPv6 security. Unfortunately, there is not a one-
fits-all solution and each filter-detection pair requires tuning.
For instance, the Flow Label case requires to tune the
bin-based structure for having a suitable matching between
the observed traffic and the detection strategy. Therefore, the
proposed mechanism should be properly engineered according
to the scenario that has to be protected. As an example, the
average traffic volume and number of hosts should be known
to select the granularity of bins (i.e., B and S) and avoid
under-/overestimations. Similar considerations are valid for the
parameters α and ξ.

Even if performances of the eBPF were satisfactory in terms
of memory occupation and CPU utilization when handling
Internet-wide traffic, we encountered some issues. First, we
were unable to run filters with a number of bins B > 218.
This limitation could be ascribed to security reasons enforcing
constraints in the amount of memory that can be used in the
kernel. A possible workaround would be to use a different
data structure for the bins. Currently, we use a vector map,
which is statically allocated to hold all B bins, but a dynamic
map (e.g., hash-based) would reduce memory usage though
it requires a memory management technique to periodically
remove older entries. Another constraint we experienced con-
cerns the user-space daemon, which must scan the whole
bin map for estimating N . With high values of B, we were
unable to sustain refresh rates of ∆t = 100 ms. Even if
production-quality tools for network security and analysis
seldom need such a granularity (e.g., to ensure scalability and
statistical relevance), removing this limitation can be useful
for deploying the proposed framework in resource-constrained
network appliance.

Lastly, an additional limitation of the approach concerns
how the channel is spotted. In fact, the use of a windowing
scheme shifts the detection of T seconds or upon completely
receiving W samples. This may lead to the impossibility of
blocking shorter covert communication attempts in real time,
but only to raise an alarm a posteriori.



V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a code augmentation
mechanism for the detection of covert channels targeting the
IPv6 Flow Label. To this aim, we developed an eBPF filter
for mapping observed values into a bin-based structure and
roughly estimate the volume of conversations. Covert commu-
nications can then be revealed via discrepancies between the
observed data and measures provided by a network analysis
tool. Results prove the feasibility of using code augmentation
to support other tools unable to deal with network covert
channels out of the box.

Future work is primarily devoted to conduct an exten-
sive evaluation campaign, especially to quantify the proposed
detection framework in terms of false positives and false
negatives as well as the impact of ξ. Owing to the flexibility
of the eBPF framework, part of our ongoing research aims at
using the proposed approach with other types of channels. For
instance, eBPF can be used to inspect the Traffic Class
and Hop Limit fields within the IPv6 header, which allows
an attacker to store or modulate secret information, respec-
tively. Another future development concerns the utilization of
eBPF for actively manipulating traffic, e.g., to sanitize flows
and disrupt the channels by overwriting fields or restoring
them to a standard value.

ACKNOWLEDGMENT

This work has been supported by the EU Project ASTRID,
Grant Agreement No 786922, and by the EU Project
SIMARGL, Grant Agreement No 833042.

The authors would like to thank ntop (www.ntop.org) for
providing a free license of nProbePro used in experiments.

REFERENCES

[1] L. Caviglione, M. Choraś, I. Corona, A. Janicki, W. Mazurczyk,
M. Pawlicki, and K. Wasielewska, “Tight arms race: Overview of current
malware threats and trends in their detection,” IEEE Access, 2020.

[2] W. Mazurczyk and L. Caviglione, “Information hiding as a challenge
for malware detection,” IEEE Security & Privacy, vol. 13, no. 2, pp.
89–93, 2015.

[3] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis of
the communication between colluding applications on modern smart-
phones,” in Proceedings of the 28th Annual Computer Security Appli-
cations Conference, 2012, pp. 51–60.

[9] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” IEEE Communi-
cations Surveys & Tutorials, vol. 9, no. 3, pp. 44–57, 2007.

[4] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang, “Contain-
erleaks: Emerging security threats of information leakages in container
clouds,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2017, pp. 237–248.

[5] K. Cabaj, L. Caviglione, W. Mazurczyk, S. Wendzel, A. Woodward, and
S. Zander, “The new threats of information hiding: The road ahead,” IT
Professional, vol. 20, no. 3, pp. 31–39, 2018.

[6] S. Wendzel, S. Zander, B. Fechner, and C. Herdin, “Pattern-based
survey and categorization of network covert channel techniques,” ACM
Computing Surveys (CSUR), vol. 47, no. 3, pp. 1–26, 2015.

[7] N. Lucena, G. Lewandowski, and S. Chapin, “Covert channels in ipv6,”
in Int. Workshop on Privacy Enhancing Technologies. Springer, 2005,
pp. 147–166.

[8] W. Mazurczyk, K. Powójski, and L. Caviglione, “IPv6 covert channels
in the wild,” in Proceedings of the 3rd Central European Cybersecurity
Conference, 2019, pp. 1–6.

[10] W. Mazurczyk and L. Caviglione, “Steganography in modern smart-
phones and mitigation techniques,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 1, pp. 334–357, 2014.

[11] L. Caviglione, “Trends and challenges in network covert channels
countermeasures,” Applied Sciences, vol. 11, no. 4, 2021.

[12] A. Salih, X. Ma, and E. Peytchev, “Implementation of hybrid artificial
intelligence technique to detect covert channels attack in new generation
internet protocol ipv6,” in Leadership, Innovation and Entrepreneurship
as Driving Forces of the Global Economy. Springer, 2017, pp. 173–190.

[13] A. Carrega, L. Caviglione, M. Repetto, and M. Zuppelli, “Programmable
data gathering for detecting stegomalware,” in Proceedings of the 2nd
International Workshop on Cyber-Security Threats, Trust and Privacy
Management in Software-defined and Virtualized Infrastructures (Sec-
Soft). IEEE, 2020.

[14] L. Deri, S. Sabella, and S. Mainardi, “Combining system visibility and
security using eBPF,” in Proceedings of the Third Italian Conference on
Cyber Security, Pisa, Italy, February 13-15, 2019, ser. CEUR Workshop
Proceedings, P. Degano and R. Zunino, Eds., vol. 2315. CEUR-WS.org,
2019.

[15] B. Blumbergs, M. Pihelgas, M. Kont, O. Maennel, and R. Vaarandi,
“Creating and detecting ipv6 transition mechanism-based information
exfiltration covert channels,” in Nordic Conference on Secure IT Systems.
Springer, 2016, pp. 85–100.

[16] J. Berger, A. Klein, and B. Pinkas, “Flaw label: Exploiting IPv6 flow
label,” in Proceedings of the 2020 IEEE Symposium on Security and
Privacy. IEEE, 2020, pp. 1594–1611.

[17] W. Mazurczyk, P. Szary, S. Wendzel, and L. Caviglione, “Towards
reversible storage network covert channels,” in Proceedings of the 14th
International Conference on Availability, Reliability and Security, 2019,
pp. 1–8.

[18] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme, “IPv6 flow label
specification,” Internet Requests for Comments, RFC Editor, RFC 6437,
November 2011.


