Conference paper Open Access

Experimental Evaluation of Power Consumption in Virtualized Base Stations

Ayala-Romero, Jose; Khalid, Ihtisham; Garcia-Saavedra, Andres; Costa-Perez, Xavier; Iosifidis, George


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4966356</identifier>
  <creators>
    <creator>
      <creatorName>Ayala-Romero, Jose</creatorName>
      <givenName>Jose</givenName>
      <familyName>Ayala-Romero</familyName>
      <affiliation>School of Computer Science and Statistics, Trinity College Dublin, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Khalid, Ihtisham</creatorName>
      <givenName>Ihtisham</givenName>
      <familyName>Khalid</familyName>
      <affiliation>School of Computer Science and Statistics, Trinity College Dublin, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Garcia-Saavedra, Andres</creatorName>
      <givenName>Andres</givenName>
      <familyName>Garcia-Saavedra</familyName>
      <affiliation>NEC Laboratories Europe, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Costa-Perez, Xavier</creatorName>
      <givenName>Xavier</givenName>
      <familyName>Costa-Perez</familyName>
      <affiliation>†NEC Laboratories Europe, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Iosifidis, George</creatorName>
      <givenName>George</givenName>
      <familyName>Iosifidis</familyName>
      <affiliation>Delft University of Technology, Netherlands</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Experimental Evaluation of Power Consumption in Virtualized Base Stations</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Virtualized Base Stations</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-02-01</date>
  </dates>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4966356</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4966355</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/h2020daemon</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Network virtualization is intended to be a key element of new generation networks. However, it is no clear how the implantation of this new paradigm will affect the power consumption of the network. To shed light on this relatively unexplored topic, we evaluate and analyze the power consumption of virtualized Base Station (vBS) experimentally. In particular, we measure the power consumption associated with uplink transmissions as a function of different variables such as traffic load, channel quality, modulation selection, and bandwidth. We find interesting tradeoffs between power savings and performance and propose two linear mixed-effect models to approximate the experimental data. These models allow us to understand the power behavior of the vBS and select powerefficient configurations. We release our experimental dataset hoping to foster further efforts in this research area.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/101017109/">101017109</awardNumber>
      <awardTitle>Network intelligence for aDAptive and sElf-Learning MObile Networks</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
102
72
views
downloads
All versions This version
Views 102102
Downloads 7272
Data volume 87.1 MB87.1 MB
Unique views 9797
Unique downloads 6666

Share

Cite as