

i

5G European Validation platform for Extensive trials

Deliverable D3.5

Final implementation of the interworking

reference model

Ref. Ares(2021)3537318 - 28/05/2021

ii

Project Details

Call H2020-ICT-17-2018

Type of Action RIA

Project start date 01/07/2018

Duration 36 months

GA No 815074

Deliverable Details

Deliverable WP: WP3

Deliverable Task: Task T3.3

Deliverable Identifier: 5G_EVE_D3.5

Deliverable Title: Final implementation of the interworking reference

model

Editor(s): Marc Mollà Roselló

Author(s):
Ramón Perez (TELC); M. Femminella, F. Lombardo, S.

Salsano, N. Blefari Melazzi, G.Reali (CNIT); Giacomo

Bernini, Leonardo Agueci (NXW); Marc Mollà Roselló

(ERI-ES); Jaime Garcia-Reinoso, Pablo Serrano Yañez-

Mingot (UC3M); Grzegorz Panek, Michał Grzesik (ORA-

PL);

Reviewer(s): Giada Landi (NXW), Kostas Trichias (WINGS)

Contractual Date of Delivery: 31/05/2021

Submission Date: 31/05/2021

Dissemination Level: PU

Status: Final

Version: 1.0

File Name: 5G_EVE_D3.5

Disclaimer

The information and views set out in this deliverable are those of the author(s) and do not

necessarily reflect the official opinion of the European Union. Neither the European

Union institutions and bodies nor any person acting on their behalf may be held

responsible for the use which may be made of the information contained therein.

iii

Deliverable History

Version Date Modification Modified by
V0.1 16/02/2021 First draft Marc Mollà Roselló

V0.2 26/04/2021 Second draft WP3

V0.3 04/05/2021 Draft for internal review WP3

V0.9 24/05/2021 Final draft for QA review WP3

V0.10 28/05/2021 QA review Kostas Trichias (WINGS)

V1.0 28/05/2021 Final check Mauro Boldi

iv

Table of Contents

LIST OF ACRONYMS AND ABBREVIATIONS .. VI

LIST OF FIGURES .. VII

LIST OF TABLES ... VIII

EXECUTIVE SUMMARY .. 9

1 INTRODUCTION ... 10

1.1 INITIAL CONTEXT .. 10
1.2 STRUCTURE OF THE DOCUMENT .. 10

2 INTERWORKING FRAMEWORK DESIGN ... 11

2.1 NEW FEATURES IN D3.5 VERSION .. 12

3 SOFTWARE ARTEFACTS ... 13

3.1 MULTI-SITE CATALOGUE .. 13
3.1.1 Software architecture .. 14
3.1.2 Open API description .. 16
3.1.3 Service description .. 17

3.1 MULTI-SITE INVENTORY ... 21
3.1.1 Open API description .. 22

3.2 MULTI-SITE NETWORK ORCHESTRATOR ... 22
3.2.1 Software Architecture.. 23
3.2.2 Open API description .. 24
3.2.3 Create Network Service Request ... 25
3.2.4 Docker HUB images ... 31

3.3 DATA COLLECTION MANAGER .. 31
3.3.1 Software architecture .. 31
3.3.2 Open API description .. 33
3.3.3 Service description .. 33

3.4 RUNTIME CONFIGURATOR ... 37
3.4.1 Software architecture .. 38
3.4.2 Open API description .. 39
3.4.3 Service description .. 41

3.5 ADAPTATION LAYER ... 46
3.5.1 Multi-Site Catalogue SBI .. 46
3.5.2 Multi-Site NSO to local Orchestrator’s interface ... 47

3.6 IWF REPOSITORY .. 54
3.6.1 Software architecture .. 54
3.6.2 Open API description .. 56
3.6.3 Service description .. 59

3.7 SITE ADAPTATIONS .. 61
3.7.1 French site .. 61
3.7.2 Greek site .. 63
3.7.3 Italian site ... 63
3.7.4 Spanish site ... 63

4 INTER-SITE CONNECTIVITY STATUS ... 65

5 UPDATED ROADMAP .. 66

6 PENDING AUTOMATED TESTS .. 69

6.1 REPORTING FORMAT .. 70
6.2 INTERWORKING FRAMEWORK COMPONENT TESTS ... 71

6.2.1 Multi-Site Catalogue pending tests ... 71
6.2.2 Multi-Site Inventory pending tests ... 76
6.2.3 Multi-Site Network Orchestrator pending tests [ERI-ES] ... 78
6.2.4 Adaptation Layer - EVER driver pending tests ... 79

v

6.3 INTEGRATION TESTS BETWEEN INTERWORKING FRAMEWORK COMPONENTS .. 79
6.3.1 NSO-Catalogue pending tests ... 79

7 CONCLUSIONS .. 81

ACKNOWLEDGMENT .. 82

REFERENCES ... 83

vi

List of Acronyms and Abbreviations

Acronym Meaning

3GPP Third Generation Partnership Project

5G Fifth Generation

ACID Atomicity, Consistency, Isolation and Durability

API Application Programming Interface

DCI Data Center Interconnection

ETSI European Telecommunications Standards Institute

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IP Internet Protocol

IWF Inter-Working Framework

IWL Inter-Working Layer

LCM Lifecycle Management

MANO Management and Orchestration

MSNO 5G EVE Multi-Site Network Orchestrator

MSO-LO 5G EVE Multi-Site NSO to Local Orchestrator

NBI North-Bound Interface

NFV Network Function Virtualization

NFVO NFV Orchestrator

NS Network Service

NSD Network Service Descriptor

NSO Network Service Orchestrator

ONAP Open Network Automation Platform

OSM Open Source MANO

PNF Physical Network Function

PNFD PNF Descriptor

REST Representational State Transfer (software architectural style)

SBI South-Bound Interface

SQL Structured Query Language

SSH Secure Shell

TOSCA Topology and Orchestration Specification for Cloud Applications

UML Unified Modelling Language

VNF Virtual Network Function

VNFD VNF Descriptor

YAML YAML Ain’t Mark-up Language

vii

List of Figures

Figure 1: 5G EVE IWL final architecture ... 12

Figure 2: Multi-site Catalogue high level software design – final release version for D3.5 15

Figure 3: NSD and VNFD update triggered from local site catalogue. ... 18

Figure 4: NSD update triggered from 5G EVE portal. .. 19

Figure 5: Multi-site experiment as composite NSD .. 20

Figure 6: Composite NSD onboarding workflow .. 21

Figure 7: MSNO micro-service architecture ... 23

Figure 8: MSNO micro-service internal architecture .. 24

Figure 9: Multi-Site Network Orchestrator URI structure .. 24

Figure 10: Create Network Service Workflow .. 25

Figure 11: Workflow for the NS instances query .. 26

Figure 12: Multi-site query instance .. 26

Figure 13: Selection logic .. 27

Figure 14: Workflow 1 for the Instantiate Request ... 28

Figure 15: Workflow 2 of the Instantiation Request ... 29

Figure 16: Termination Workflow .. 30

Figure 17: Data Collection Manager final architecture ... 32

Figure 18: Subscription to the topics used for experiment monitoring and performance analysis purposes. ... 35

Figure 19: Delivery and management of monitoring information during the experiment execution 36

Figure 20: Withdrawal of the topics used for experiment monitoring and performance analysis purposes. 37

Figure 21: Runtime Configurator final architecture .. 38

Figure 22: Runtime Configurator data model.. 39

Figure 23: Execution of infrastructure Day-2 configuration scripts .. 46

Figure 24: Architecture of the application ... 47

Figure 25: UML class diagram with an example method of the interface. ... 48

Figure 26: Message sequence chart to show modules and objects interactions. ... 49

Figure 27: Subscriptions and notifications management for ONAP ... 50

Figure 28: Subscriptions and notifications management for OSM ... 51

Figure 29: IWL components that use the IWF Repository. ... 54

Figure 30: Entity-Relationship diagram for IWF Repository database ... 55

Figure 31: Example HTTP requests to create new entities in IWF Repository ... 60

Figure 32: The overview architecture of French Site .. 61

Figure 34. MANO at the Spanish site ... 64

Figure 35: 5G EVE site integration ... 66

Figure 36: Multi-Site Catalogue pending tests configuration.. 71

viii

List of Tables

Table 1: Final list of services provided by Multi-Site Catalogue .. 16

Table 2: Services provided by Multi-Site Inventory ... 22

Table 3: Service description of MSNO ... 25

Table 4: Data Collection Manager operations from its Open API specification .. 33

Table 5: Runtime Configurator operations from its Open API specification. ... 39

Table 6: MSO-LO API interface for NFVO .. 51

Table 7: MSO-LO API interface for RANO ... 53

Table 8: IWF Repository main REST API paths .. 56

Table 9: API provided by Translation Component as a “external API of French Site”. 62

Table 10: 5G EVE Interworking Framework Roadmap .. 67

Table 11: Summary of test cases execution... 69

Table 12: Table format to report the execution of test cases. .. 70

Table 13: Multi-Site Catalogue - NSD Management test results .. 72

Table 14: Multi-Site Catalogue - VNF Management test results .. 74

Table 15: Multi-Site Catalogue – PNFD Management test results ... 74

Table 16: Summary of Multi-Site Catalogue test cases execution .. 76

Table 17: Multi-Site Inventory - Write Operation test results ... 77

Table 18: Multi-Site Inventory - Query Operation test results .. 78

Table 19: Multi-Site Network Orchestrator test results ... 78

Table 20: Test summary for EVER driver Test suite .. 79

Table 21: Multi-Site Network Orchestrator-Catalogue test results ... 79

9

Executive Summary

This deliverable D3.5 is the final deliverable that describes the implementation and testing of the Interworking

Layer (IWL). This deliverable contains the description of all IWL components, including design and features

reported previously in D3.4 ([16]) and the new features developed in the last part of the 5G EVE project. With

this approach, we want to offer a complete view of our work and a full detailed description of the Interworking

Layer.

We include the low-level detail of each IWL component, explaining the offered services as well as the internal

architecture. The most relevant feature included in the final version is the multi-site support, which allows to

deploy an experiment across several 5G EVE sites. We explain how IWL implements a distributed transaction

logic in order to perform the deployment of an experiment.

Also, we finish the integration of the IWL with all the 5G EVE sites, which implies the integration with different

NFV-Os (ONAP and OSM) and the integration with Radio Controllers (EVER and NC).

We include a small update about the inter-site connectivity, with the successfully demonstrated Gaming use

case, which required an inter-connection between Spain and Greece for the User Plane. Also, the final roadmap

of the Inter Working Layer is included.

Finally, we include the results of pending tests that has been executed after the delivery of D3.7, mainly related

to multi-site use cases and the integration with ONAP orchestrated sites.

10

1 Introduction

Deliverable D3.5 “Final implementation of the interworking reference model” contains the report of the Inter-

Working Layer final software deliverables of the 5G EVE project, developed in the scope of Task 3.3

“Interworking model implementation and deployment”. The deliverable contains the final public definitions of

the Interworking Framework components’ interfaces, the low-level description of the components as well as the

references to the public repository for the software artefacts.

1.1 Initial context

This document is the last report of the Work Package 3 from 5G EVE project. It is based on the analysis,

architecture and interface definitions included in D3.1 ([1]) and D3.2 ([2]). It is also a continuation of the work

described in D3.3([3]) and D3.4 ([16]).

For the clarity of our description, we decided to do a full report of the WP3 work, and some parts might be also

described in previous deliverables. We will highlight the content when that is happening.

1.2 Structure of the document

The main structure of this deliverable can be summarized as follows:

• Section 2 contains a summary of the Interworking Framework design that is included in the D3.1, D3.2

and D3.3. It also contains the description of the new requirements and components included in the IWL

since the delivery of D3.3.

• Section 3 contains the description of the software included in this deliverable. We included the public

specification of the API provided for each component, with a reference of the public open API

definition. Also, we included the features provided by each component as well as the internal design.

• Section 4 contains an update of the status of the inter-site connectivity.

• Section 5 describes the Interworking Framework roadmap at the time of this delivery.

• Section 6 contains the pending tests from D3.7 included in this deliverable.

11

2 Interworking Framework design

The IWL is a core component of the 5G EVE platform as it allows to abstract the specific site facility capabilities

and offered services through a common and unified data model, enabling the design and execution of multi-site

vertical experiments at the 5G EVE portal level through a common approach irrespectively of the specific

technology constraints that each site implements to provide 5G services.

In practice, the IWL abstracts the heterogeneous capabilities of each site enabling the implementation of a

unified end-to-end 5G experimentation and validation facility. At the same time, it guarantees the seamless

interoperability of the services offered by the different site facilities through multi-site integration and delivery

procedures. To achieve this, at its southbound the IWL is equipped with a set of adaptation functionalities (part

of the IWL Adaptation Layer) that provide the required abstraction on top of the site facilities, harmonizing

under a common interworking model and set of APIs (offered to the internal IWL logics) the heterogeneous

capabilities offered by each site in terms of service and slice orchestration, RAN control, functions and services

catalogues, monitoring and runtime configuration. Similarly, at its northbound the IWL offers a set of

Interworking APIs that leverage on the common interworking model to expose towards the 5G EVE Portal

unified and technology-independent discovery of per-site available services and VNFs, and provisioning of

slices and services in support of multi-site 5G vertical experiments. This way, the 5G EVE Portal can first

retrieve the capabilities of the multi-site 5G EVE infrastructure and then request for the instantiation of multi-

site 5G vertical experiments designed on top of such capabilities, all by using a common and unified set of

Interworking APIs based on the ETSI NFV SOL specifications [21].

Deliverables D3.1 and D3.2 already provided the detailed specification of the IWL architecture, which has then

been used as the reference baseline for its implementation in the form of software prototypes with deliverables

D3.3 and D3.4. As this document provides the very final software release of the 5G EVE IWL, Figure 1 shows

the reference IWL architecture, which is composed by the integration of six main functional components: the

Multi-site Catalogue, the Multi-site Network Service Orchestrator, the Multi-site Inventory, the Runtime

Configurator, the Data Collection Manager and the IWF Repository. The Adaptation Layer is the enabling

southbound abstraction IWL functionality that provides a common access interface and interworking model to

access the various site facilities services and resources. On the other hand, the Interworking APIs exposed by

the IWL at its northbound are the collection of the northbound APIs implemented and exposed by each of the

six internal components. The Multi-Site Catalogue is the central repository of the whole 5G EVE platform for

what concerns the capabilities offered by the site facilities in terms of NFV Network Services and VNFs and

that are exposed through a common model that follows the ETSI NFV SOL Network Service descriptors (NSDs)

and VNF descriptors (VNFDs) specifications. The Multi-Site Network Orchestrator orchestrates the multi-

domain Network Services that implement the multi-domain 5G vertical experiments and coordinates the various

local orchestrators in each site. It exposes to the 5G EVE portal Network Service Lifecycle Management APIs

following the ETSI NFV SOL005 specifications. The Multi-Site Inventory maintains up-to-date information

about instances of multi-domain and single-domain Network Services deployed in the 5G EVE site facilities,

exposing such information to the 5G EVE Portal still following the ETSI NFV SOL005 model. The Data

Collection Manager takes care to collect and persist all the required network and vertical performance metrics

during the execution of experiments, following a publish/subscribe mechanism to consume such data. The

Runtime Configurator is responsible for configuring the VNFs deployed as part of the multi-site Network

Services in support of the vertical experiments, therefore providing so-called “Day-2” (i.e., after service and

VNF instantiation) configuration APIs towards the 5G EVE Portal. Finally, the IWF Repository is the central

storage point within the IWL and maintains all the site facility information that are useful for the internal IWL

logics (e.g. related to site features, resources, credentials to access local orchestrators, etc.). It exposes dedicated

APIs for the other IWL components to access such information.

The next subsection highlights the new features of the various IWL components which have been developed on

top of the software prototypes delivered with deliverable D3.4, while the next chapter provides an overview of

each IWL software component, in terms of software architecture, API specification (in the form of OpenAPI

representations) and main service and internal logic description.

12

Figure 1: 5G EVE IWL final architecture

2.1 New features in D3.5 version

Multi-Site Catalogue

The Multi-Site Catalogue prototype released with this final software drop provides some new features with

respect to the previous D3.4 version. In particular, new catalogue internal logics and procedures have been

implemented to support the design and execution of multi-site 5G vertical experiments. Indeed, this final release

includes support of composite NSDs to model multi-site Network Services. In addition, the support of NSD and

VNFD runtime updates has been implemented, together with PNFD onboarding and removal when triggered

from local-site orchestrators. Moreover, as part of the integration with local site and external orchestrators, the

Multi-Site Catalogue has been equipped with new southbound drivers to enable the interaction with ETSI OSM

R7 and R8, as well as with ONAP Frankfurt version. Dedicated support and integration have been also

performed to interact with the ICT-19 5Growth platform.

Multi-site Orchestration

The Multi-Site Network Orchestration implements new logic for allowing the deployment of a Network Service

across multiple 5G EVE sites. For that, the MSNO supports distributed transaction procedures that deploy or

terminate in an atomic way all the components of a distributed Network Service.

Radio Slice Profile

In the final version, IWL supports the definition of Radio Slice parameters, where the experimenter can define

requirements of latency, coverage, throughput or even the RAN technology to be used in the experiment. The

IWL also provides new drivers for interacting with local NFV-O that are in charge of configuring the RAN,

transport and core networks: EVER for Italian site and Network Controller for the Spanish site. Those new

orchestrators are named as RAN-O (Radio Access Network Orchestrators)

13

3 Software artefacts

This section contains the description of the software artefacts included in the final delivery. For all Interworking

framework components, we include the description of the public interface provided by the component, in Open

API format. For the Multi-Site Catalogue, the Multi-Site Network Orchestrator and the Adaptation Layer we

include a description of the services and features included in this deliverable. Additionally, we also include a

low-level detail of the internal design of components.

3.1 Multi-Site Catalogue

This section provides an overview of the Multi-Site Catalogue software prototype. It is worth to mentioning that

this document is the final release notes for the 5G EVE Interworking Framework software prototypes and for

the sake of completeness of the reported information, this section includes the full list of features and

functionalities implemented and supported by the Multi-Site Catalogue.

The Multi-Site Catalogue is the centralized repository of the whole 5G EVE platform in terms of single-site and

multi-site capabilities offered by the site facilities. In practice, it stores all of the Network Service Descriptors

(NSDs), VNF Descriptors (VNFDs) and PNF Descriptors (PNFDs) that can be used by the 5G EVE portal for

the execution of vertical experiments. The information stored in the Multi-Site Catalogue is of two main

categories:

i) NSDs, VNFDs and PNFDs collected directly from the site catalogues, as part of existing service

and experiment capabilities on the related site facility,

ii) NSDs onboarded by the 5G EVE portal to model single-site and multi-site experiments, possibly

composing NSDs, VNFDs and PNFDs already available.

Indeed, while VNFs and PNFs cannot be onboarded from the 5G EVE portal into the Multi-Site Catalogue (as

they are considered pre-existing fundamental capabilities in the 5G EVE platform that shall be onboarded in the

specific sites through a semi-automated procedure that pass through the 5G EVE Ticketing system), the 5G

EVE portal can access in any moment its content to re-use existing and available site capabilities. For this, the

Multi-Site Catalogue implements a continuous and periodic synchronization with the content of each site

catalogue, with the aim of having up-to-date information stored, and consequently available for the 5G EVE

portal and the other IWL components.

The Multi-Site Catalogue is aligned with ETSI NFV specifications, as it supports both APIs and related data

models defined in the SOL specifications. In particular, the Multi-Site Catalogue implements part of the ETSI

NFV SOL005 v2.4.1 APIs [5] at its northbound reference point (to cover NSD, VNFD and PNFD management

operations), and it maintains the descriptors in accordance with the ETSI NFV SOL001 Tosca data model [8].

The main aim is therefore to expose a common (and standard) set of APIs towards the 5G EVE Portal and the

other IWL components, while using a unified data model for describing the single-site and multi-site

experiments available for deployment in the 5G EVE platform. To this aim, the Multi-Site Catalogue provides

the required logic to translate the per-site specific NSD, VNFD and PNFD data models into the common one

based on ETSI NFV SOL001. In the specific case of the 5G EVE site facilities catalogues, the translation logic

is implemented for the ETSI OSM and ONAP descriptors data models.

In summary, with reference to the workflows described in deliverable D3.2, the Multi-site Catalogue

implements the following Network Service, VNF and PNF on-boarding related procedures:

• Catalogues synchronization, to automatically retrieve, translate and store available NSDs, VNFDs and

PNFDs from each site facility catalogue. This includes also the retrieval of updates to existing

descriptors applied at runtime in the site catalogues;

• VNF and PNF onboarding, to dynamically and automatically retrieve, translate and store new VNFDs

and PNFDs that are on-boarded directly in the 5G EVE sites catalogues;

• VNF and PNF removal, to dynamically and automatically remove existing VNFDs and PNFDs in the

Multi-site Catalogue when the correspondent VNFDs and PNFDs are no longer available in the 5G

EVE sites catalogues;

14

• Network Service Descriptor onboarding triggered by the 5G EVE Portal, to enable the 5G EVE Portal

to upload in the IWL new NSDs for single-site and multi-site vertical experiments. While single-site

related NSDs are translated and forwarded to the proper site catalogues into the specific data model

format, the multi-site related NSDs are kept in the Multi-Site Catalogue only (and made available to the

Multi-Site Network Orchestrator) in the form of composite NSDs (i.e. following the NSD nesting

approach);

• Network Service Descriptor onboarding triggered by the local site catalogues, to dynamically and

automatically retrieve, translate and store new NSDs that are on-boarded directly in the 5G EVE sites

catalogues;

• Network Service Descriptor removal triggered by the 5G EVE Portal, to enable the 5G EVE Portal to

remove existing NSDs whenever the related single-site or multi-site vertical experiment is no longer

available in the 5G EVE platform for instantiation;

• Network Service Descriptor removal triggered by the local site catalogues, to dynamically and

automatically remove existing NSDs in the Multi-site Catalogue when the related Network Services are

no longer available in the 5G EVE sites catalogues.

3.1.1 Software architecture

The final version of the Multi-Site Catalogue software architecture is shown in Figure 2. In terms of design

principles and main internal software components the approach already reported in previous deliverables is still

applicable, as the internal architecture of the Multi-Site Catalogue has not required any major update. Indeed,

as a final release note, the Multi-Site Catalogue is a Java application which uses PostgreSQL as its backend

database to store NSDs, VNFDs and PNFDs information that is required for the core internal logics of the

catalogue operations. On the other hand, the actual descriptor files (and CSAR software archives compliant with

ETSI NFV SOL004 specification [10]) are stored in the local filesystem. In terms of software code, it is based

on the 5G Apps and Services Catalogue that was developed in the context of the 5G-MEDIA project1, which

has been deeply evolved and enhanced to support the various 5G EVE single-site and multi-site vertical

experiment preparation and execution procedures and workflows and made it suitable for use in the 5G EVE

IWL.

As anticipated above, the Multi-Site Catalogue offers at its northbound reference point a subset of the ETSI

NFV SOL005 REST APIs to cover the NSD and VNF Package management operations (i.e., for onboarding,

updating, retrieving and deleting the various descriptors). The logic of the Multi-Site Catalogue is implemented

in the Catalogue Service component, which glues the operations exposed towards the 5G EVE portal and the

other IWL components with the actions to be taken on the site catalogues and the information that is stored

locally. In practice, the coordination logic for the various Multi-Site Catalogue supported workflows are hosted

in the Catalogue Service. A Kafka bus is used as part of the Multi-Site Catalogue operations for onboarding and

updating NSDs, VNFDs and PNFDs in the IWL with the aim of decoupling the internal logic of the catalogue

itself from the asynchronous interactions and translation logic of the site catalogue drivers at the southbound

interface. In its final version, the Multi-Site Catalogue is equipped with two types of site catalogue drivers and

is therefore able to interact with ETSI OSM (based on versions R3, R4, R6, R7 and R8, used in the Italian,

Greek and Spanish site facilities) and ONAP (based on Dublin and Frankfurt versions, used in the French site).

While the ETSI OSM driver implements a bi-directional translation logic (i.e., from ETSI NFV SOL001 Tosca

model to ETSI OSM descriptors model and vice versa), for the ONAP driver the translation is only available in

the bottom-up direction, i.e., to enable automated collection and retrieval of NSD and VNFDs from the ONAP

catalogue. Each of these site catalogue drivers interacts with the IWF Repository to retrieve relevant information

to access the given local site catalogues, in terms of credentials, tenants, URLs, endpoints, as well as available

capabilities and automatically configure the driver itself.

1 http://www.5gmedia.eu/

15

This allows, for each new per-site NFVO driver instance automatically created when the Multi-site Catalogue

application starts, to retrieve the proper information to access the given local site catalogue (e.g., in terms of

credentials, tenants, URLs, endpoints) and automatically configure the NFVO driver itself.

However, as depicted in Figure 2, a third driver exists for the Multi-Site Catalogue to interact with the ICT-19

5Growth platform [17]. While this driver has been developed in the context of the ICT-19 5Growth project [18]

5G EVE has supported the testing and integration activities to validate the interworking the 5Growth platform

and vertical experiments.

Figure 2: Multi-site Catalogue high level software design – final release version for D3.5

With respect to the last software release described in deliverable D3.4, beyond a consolidation of existing

features and services as part of the multiple integration and validation activities carried out to support the various

5G EVE and ICT-19 vertical experiments, some additional features have been implemented as part of this final

release. These can be summarized as follows:

• New Catalogue Service logics for the support of:

o Composite NSD management, to model multi-site vertical experiments;

o NSD update triggered by the 5G EVE portal, to dynamically modify;

o NSD update triggered by the local site catalogues, to retrieve modifications to NSD;

o VNFD update triggered by the local site catalogues;

o PNFD retrieval from the local site catalogues;

o PNFD removal triggered by the local site catalogues;

• Updates to the ETSI OSM driver to seamlessly support the latest R7 and R8 versions;

• Updates to the ONAP driver to seamlessly support the Frankfurt release deployed in the French site.

16

3.1.2 Open API description

As anticipated in the previous section, the Multi-Site Catalogue offers at its northbound reference point a set of

REST APIs compliant with the ETSI NFV SOL005 v2.4.1 specification. The OpenAPI representations for the

Multi-site Catalogue northbound REST APIs are available in the 5G EVE GitHub repository2.

With respect to the last version reported in deliverable D3.4, the Multi-Site Catalogue has been equipped with

an implementation of ETSI NFV SOL005 APIs for PNFD management, in particular to cover the query

operations issued by the 5G EVE portal and other IWL components to retrieve available PNFs. Moreover, an

explicit NSD update operation is also added in the form of a PATCH over an existing NSD content. Table 1

provides a summary of the whole set of APIs, related endpoints and main content exchanged as input/output

that the final version of the Multi-Site Catalogue software prototype supports and implements. The last four

rows of Table 1 list the new endpoints for NSD and PNFD management.

Table 1: Final list of services provided by Multi-Site Catalogue

Service Path Method Input Output Description

Multi-Site

Catalogue

/ns_descriptors POST Create NsdInfo

Request

NsdInfo

Instance

Create a new

NSD resource

Multi-Site

Catalogue

/ns_descriptors GET - Array of

NsdInfo

Returns the

information of all

NSD resources

Multi-Site

Catalogue

/ns_descriptors/{nsdI

nfoId}

GET - NsdInfo Returns the

information of

individual NSD

resource

Multi-Site

Catalogue

/ns_descriptors/{nsdI

nfoId}

DELETE - - Delete individual

NSD

Multi-Site

Catalogue

/ns_descriptors/{nsdI

nfoId}/nsd_content

PUT NSD file - Onboard new

NSD content

(TOSCA format)

Multi-Site

Catalogue

/ns_descriptors/{nsdI

nfoId}/nsd_content

GET - NSD file Returns the

individual NSD

content (TOSCA

format)

Multi-Site

Catalogue

/vnf_packages GET - Array of

VNFPckgI

nfo

Returns the

information of all

VNF Package

resources

Multi-Site

Catalogue

/vnf_packages/{vnfP

kgId}/

GET - VNFPckgI

nfo

Returns the

individual VNF

Package resource

Multi-Site

Catalogue

/vnf_packages/{vnfP

kgId}/vnfd

GET - VNFD file Returns the

individual VNFD

file (TOSCA

format)

2 https://github.com/5GEVE/OpenAPI/tree/v1.0/MultiSiteCatalogue

https://github.com/5GEVE/OpenAPI/tree/v1.0/MultiSiteCatalogue

17

Multi-Site

Catalogue

/ns_descriptors/{nsdI

nfoId}/nsd_content

PATCH NSD file - Update existing

NSD content

(TOSCA format)

Multi-Site

Catalogue

/pnf_descriptors GET - Array of

PnfdInfo

Returns the

information of all

PNFD resources

Multi-Site

Catalogue

/pnf_descriptors/{pnf

dInfoId}

GET - PnfdInfo Returns the

information of

individual PNFD

resource

Multi-Site

Catalogue

/pnf_descriptors/{pnf

dInfoId}/pnfd_conte

nt

GET - PNFD file Returns the

individual PNFD

content (TOSCA

format)

3.1.3 Service description

The version of the Multi-Site Catalogue software prototype released with this deliverable provides full support

of the onboarding related workflows described in section 3.1, and can be considered as the final consolidated

IWL catalogue in terms of features and functionalities as it went through a comprehensive testing, integration

and validation processes during the preparation and execution of the 5G EVE and ICT-19 projects vertical

experiments. However, beyond the regular fixes and improvements applied on top of the previous version

released with deliverable D3.4, this final version of the Multi-Site Catalogue provides some new features (as

anticipated in section 3.1.1), among which the most relevant and impacting ones (in terms of new offered

functionalities) are those related to the new logics developed in the Catalogue Service for supporting NSD and

VNFD updates and the support of composite NSDs to properly model and manage multi-site vertical experiment

descriptors.

First of all, the dynamic NSD updates have been implemented to be supported in both directions, i.e. bottom-

up (when triggered by a modification in the local site catalogue) and top-down (i.e. when triggered by an explicit

update request from the 5G EVE portal at the northbound APIs of the Multi-Site Catalogue), while the VNFD

updates only in the bottom-up one (as VNFs are not supposed to be either onboarded or updated through a fully

automated procedure from the 5G EVE portal). In practice, the two bottom-up updates fall under the same

workflow, as shown in Figure 3, where an explicit NSD or VNFD update from the local site administrator is

detected by the Multi-Site Catalogue as part of the catalogues synchronization operation by adding an explicit

additional step (step 5b in the figure) to verify if the given NSD or VNFD is changed with respect to the version

stored locally (e.g. by inspecting either the NSD resource or VNF Package resource information or directly the

descriptor content). In the case of NSD update through the 5G EVE portal, as depicted in Figure 4, the Multi-

Site Catalogue, after having applied the regular sanity checks of the updated NSD content, verifies to which

sites the given NSD was previously onboarded and perform in turn an update operation, after having translated

the NSD content into the proper local site data model. According to the specific logic implemented by the given

local site catalogue, an update operation (e.g., the one at step 5) could be implemented as a delete and re-onboard

of updated NSD content.

18

Figure 3: NSD and VNFD update triggered from local site catalogue.

19

Figure 4: NSD update triggered from 5G EVE portal.

On the other hand, the management of multi-site vertical experiments as composite NSDs has required the

Multi-Site Catalogue to provide support of the NSD nesting approach, which was not yet implemented up to

the previous version. In practice, a composite NSD can be seen as a high level NSD that only reference other

nested NSDs (at least two), as shown in Figure 5. In the 5G EVE scenario, such a composite NSD models a

multi-site Network Service (i.e., a vertical experiment) that is composed by the concatenation of more Network

Services (i.e., single-site parts of the end-to-end experiment), each to be instantiated and operated in a given site

facility. The actual VNFDs are only included in the nested NSDs, while the composite NSDs contains the

requirements in terms of virtual links and external connection points for the interconnection of the nested NSDs.

20

Figure 5: Multi-site experiment as composite NSD

From a practical implementation perspective, this final version of the Multi-Site Catalogue provides full support

of the composite NSD onboarding workflow depicted in Figure 6. For this, the Catalogue Service logic has been

enhanced to receive composite NSDs onboarding request from (only) the 5G EVE portal when a new multi-site

experiment has to be uploaded in the IWL. As shown in the figure, the composite NSD is processed by the

Multi-Site Catalogue to first check if all of the nested NSDs have been already onboarded in the catalogue and

therefore are available in the local site catalogues (either through an explicit previous onboarding from the 5G

EVE portal, or through a retrieval of the NSD from the local site catalogue itself). Indeed, as a pre-requisite, the

nested NSDs shall be already stored in the Multi-Site Catalogue. Finally, the composite NSD is stored in the

Multi-Site Catalogue only (i.e., it is not dispatched to any of the site catalogues) and it is kept therefore at

disposal to the Multi-Site Network Orchestrator that will query it when the multi-site vertical experiment will

be instantiated.

21

Figure 6: Composite NSD onboarding workflow

The consolidated version the Multi-site Catalogue delivered with this final software release is available as

opensource code on the Nextworks GitHub3.

A Docker Compose script is available to have a containerized deployment of the Multi-site Catalogue as the

integration of three Docker containers:

i) one for the Multi-site Catalogue GUI front-end,

ii) one for the Multi-site Catalogue backend application,

iii) one for the Kafka message bus

The related Docker Compose script is available on the Nextworks GitHub4.

3.1 Multi-Site Inventory

The Multi-Site Inventory is the component in charge of maintaining the status of the Network Services

instantiated in any of the 5G EVE sites. As described in D3.2 [2], the Multi-site Inventory is fully managed by

the Multi-site Network Service Orchestrator, which is in charge of notifying of all the changes that have to do

with service provisioning.

3 https://github.com/nextworks-it/5g-catalogue/tree/v4.2

4 https://github.com/nextworks-it/5g-catalogue/tree/v4.2/deployments/docker

https://github.com/nextworks-it/5g-catalogue/tree/v4.2
https://github.com/nextworks-it/5g-catalogue/tree/v4.2/deployments/docker

22

The new feature introduced in the last release is the support of multi-site Network Services, which are composed

by a composite Network Service (root NS) with several nested NS associated to different 5G EVE sites. In order

to avoid the exposure of this complex structure to the IWL clients, the Multi-Site Inventory aggregates the VNF

information into the composite NS, providing a unified view of the NS status and information (e.g., IP addresses

of the VNF). This extension is described in the Open-API of this component.

3.1.1 Open API description

The API of the Multi-Site Inventory can be found on the project Github5.

The information included in the response of the NS Instance request are:

• Information about the Network Service, including the status.

• Information about the VNF(s) associated to the Network Service, including the status and the network

interfaces (IP addresses).

• In case of multi-site Network Service, the information of VNF(s) are aggregated into the composite

Network Service, including the information about the site.

The service includes a feature for translating the IP address of the VNF(s) to public addresses. This feature is

configurable using the information stored at IWF repository.

In Table 2 we show the services provided by the Multi-Site Inventory.

Table 2: Services provided by Multi-Site Inventory

Service Path Method Input Output Description

Multi-

Site

Inventory

/nslcm/v1/ns_instances GET -
Array of

NsIntance

Returns the

list of

onboarded

NS

Multi-

Site

Inventory

/nslcm/v1/ns_instances/{nsInstanceId} GET nsInstanceID NsInstance

Retrieve the

status of a

NS

3.2 Multi-Site Network Orchestrator

The Multi-Site Network Orchestrator (MSNO) is one of the key components for deploying Network Services

in the 5G EVE sites. As described in previous deliverables (please refer to [1], [2] and [3]), the MSNO offers a

unique and standard API for managing the lifecycle of the Network Services in all the 5G EVE sites. The main

mission of the MSNO is to unify the management of the Network Services, together with the Adaptation Layer,

which provides a protocol conversion to per-site NFV-O APIs. It also interacts with other key IWL components

like the Multi-Site Catalogue, from where MSNO obtains the NSD content and the NSD Information and with

the IWL repository, which contains per-site information.

One of the most important features supported in the last release of the MSNO is the multi-site Network Service,

which allows to deploy a NS in several 5G EVE sites. For that, the MSNO implements a distributed transaction

logic that is described in the following sections.

Another important change is the support of the new RAN-O, in charge of orchestrating Radio resources. From

MSNO point of view, the RAN-O are handled as other local orchestrator that provides a SOL 005 interface.

5 https://github.com/5GEVE/OpenAPI/tree/v0.2/MSI

https://github.com/5GEVE/OpenAPI/tree/v0.2/MSI

23

3.2.1 Software Architecture

The software architecture of the MSNO is based on a micro service architecture (Figure 7). We select this

approach basically due to the flexibility that it provides during the development, especially with a small

development team, as it allows to develop and to enhance each service individually. The main micro-service is

the Multi-Site Network Orchestrator service, which implements the northbound interface that provides service

to the 5G EVE Portal. We develop an auxiliary micro-service for the notifications part of the northbound

interface, for decoupling the on-demand service to the Portal from the asynchronous operations. The MSNO

service is also in charge of establishing the communications with the other IWL components.

All the micro-services use a storage service for the persistent storage, called storage service. The persistency is

guarantee by using an open source reliable data base, called MongoDB6.

Figure 7: MSNO micro-service architecture

All the micro services share the same internal architecture, described in the following Figure 8. The development

language selected for these processes is Go7 and we use standard Go libraries for implementing the HTTP (net.

HTTP), Service routing (gorilla.Mux) and YAML/JSON support.

6 https://www.mongodb.com

7 https://golang.org

https://www.mongodb.com/
https://golang.org/

24

Figure 8: MSNO micro-service internal architecture

With this, we implemented a YAML parser in Python for automatically generating the basic code of each

process from the OpenAPI specifications, which are described in the next section. This approach automatizes

the common code of each micro-service and allows us to concentrate the effort in the development of the service

logic. For the deployment of the micro services we selected the Docker8 containers technology.

3.2.2 Open API description

The north-bound interface of the MSNO is available on the project Github9.

It is based on the ETSI NFV SOL 005 ([5]) interface and implements a subset of the Network Service Life

Cycle Management.

As commented, the service provided by the Multi-Site Network Orchestrator (MSNO) is an implementation of

the ETSI NFV SOL 005 interface related to the Network Service Life Cycle Management.

Figure 9: Multi-Site Network Orchestrator URI structure

8 https://www.docker.com

9 https://github.com/5GEVE/OpenAPI/tree/master/MSNO

https://www.docker.com/
https://github.com/5GEVE/OpenAPI/tree/master/MSNO

25

Table 3: Service description of MSNO

Resource Name Resource URI HTTP Method Description

NS Instances /ns_instances10 GET Returns the list of

onboarded NS

NS Instances /ns_instances POST Onboard a new NS

NS Instance /ns_instances /{nsInstanceId}11 GET Return the

information of a NS

NS Instance /ns_instances /{nsInstanceId} DELETE Deletes a NS

Instantiate NS /ns_instances/nsInstanceId}/instantiate POST Instantiates a NS

into target(s) site(s)

Terminate NS /ns_instances/{nsInstanceId}/terminate POST Terminates an

instantiated NS

3.2.3 Create Network Service Request

This request creates (onboard) a Network Service in the MSNO. It is the first step for deploying a Network

Service into the Inter-Working Layer.

The MSNO does not raise any operation towards the 5G EVE sites as the target site is not known yet, so the NS

remains in NOT_INSTANTIATE state in the MSNO.

The resource URI is: {apiRoot}/nslcm/v1/ns_instances, and the resource method is POST.

Figure 10: Create Network Service Workflow

The workflow is as following:

1. Client sends a CreateNSRequest with the NSD ID of the Network Service to be deployed;

2. MSNO generates a unique UUID for the NS Instance;

3. MSNO stores the NS instance in the local storage with the state NOT_INSTANTIATED;

4. Response includes the UUID for the NS and the link to the resource.

10 Described in Multi-Site Inventory

11 Described in Multi-Site Inventory

Multi-Site

Network

Orchestrator

Client

CreateNsRequest (NSD Id)

NSInstance (UUID, Location)

Generate
UUID

Local

Storage

Store NsInstance
NOT_INSTANTIATED

26

3.2.3.1 Query NS Instances

The Query Network Service Instances service returns the list of the Network Services that are onboarded in the

Inter-Working Layer and its local status12.

The resource URI is: {apiRoot}/mslcm/v1/ns_instances, and the resource method is GET.

Figure 11: Workflow for the NS instances query

3.2.3.2 Query single-site NS Instance

This service allows to retrieve the status of a single Network Service Instance in the platform. MSNO will check

with the site(s) NFV-O the last status of the NS before informing the client.

The resource URI is: {apiRoot}/mslcm/v1/ns_instances/{nsInstanceId}, and the resource method is GET.

Figure 12: Multi-site query instance

The workflow is:

1. Client sends a GET request including the NS Instance;

12 MSNO stores the last known state of the NS. In the list operation, the status of the NS is not updated, and it might be out-dated.

Multi-Site

Network

Orchestrator

Client

GET NsInstances

NsInstance List

Local

Storage

Get NsInstances

For each

site

Multi-Site

Network

Orchestrator

Client
Multi-Site

Catalog

GET NsInstance

Adaptation

Layer

NsInstance

Multi-Site

Inventory

Local

Storage

GET NsInstance

NsInstance

Get NsInstance

Get local ID

404 Not Found

Update NsInstance

NsInstance

27

2. MSNO retrieves the NS Instance local information from storage;

3. MSNO retrieves the local NS ID from the mapping database, which allows to map with the site NS IDs;

4. In case that NS has not been instantiated yet, the MSNO returns the local information;

5. For each site with a nested NS, the MSNO retrieves the NS information from site NFV-O;

6. All the information is aggregated and stored locally;

7. The aggregated NS information is sent to the client.

3.2.3.3 Instantiate NS

This service allows to instantiate a Network Service that has been previously onboarded into the IWL. This is

the second step for deploying a NS into 5G EVE as the result is the Network Service deploying in the target

site(s) selected by the Experimenter.

The resource URI is: {apiRoot}/mslcm/v1/ns_instances/{nsInstanceId}/instantiate, and the resource method

is POST.

In order to guarantee the backward compatibility of this operation with the previous releases (MS8 and MS9

releases), we implemented a selection logic described in Figure 13. The logic is as follows:

1. If SapData (Radio Slice Information) is not present and there is only one target site, the request is sent

to the legacy logic (described in D3.4 [16])

2. If SapData is present, the new logic is used even if the NS is deployed in a single site

As it is mentioned, the MSNO implements a distributed transaction in order to deploy a Multi-Site Network

Service. Each nested Network Service and Radio Slice is deployed in a single atomic transaction in parallel,

and the MSNO is in charge of controlling the distributed transactions, as is described in Figure 14 and Figure

15.

Figure 13: Selection logic

The workflow is as follows:

1. A Client send an Instantiation request with one or multiple nested NS and optionally with Radio Slice

Information(s);

2. The MSNO analyse the input parameters as it is described in Figure 13;

3. The MSNO checks the local information to see if the NS is onboarded and not instantiated.

Input parametes

SapData == [] &&
targetSite ==
singleSite?

Yes MS8 Instantiate

SapData != [] &&
targetSite ==
singleSite?

Yes targetSite[ROOTNS]=TargetSite

Extract target
sites

28

Figure 14: Workflow 1 for the Instantiate Request

In the next steps of the workflow, the MSNO interacts with the MS Catalogue to retrieve the NSD information

of composite NSD and for each nested NSD. The MSNO also checks that the NSD is onboarded correctly in

each of the sites.

Once the MSNO has all the information about composite and nested NSD, it resolves which NFV-O (for NS)

and which RAN-O (for RAN) are involved in the distributed transaction and it starts in parallel the onboarding

and instantiation process in each orchestrator as distributed atomic operations, as we can see in Figure 15.

For each

nested NS

Multi-Site

Network

Orchestrator

Client

Analyze
input

parameters

Local

Storage

InstantiateNsRequest
nsInstanceId

targetSite
[SapData]

Get NsInstance

404 Not Found

500 Already Instantiated

Multi-Site

Catalog

Get NSDInfo (filter: NSD Id)

Retrieve NSDInfo (NsdInfo, nested NS)

Adaptation

Layer

IWL

Repository

Get NSDInfo (filter: NSD Id) + NSD content

Retrieve NSDInfo (NsdInfo, Supported Sites)

targetSite not in
Supported Sites

NFV-O
resolver

Check mapping IDs

CreateNsRequest (NSD Id, NFV-O)

NSInstance (UUID, Location)

Error onboarding in local nfvo

Store mapping IDs

29

Figure 15: Workflow 2 of the Instantiation Request

In case of all transactions are successful, the MSNO returns the aggregated information of the composite NS,

with a link to the new NS resource. In case of any issue, the MSNO has a distributed rollback procedure that is

in charge of rolling back all the successful transactions, in order to remove any partial instantiation.

3.2.3.4 Terminate NS

This service allows to terminate a Network Service.

The resource URI is: {apiRoot}/mslcm/v1/ns_instances/{nsInstanceId}/terminate, and the resource method

is POST.

The termination workflow implemented in MSNO is similar to the Instantiation workflow but in this case, the

MSNO assumes that the distributed transaction will success in all NFV-O. In case of any failure, there is no

special logic implemented in the MSNO as it is expected a manually intervention for checking the errors.

For each

site

For each

nested NS

For each

NS and

SapData

Multi-Site

Network

Orchestrator

Client
Local

Storage

Multi-Site

Catalog

Adaptation

Layer

IWL

Repository

InstantiateNsRequest (nsInstanceId, SapData[], nfvo-id)

Any Error

rollback

InstantiateNsRequest (nsInstanceId, nfvo-id)

Any Error

rollback

202 Location

202 Location

Store Op Occ

Terminate and Delete NsInstance (NFO-ID, UUID)

HTTP Result

HTTP Error (ProblemDetails)

R
o

ll
b

a
c

k

30

Figure 16: Termination Workflow

3.2.3.5 Delete NS

Deletes a Network Service from the 5G EVE platform. All resources are cleaned at IWL level as well as site

NFV-O level.

The resource URI is: {apiRoot}/mslcm/v1/ns_instances/{nsInstanceId}, and the resource method is DELETE.

The workflow is:

1. Client sends a delete request with the NS instance ID;

2. MSNO retrieves local NS information;

3. In case of NS state is not NOT_INSTANTIATED, MSNO responds with a 409 Conflict (Note: as the

local status in this drop is not synced with local NFVO, this check is skipped);

4. MSNO retrieves local ID for the NS instance;

5. MSNO sends the Delete NS request to the all NFV-O;

6. MSNO deletes NS and local ID from storage;

7. MSNO forwards the response to the client.

For each

site

For each

nested NS

Multi-Site

Network

Orchestrator

Client
Local

Storage

TerminateNS Request

Get NsInstance

404 Not Found

Multi-Site

Catalog

Adaptation

Layer

IWL

Repository

Check mapping IDs

TerminateNsRequest (nsInstanceId, nfvo-id)

Any Error

TerminateNsRequest (nsInstanceId, nfvo-id)

Any Error

202 Location

Store Op Occ

202 Location

Store Op Occ

202 Location

31

3.2.4 Docker HUB images

One of the improvements in the Continuous Integration that we implemented in the IWL is the delivery of the

MSNO, that now is done using a public Docker HUB Image. The MSNO public images are available on the

project repository1314.

3.3 Data Collection Manager

As already commented in the deliverable D3.4 ([16]), the Data Collection Manager (DCM) is the component

responsible for the collection, persistence and delivery of all the network and vertical performance metrics, and

also KPI values, which are required to be gathered during the execution of experiments, with two main

objectives: monitor the experiment (thanks to the Monitoring and Result Collection tools provided within WP4

scope) and validate the targeted KPIs (thanks to the KPI Validation Framework proposed and developed within

WP5 scope). To provide these capabilities, this component is based on the implementation of the publish-

subscribe paradigm, using a message brokering system based on Apache Kafka15 and Apache ZooKeeper16.

The main improvement to be presented in this deliverable is the final configuration of the multi-broker

architecture of the Data Collection Manager, enabling then the interconnection between the site brokers and the

main broker placed in the Interworking Layer. This will be presented in the next subchapters.

3.3.1 Software architecture

To implement the multi-broker architecture for the Data Collection Manager, the system architecture has to be

adapted to fully integrate the automatic configuration of all the brokers. This new, final architecture of the Data

Collection Manager (DCM) is presented in the following Figure 17.

In this architecture, the names of the internal components of the DCM defined in deliverable D3.4 have been

renamed to fit in a general design. In this way, the Python logic is now called DCM Handler, Apache ZooKeeper

has been renamed to Broker Coordinator, and Apache Kafka is called Main Broker in the DCM and Site Broker

in each site facility. Furthermore, the reference to “subscribe” operations in the diagram has been renamed to

“deliver”, as the real exchange of information between Kafka and the subscribers is the delivery of monitoring

data.

The DCM Handler17 performs the same functionalities reported in deliverable D3.4 (i.e., it is in charge of the

topic management in coordination with the Experiment Lifecycle Manager (ELM) and with the Data Collection

and Storage-Data Visualization (DCS-DV)), but also including new functionalities related to the new internal

components included in the DCM architecture. These new components are the following:

• The DCM Site Plugin18 is an entity running on each site facility, providing a REST API to manage the

lifecycle of the topics to be created on each site. Therefore, the DCM Handler, apart from

creating/deleting the topics in the DCM, it also sends a request to the DCM Site Plugin to create/delete

the topic in the site facility.

• To coordinate the lifecycle of the topics to be created in the DCM and the sites, a set of MirrorMaker

Processes (one for each topic related to metrics and KPIs instantiated in the system) are required. These

13 https://hub.docker.com/repository/docker/5geve/msno

14 https://hub.docker.com/repository/docker/5geve/storage

15 https://kafka.apache.org/

16 https://zookeeper.apache.org/

17 Code available here: https://github.com/5GEVE/5geve-wp3-dcm-handler (tag v0.2).

18 Code available here: https://github.com/5GEVE/5geve-wp3-dcm-site-plugin (tag v0.1).

https://hub.docker.com/repository/docker/5geve/msno
https://hub.docker.com/repository/docker/5geve/storage
https://kafka.apache.org/
https://zookeeper.apache.org/
https://github.com/5GEVE/5geve-wp3-dcm-handler
https://github.com/5GEVE/5geve-wp3-dcm-site-plugin

32

processes, managed by the DCM Handler, are based on the Kafka’s Mirroring feature19, which enables

the maintenance of a replica of an existing Kafka topic. In this way, each MirrorMaker Process implies

the creation of a subscriber to the topic created in the site facility, together with a publisher that

publishes the monitoring data received into the topic created in the DCM.

Figure 17: Data Collection Manager final architecture

Thanks to this new architecture, the separate management of each Kafka broker is assured, as each Kafka broker

is coordinated by a single instance of the Broker Coordinator and is only accessed by the components connected

to the site in which they are deployed (i.e. a component from a given site cannot access to the Kafka broker

from a different site; to do this, it needs to connect to the Main Broker in the IWL, which has a copy of all the

topics instantiated in the platform). This is one of the main changes in the architecture compared to the one

presented in deliverable D3.4, in which one single Broker Coordinator was used to control all the deployed

brokers. However, this design also enables the delivery of all the monitoring data towards the DCM in the Main

Broker, offering this monitoring data to upper layers (i.e., the Result Analysis Validation (RAV) for calculating

the KPIs associated, or the DCS-DV to save the data and display them through dashboards).

The ports used in the communication between components are the same than the ones presented in deliverable

D3.4, also using the port 8090 in each DCM Site Plugin for the communication between the DCM Handler and

this module. Its OpenAPI is also provided in Section 3.3.2.

Finally, note that the deployment steps to be followed to configure the DCM from scratch can be found in the

5G EVE Github repository20.

19 https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=27846330

20 Deployment steps available here: https://github.com/5GEVE/5geve-wp3-dcm-deployment (tag v0.2).

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=27846330
https://github.com/5GEVE/5geve-wp3-dcm-deployment

33

3.3.2 Open API description

The updated OpenAPI specifications of both the DCM Handler and the DCM Site Plugin are available in the

5G EVE Github repository21, and are also presented in the following Table 4. In the case of the DCM Handler,

it is the same than the one reported in deliverable D3.4.

Table 4: Data Collection Manager operations from its Open API specification

Service Path Method Input Output Description

DCM

Handler

/dcm/subs-

cribe

POST expId = internal

topic =

signalling topic

name

201 –

accepted

400 -

error

Subscribe22 to the signalling topic provided

as input in the body request.

DCM

Handler

/dcm/un-

subscribe

DELETE expId = internal

topic =

signalling topic

name

201 –

accepted

400 -

error

Unsubscribe to the signalling topic provided

as input in the body request.

DCM

Handler

/dcm/pu-

blish/<to-

pic>

POST topic =

signalling

topic23.

Array of

records24

containing

values with the

information

related to the

topics to be

subscribed/un-

subscribed.

201 –

accepted

400 –

error

Publish the information related to the topics

that will be created during the experiment

(and deleted afterwards) in the signalling

topics, so that the DCM triggers all the

mechanisms to create the topics in Kafka and

to distribute them to the proper entities.

DCM Site

Plugin

/dcm_plugi

n/<topic>

POST topic to be

created

200 –

OK

500 -

error

Create the topic provided in the URL in the

site facility.

DCM Site

Plugin

/dcm_plugi

n/<topic>

DELETE topic to be

deleted

200 –

OK

500 -

error

Delete the topic provided in the URL in the

site facility.

3.3.3 Service description

The same service description provided for the DCM in deliverable D3.4 also applies to this last version of the

component. However, there are some minor changes to be applied in the workflows to fit in the new multi-

21 Specifications available here: https://github.com/5GEVE/OpenAPI/tree/master/DataCollectionManager.

22 Note that the subscribe and unsubscribe operations for the topics related to metrics and KPIs do not need to expose an external API,

as it is directly handled by the DCM Handler with direct interactions with Apache ZooKeeper.

23 For the moment, the data managed by this endpoint is exclusively related to the messages sent by the ELM to subscribe/unsubscribe

to the topics related to the experiment. This endpoint will not be finally used to publish data in Kafka in another topic.

24 Examples with the format of this array of records can be found in deliverable D4.4 – Annex A.

https://github.com/5GEVE/OpenAPI/tree/master/DataCollectionManager

34

broker architecture. As a result, the three phases related to the monitoring workflow are updated25 in the

following way:

• Subscription phase (Figure 18): in the updated workflow, the interaction between the IWL and the

sites to properly configure the topics is integrated. In this way, when the DCM Handler receives the

topics to be created in the platform from the ELM (message 7’), it creates all the topics in the Main

Broker (message 8’), and then it sends a request to the corresponding DCM Site Plugin for each topic

(message 9’), which creates the same topic in the corresponding Site Broker and then confirms the

operation (message 10’) to the DCM Site Plugin. Finally, the DCM Site Plugin creates the MirrorMaker

processes for each topic (message 11’), linking then the topics created in both brokers. After this, the

data is delivered to the DCS (message 12’).

25 In this deliverable, the updates to be commented are the ones related to the Data Collection Manager. For the workflow related to the

Portal components, please check the deliverable D4.6.

35

Figure 18: Subscription to the topics used for experiment monitoring and performance analysis purposes.

• Monitoring and data collection phase (Figure 19): in the same way than the previous workflow, the

monitoring and data collection phase also presents the interaction between the sites and the Data

Collection Manager. As a result, when the logs are extracted (message 1), transformed (message 2) and

published (message 3) by the Data Shippers in the corresponding Site Broker, the monitoring data is

then replicated towards the corresponding MirrorMaker process (message 4). As commented before,

the MirrorMaker process, for each topic, has a subscriber for the topic created in the corresponding site

facility and a publisher in the topic created in the DCM. So, when the subscriber receives the monitoring

data, it automatically sends it to the Main Broker (message 5). After this, the workflow is exactly the

same than the one presented in deliverable D3.4.

36

Figure 19: Delivery and management of monitoring information during the experiment execution

• Withdrawal phase (Figure 20): finally, the withdrawal phase follows an identical approach than the

one presented for the subscription phase, but in the opposite way. Firstly, the configuration is removed

from the DCS (messages from 3’ to 5’), to remove the subscribers to the topics. Then, the MirrorMaker

processes for each topic are deleted (message 6’), and after this, the DCM Handler contacts the

corresponding DCM Site Plugin to delete the topic from the Site Broker (message 7’), receiving the

confirmation from the DCM Site Plugin (message 8’). To conclude, the topic is also deleted from the

Main Broker in the IWL (message 9’).

37

Figure 20: Withdrawal of the topics used for experiment monitoring and performance analysis purposes.

3.4 Runtime Configurator

As stated in deliverable D3.4, the Runtime Configurator (RC) is the component in charge of supporting the

experiment configuration, execution and termination through the interaction with the Experiment Execution

Manager (EEM), handling the commands to be executed in the different phases of an experiment, differentiating

between the Day-2 configuration of the targeted servers, both VNFs/PNFs or infrastructure components, and

the experiment execution itself, executing the commands related to each step of the experiment in the

38

corresponding servers. The main module of this component is Ansible Core26, using SSH for connecting to the

components from each site facility for executing the commands provided for a given execution. The interaction

between the Experiment Execution Manager and the RC is based on a REST API, to easily manage the lifecycle

of the configurations and executions to be made.

3.4.1 Software architecture

Compared to the architecture provided in deliverable D3.4, the proposed architecture of the RC is mainly the

same but including small changes in the names used for the internal modules related to this component. The

updated architecture is depicted in Figure 21.

Figure 21: Runtime Configurator final architecture

Firstly, the Java logic has been renamed to RC Handler27, to generalize the terms used to describe the modules.

The features offered by the RC Handler have not changed, but it now includes interactions with the MSNO for

retrieving the public/private IP addresses related to a given network service, to be used for certain Data Shippers

related to infrastructure metrics that may need that information.

Another change that has been done is the removal of the REST client as a southbound API in the RC Handler,

as all the use cases will finally interact by using Ansible28.

As a result, there are small changes to be considered29 in the data model managed by the RC Handler, which is

presented in Figure 22.

26 https://docs.ansible.com/ansible/latest/index.html

27 Code available here: https://github.com/5GEVE/5geve-wp3-rc-handler (tag v0.3).

28 The playbooks used by the RC Handler are available here: https://github.com/5GEVE/5geve-rc.

29 The information not provided in this deliverable can be read in deliverable D3.4.

https://docs.ansible.com/ansible/latest/index.html
https://github.com/5GEVE/5geve-wp3-rc-handler
https://github.com/5GEVE/5geve-rc

39

Figure 22: Runtime Configurator data model

The three types of request that are handled between the EEM and the RC are the same: (i) Application Day-2

configuration, (ii) Infrastructure Day-2 configuration and (iii) Execution. To fit in the new integration of the

MSNO, the request made for the Infrastructure Day-2 configuration has been extended to include the

nsInstanceId related to the experiment to be configured, which is optional. If provided, the RC will contact the

MSNO to extract the list of IP addresses related to that network service.

Apart from that, the Script entity in the RC data model has been removed, using single strings to define the

scripts to be saved on each entity. These strings are built based on the information obtained from the different

sources involved in the RC workflow (i.e., EEM provides the scripts related to Application Day-2 configuration

and Execution, and the IWF Repository provides the scripts related to Infrastructure Day-2 configuration).

Finally, as stated before, the access to the components deployed on site facilities will be only done by using

Ansible, which uses the OpenSSH protocol by using specific Ansible playbooks.

In the same way that the DCM, note that the deployment steps to be followed to configure the RC from scratch

can be found in the 5G EVE Github repository30.

3.4.2 Open API description

The updated OpenAPI specification of the RC Handler is available in the 5G EVE Github repository31, and are

also presented in Table 4. It is mostly the same than the one reported in deliverable D3.4 but including the

nsInstanceId in the request to provide the configuration for the Infrastructure Day-2 configuration. The

description of the OpenAPI is presented in Table 5.

Table 5: Runtime Configurator operations from its Open API specification.

Service Path Method Input Output32 Description

RC Handler /rc/nbi GET - 200 - OK

Get RC version and

check that the service is

running.

30 Deployment steps available here: https://github.com/5GEVE/5geve-wp3-rc-deployment (tag v0.3).

31 Specification available here: https://github.com/5GEVE/OpenAPI/tree/master/RuntimeConfigurator (v3 file).

32 The output is always 200 OK, but the operation status is managed thanks to the operation status attribute which is always returned in

all requests.

https://github.com/5GEVE/5geve-wp3-rc-deployment
https://github.com/5GEVE/OpenAPI/tree/master/RuntimeConfigurator

40

RC Handler

/rc/nbi/applicat

ion/day2/confi

guration

POST

configurationScr

ipt = scripts

executed during

start application

Day-2

configuration

operation.

resetConfigScri

pt = scripts

executed during

reset application

Day-2

configuration

operation.

200 - OK

Provide the scripts for

application Day-2

configuration to the RC.

It returns the configId

and the current status of

the operation.

RC Handler

/rc/nbi/applicat

ion/day2/confi

guration/<conf

igId>

GET configId 200 - OK
It returns the current

status of the operation.

RC Handler

/rc/nbi/applicat

ion/day2/confi

guration/<conf

igId>/start

POST configId 200 - OK

Execute the

configurationScript

commands. It returns the

current status of the

operation.

RC Handler

/rc/nbi/applicat

ion/day2/confi

guration/<conf

igId>/reset

POST configId 200 - OK

Execute the

resetConfigScript

commands. It returns the

current status of the

operation.

RC Handler

/rc/nbi/applicat

ion/day2/confi

guration/<conf

igId>/abort

DELETE configId 200 - OK

Abort the current

operation. It returns the

current status of the

operation.

RC Handler

/rc/nbi/infrastr

ucture/day2/co

nfiguration

POST

List<infrastructu

reMetricsInfo>

= list containing

the data related

to each

infrastructure

metric to be

configured.

(Optional)

nsInstanceId =

network service

related to these

infrastructure

metrics.

200 - OK

Provide the information

related to each

infrastructure metric for

the Day-2 configuration

process. It returns the

configId and the current

status of the operation.

RC Handler

/rc/nbi/infrastr

ucture/day2/co

nfiguration/<c

onfigId>

GET configId 200 - OK
It returns the current

status of the operation.

41

RC Handler

/rc/nbi/infrastr

ucture/day2/co

nfiguration/<c

onfigId>/start

POST configId 200 - OK

Execute the

configurationScript

commands (extracted

from the IWF

Repository by the RC).

It returns the current

status of the operation.

RC Handler

/rc/nbi/infrastr

ucture/day2/co

nfiguration/<c

onfigId>/stop

POST configId 200 - OK

Execute the

stopConfigScript

commands (extracted

from the IWF

Repository by the RC).

It returns the current

status of the operation.

RC Handler
/rc/nbi/executi

on
POST

execScript =

commands to be

executed during

Experiment

Execution

phase.

executionId =

identification

provided by the

EEM.

200 - OK

Provide the scripts for

experiment execution to

the RC. It return the

execId and the current

status of the operation.

RC Handler
/rc/nbi/executi

on/<execId>
GET execId 200 - OK

It returns the current

status of the operation.

RC Handler

/rc/nbi/executi

on/<execId>/st

art

POST execId 200 - OK

Execute the execScript

commands. It returns the

current status of the

operation.

RC Handler

/rc/nbi/executi

on/<execId>/a

bort

DELETE execId 200 - OK

Abort the current

operation. It returns the

current status of the

operation.

3.4.3 Service description

Compared to the documentation provided in deliverable D3.4, there have been significant changes in the

information model used to build the scripts to be placed in both the Test Cases Blueprints (TCBs) and the IWF

Repository. In this way, a generic model has been proposed to hide the complexity of invoking Ansible

playbooks to the verticals, moving this complexity to the RC Handler. Apart from that, the specific-purpose

workflows related to the RC will be also updated with the integration of the interaction between the RC and the

MSNO.

3.4.3.1 Final information model to build the scripts

The new version of the RC reported in this deliverable defines an information model for the scripts provided by

the users in both the TCBs and IWF Repository. The operations that can be used are the following:

42

• Execute command33: this operation involves the execution of the command provided as parameter.

The format of this operation is the following: EXECUTE_COMMAND[_WINDOWS] <IP_SERVER>

<USER>:<PASSWORD> <COMMAND>, where:

o EXECUTE_COMMAND[_WINDOWS]: reserved word to make reference to this operation. If

the command is executed in a Linux server, just include EXECUTE_COMMAND here.

However, if the targeted server is a Windows server, just include

EXECUTE_COMMAND_WINDOWS here.

o <IP_SERVER>: IP address of the VNF/PNF/infrastructure in which the instruction will be

executed. In case of using this operation for Application Day-2 configuration or Execution

requests (defined in the TCBs), you have to include the reference to this parameter in the

infrastructureParameters field. However, if it is related to Infrastructure Day-2 configuration

(defined in the IWF Repository), you have to include \$\$ipAddress here.

o <USER>:<PASSWORD>: user and password to access the VNF/PNF/infrastructure. In case

of using this operation for Application Day-2 configuration or Execution requests (defined in

the TCBs), you have to include the reference to this parameter in the userParameters field.

However, if it is related to Infrastructure Day-2 configuration (defined in the IWF Repository),

you have to include \$\$username:\$\$password here.

o <COMMAND>: directly include the command to be executed. Remember that, if you need to

pass parameters to the command (for scripts in the TCBs), you have to include them as

userParameters.

• Sleep34: this operation just executes a sleep. It is useful for steps in which manual interaction with the

components related to the experiment have to be managed, or just to do nothing. The way of invoking

this operation is: SLEEP <SLEEP_TIME>, where:

o SLEEP: reserved word to make reference to this operation.

o <SLEEP_TIME>: time to be slept. This parameter has to be defined in the userParameters

field in the TCBs, or including it manually in case of being related to Infrastructure Day-2

configuration (i.e. it is saved in the IWF Repository).

• Install Filebeat35: this operation enables the installation of Filebeat as Data Shipper in the targeted

server, configuring it to start monitoring a specific metric. The format to be followed for this operation

is the following: INSTALL_FILEBEAT <IP_SERVER> <USER>:<PASSWORD> <METRIC_ID>

<TOPIC_NAME> <SITE> <UNIT> <INTERVAL> <DEVICE_ID> <MONITORED_FILE_PATH>,

where:

o INSTALL_FILEBEAT: reserved word to make reference to this operation.

o <IP_SERVER>: IP address of the VNF/PNF/infrastructure in which the instruction will be

executed. In case of using this operation for Application Day-2 configuration or Execution

requests (defined in the TCBs), you have to include the reference to this parameter in the

infrastructureParameters field. However, if it is related to Infrastructure Day-2 configuration

(defined in the IWF Repository), you have to include \$\$ipAddress here.

o <USER>:<PASSWORD>: user and password to access the VNF/PNF/infrastructure. In case

of using this operation for Application Day-2 configuration or Execution requests (defined in

the TCBs), you have to include the reference to this parameter in the userParameters field.

However, if it is related to Infrastructure Day-2 configuration (defined in the IWF Repository),

you have to include \$\$username:\$\$password here.

o <METRIC_ID>: reference to the metricId. In case of using this operation for Application Day-

2 configuration (defined in the TCBs), you have to include the reference to this parameter in

33 An example of this operation defined in TCBs can be found here: https://github.com/5GEVE/blueprint-

yaml/blob/master/UC_0.1_ApacheSimple/Support_tools/TCB/Simple_UC_TCB.json.

34 An example of this operation defined in TCBs can be found here: https://github.com/5GEVE/blueprint-

yaml/blob/a22b152ccd3808d5f771c3d6e92a027b1a41a92a/UC_ict19_5GSolutions/TCB_5G_Solutions.json.

35 Instructions to use this operation can be found here: https://github.com/5GEVE/5geve-rc/tree/master/install_filebeat.

https://github.com/5GEVE/blueprint-yaml/blob/master/UC_0.1_ApacheSimple/Support_tools/TCB/Simple_UC_TCB.json
https://github.com/5GEVE/blueprint-yaml/blob/master/UC_0.1_ApacheSimple/Support_tools/TCB/Simple_UC_TCB.json
https://github.com/5GEVE/blueprint-yaml/blob/a22b152ccd3808d5f771c3d6e92a027b1a41a92a/UC_ict19_5GSolutions/TCB_5G_Solutions.json
https://github.com/5GEVE/blueprint-yaml/blob/a22b152ccd3808d5f771c3d6e92a027b1a41a92a/UC_ict19_5GSolutions/TCB_5G_Solutions.json
https://github.com/5GEVE/5geve-rc/tree/master/install_filebeat

43

the infrastructureParameters field. However, if it is related to Infrastructure Day-2

configuration (defined in the IWF Repository), you have to include \$\$metric_id here.

o <TOPIC_NAME>: reference to the topic name. In case of using this operation for Application

Day-2 configuration (defined in the TCBs), you have to include the reference to this parameter

in the infrastructureParameters field. However, if it is related to Infrastructure Day-2

configuration (defined in the IWF Repository), you have to include \$\$topic_name here.

o <SITE>: reference to the site facility, to use the proper Kafka Site Broker IP address. In case

of using this operation for Application Day-2 configuration (defined in the TCBs), you have to

include this in the following way: __<SITE_NAME> (e.g. __SPAIN_5TONIC). However, if it

is related to Infrastructure Day-2 configuration (defined in the IWF Repository), you have to

include \$\$broker_ip_address here.

o <UNIT>: reference to the unit of the metric. In case of using this operation for Application

Day-2 configuration (defined in the TCBs), you have to include the reference to this parameter

in the infrastructureParameters field. However, if it is related to Infrastructure Day-2

configuration (defined in the IWF Repository), you have to include \$\$unit here.

o <INTERVAL>: reference to the interval to gather the metric. In case of using this operation for

Application Day-2 configuration (defined in the TCBs), you have to include the reference to

this parameter in the infrastructureParameters field. However, if it is related to Infrastructure

Day-2 configuration (defined in the IWF Repository), you have to include \$\$interval here.

o <DEVICE_ID>: reference to the deviceId. In case of using this operation for Application Day-

2 configuration (defined in the TCBs), you have to include the reference to this parameter in

the infrastructureParameters field. However, if it is related to Infrastructure Day-2

configuration (defined in the IWF Repository), you have to include \$\$deviceId here. If this

parameter is not used in any case, just include nil.

o <MONITORED_FILE_PATH >: reference to the file path to be monitored by Filebeat. In case

of using this operation for Application Day-2 configuration (defined in the TCBs), you have to

include the reference to this parameter in the userParameters field. However, if it is related to

Infrastructure Day-2 configuration (defined in the IWF Repository), you have to include the

explicit file path. The format of this file path must be the following:

/var/log/<METRIC_ID>.log.

For this last operation related to Filebeat, note that the configuration provided in the targeted server is the

installation of Filebeat, listening to changes in the /var/log/<METRIC_ID>.log to publish the data included

there to the Monitoring system. However, the way of feeding that log file is not included and must be provided

in a separate command. To do this, note the following considerations:

• The script to feed the log file can make use of a configuration file provided by the Filebeat operation,

which is placed in /usr/bin/<METRIC_ID>-day2-config.yml, which is a YAML file with the following

content:

broker_ip_address: <Kafka broker IP address in the given site facility – static parameter>
topic_name: <topic to be used for publishing in Kafka – generated in the ELM>
device_id: <ID of the device – from NSO/customized in the TCB>
unit: <unit parameter - from blueprints>
interval: <interval parameter - from blueprints>

• The way that monitoring data must be saved in the log file is by following the CSV format proposed in

deliverable D3.4, section 3.4.3.3, related to the information model to publish monitored data in the

Monitoring platform. It is the following (device_id and context are optional fields, which must be set to

‘nil’ if they are not used. In the case of the context field, if used, it must contain the values in the

following format: param1=value1 param2=value2, etc., i.e. param=value items separated by spaces).

<metric_value>,<timestamp>,<unit>,[<device_id>],[<context>]

In this case, however, the batch option is not possible. Note that, again, device_id and context are

optional fields, which must be set to ‘nil’ if they are not used.

44

An example of a TCB making use of all these three operations is provided below. The following TCB is based

on two VNFs, configuring one metric on each VNF: track_device in VNFA (using Filebeat) and delay_iface in

VNFB (using a specific script36). Note that, if more than one script is provided in the

configurationScript/executionScript/resetConfigScript fields, they have to be separated by a “;”. The example

is the following:

testCaseBlueprint:
 description: Example for integration with the RC
 name: Example TCB
 configurationScript: INSTALL_FILEBEAT vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress
$$userA:$$passwordA track_device $metric.topic.track_device $$metric.site.track_device
$$metric.unit.track_device $$metric.interval.track_device $$metric.deviceId.track_device
$$monitoredPath1;
 EXECUTE_COMMAND vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress $$userB:$$passwordB "/bin/bash
/home/eve/install_datashipper.sh delay_iface $$metric.topic.delay_iface $$metric.site.delay_iface
$$metric.unit.delay_iface $$metric.interval.delay_iface $$metric.deviceId.delay_iface";
 EXECUTE_COMMAND vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress $$userA:$$passwordA "sudo apt-get
install python3"
 executionScript: EXECUTE_COMMAND vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress $$userA:$$passwordA
"ping -c5 vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress";
 SLEEP $$sleepTime;
 EXECUTE_COMMAND vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress $$userB:$$passwordB "ping -c5
vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress";
 resetConfigScript: EXECUTE_COMMAND vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress $$userA:$$passwordA
"sudo systemctl stop filebeat";
 EXECUTE_COMMAND vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress $$userB:$$passwordB "/bin/bash
/home/eve/stop_datashipper.sh";
 userParameters:
 userA: $$userA
 passwordA: $$passwordA
 userB: $$userB
 passwordB: $$passwordB
 monitoredPath1: $$monitoredPath1
 sleep_time: $$sleepTime
 infrastructureParameters:
 $$metric.topic.track_device
 $$metric.site.track_device
 $$metric.unit.track_device
 $$metric.interval.track_device
 $$metric.deviceId.track_device
 $$metric.topic.delay_iface
 $$metric.site.delay_iface
 $$metric.unit.delay_iface
 $$metric.interval.delay_iface
 $$metric.deviceId.delay_iface
 vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress
 vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress
 version: '2.0'

Although a specific example for each operation and a general example using all operations have been provided,

note that there are examples of Test Case Blueprints that can be used as base to build TCBs for other use cases

in the 5G EVE Github repository37.

36 In fact, this example can be used as base to invoke commands that triggers scripts in the targeted servers that provides the data needed

by the Data Shippers to publish the data in the corresponding Site Broker.

37 Blueprints available here: https://github.com/5GEVE/blueprint-yaml. Just access to the different use cases and check the TCBs

provided.

https://github.com/5GEVE/blueprint-yaml

45

Moreover, for the definition of Data Shippers in the IWF Repository, the following example is provided as a

reference. These scripts have to be provided to the partner responsible for the IWF Repository for including

them in the repository:

 "dataShipperId": "SPAIN_5TONIC.LATENCY_USERPLANE",
 "ipAddress": "1.2.3.4",
 "username": "user",
 "password": "password",
 "configurationScript": “EXECUTE_COMMAND \$\$ipAddress \$\$username:\$\$password \"/home/user
/add_metric.sh \$\$metric_id \$\$broker_ip_address \$\$topic_name \$\$device_id \$\$unit
\$\$interval\"; EXECUTE_COMMAND \$\$ipAddress \$\$username:\$\$password \"/home/user/start.sh
\$\$metric_id\";",
 "stopConfigScript": “EXECUTE_COMMAND \$\$ipAddress \$\$username:\$\$password
\"/home/user/stop.sh \$\$metric_id\";",
 "metricType": "CPU_CONSUMPTION"

Some particularities must be considered when creating a script to be placed in the IWF Repository:

• The dataShipperId must be composed in the following way: <SITE>. <METRIC_ID>.

• The configurationScript and stopConfigScript fields must include the references to the fields related to

the infrastructure metric (e.g., topic name, unit, interval, etc.) in order to do the translation in the RC.

o If your Data Shipper is using VNF IP addresses obtained from the MSNO, the reference for

this field is /$/$vnfIpAddresses. The IPs are provided in a comma-separated string (e.g.,

1.2.3.4,5.6.7.8).

• The metricType is related to the iMetricType defined in the blueprints.

3.4.3.2 Final specific-purpose workflows

The workflows related to the operation of the RC are exactly the same to the ones presented in deliverable D3.4,

but just changing the step number 3, related to the starting of the infrastructure Day-2 configuration process, as

the interaction with the MSNO may be needed. The workflow including this interaction is presented in Figure

23, which only includes an optional interaction with the MSNO prior to the interaction with the IWF Repository,

only triggered if the nsInstanceId is provided in the request from the EEM.

46

Figure 23: Execution of infrastructure Day-2 configuration scripts

3.5 Adaptation Layer

As already commented in the deliverable D3.4, the Adaptation Layer at the South-Bound Interface (SBI)

provides a common access interface to trial site services and resources. Specifically, multiple software

components build the overall implementation, and they are distinct based on the specific feature to be accessed

(i.e., orchestration, configuration, monitoring). In D3.2 ([2]) we report a complete presentation of requirements,

features, and high-level design. The following subsections provide a description of the implementation process,

software architecture and technologies for each part of the Adaptation Layer.

3.5.1 Multi-Site Catalogue SBI

The Multi-Site Catalogue described in Section 3.1 includes SBI operations for the management of NSDs,

VNFDs and PNFDs in the local NFVOs. Furthermore, it features a synchronization mechanism to keep the

Interworking Layer aligned with the information available in the local NFVO catalogues. To achieve this, the

Multi-Site Catalogue is structured with a driver-based architecture. Each driver is in charge of the translation of

the NSD, VNFD, and PNFD from the standard ETSI NFV SOL 001 [8] model to the specific model of the

targeted NFVO type. Reverse translation is supported as well. The driver also implements the required

adaptations to interact with the NSD Management API of the specific NFVO.

In this software release of the Multi-Site Catalogue includes an OSM driver (that is compatible with OSM R4,

R5, R6, R7 and R8) that allows to integrate with the Italian, Spanish and Greek site facilities (i.e., all of them

make use of OSM as site orchestrator), a driver to integrate the ONAP NFV Orchestrators and a third driver

named 5Growth. More details can be found in Section 3.1.1.

47

3.5.2 Multi-Site NSO to local Orchestrator’s interface

As already commented in the deliverable D3.4, the Multi-Site NSO to local Orchestrator interface (MSO-LO)

is the portion of the Adaptation Layer that enables the Interworking Layer to access the orchestration features

provided by the trial sites involved in the 5G EVE project. Trial sites can expose one or more local Network

Function Virtualization Orchestrator (NFVO), each one managing a different set of resources.

This interface provides the following features:

1. Operations to retrieve information about local NFVOs registered with the 5G EVE platform.

2. Operations to retrieve, create, instantiate, scale, terminate, and delete NS instances.

3. Operations to retrieve, create, and delete subscriptions to notifications about the status of one or more

NS instance.

3.5.2.1 Application architecture

The application architecture already developed in the previous software release continues to be applicable. For

the sake of completeness, a brief description of its main components is provided below. MSO-LO is a web

service that exposes an NBI based on the REST architectural style. To implement this module, we mainly used

tools for API description / documentation and tools for web service implementation. Due to the technology

used, a reverse proxy is used to bundle all communications between MSO and the MSO-LO backend.

Figure 24: Architecture of the application

As shown in Figure 24, the architecture of the application is composed by the following components:

• Reverse proxy: we use the popular NGINX38.

• WSGI server: we use uWSGI39 typically used for running Python web applications.

• Webservice: we use the lightweight micro-framework Flask40 written in python, that is designed for a

quick and easy “getting started”, with the ability to scale up to complex applications.

• In-memory data store: we use Redis41, an open source (BSD licensed), in-memory data structure store,

used as a database, cache and message broker.

• Periodic and background tasks manager: we use Celery42 , an open source asynchronous task queue or

job queue which is based on distributed message passing.

Then the execution flow is as follows: a generic HTTP Client initiates a request to NGINX which forwards the

request to uWSGI using a Unix socket. Then uWSGI forwards the request to Flask which handles the request

and generates the response, finally the response is returned across the stack.

38 https://www.nginx.com/

39 https://uwsgi-docs.readthedocs.io/en/latest/

40 https://flask.palletsprojects.com/en/1.1.x/

41 https://redis.io/

42 https://docs.celeryproject.org/en/stable/

48

Concerning the persistent storage, we use the IWF Repository component. Furthermore, we use a Redis instance

as an in-memory storage database to support the background task scheduler (celery), the tracking of LCM

operation status and shared information between multiple processes of the MSO-LO.

3.5.2.2 Software architecture

With respect to the previous release the working principle of the software architecture remains the same, but

new driver implementations are added, specifically we support two new drivers EVER, which supports the new

Radio Access Network Orchestrators, RANO, (EVER, Network Controller) and FIVEGR_SO, which is used to

integrate 5Growth (ICT-19 project) sites into 5G EVE framework. As mentioned in D3.4 the goal of MSO-LO

is providing a common interface to access the features of various NFVO types without restrictions on open-

source or proprietary licenses. In order to ensure the dual objective of supporting the NFVO implementations

currently declared in the 5G EVE project and supporting the inclusion of new NFVO technologies in the future,

we have designed the software with a driver-based architecture as illustrated in Figure 25.

Figure 25: UML class diagram with an example method of the interface.

Figure 25 shows a simplified version of the UML class diagram with just one method of the API, which is

enough to explain how the software works. As we use Python for the software implementation, not all the classes

shown in the diagram are Python classes. Some entities are just modules, as they do not need to store any status

but are a mere collection of static methods.

The app module contains the declaration of the REST API paths and related HTTP operations. Furthermore, it

includes the mapping between the previous entities and the relevant Python method. The method

implementation here is generic and agnostic from the specific type of local NFVO.

The other entities in the figure implement the factory method design pattern [13]. The pattern is very effective

for our solution as it separates the creation of driver instances from the app module that actually uses them.

Indeed, the app module depends (dashed arrow) from the manager module for the selection of the specific

NFVO implementation. The manager module implements the factory method plus some utility methods for the

interaction with the NFVO database.

The Driver abstract class realizes a contract for the driver implementation and is implemented by means of the

Abstract Base Class Python module (ABC43). The addition of a specific NFVO driver simply consists in the

extension of Driver and in the implementation of all its declared methods.

43 https://docs.python.org/3/library/abc.html

49

To better understand the interactions between the modules and class instances, we use a message sequence chart.

Figure 26 shows the interactions needed to obtain the list of NS instances from the catalogue of an OSM NFVO

identified with ‘osm_1’.

Figure 26: Message sequence chart to show modules and objects interactions.

At step 1, a GET request to the path “/nfvo/osm_1/ns_instances” is routed to the app module. The app module

executes the relevant method (step 2). At step 3, the app module requests the appropriate driver to the manager.

The manager determines the appropriate driver (step 4), creates an instance of the OSM driver (step 5), and

returns it to the app module (step 6). The app module actually receives an object of generic type Driver. In step

7, app calls the relevant method and in step 8 it receives the result.

Regarding the NS Lifecycle Management Notification, the MSO-LO provides an API interface compliant to the

ETSI NFV SOL005 specification, supporting three types of notifications:

• NsLcmOperationOccurrenceNotification: Inform subscribed clients about an event in the lifecycle of

an NS. The notification includes NS id, OpOcc id, StateType (PROCESSING, COMPLETED, etc.) and

affected components.

• NsIdentifierCreationNotification: Informs subscribed clients about NS id creation.

• NsIdentifierDeletionNotification: Informs subscribed clients about NS id deletion.

The solution provides a generic subscription system to allow clients to filter out notifications and receive only

the ones about NS instances they are interested about. Subscriptions are stored in the IWF Repository and the

MSO-LO northbound interface provides CRUD methods for their management. More details on supported

REST operations can be found in Section 3.5.2.4. A crucial part of the subscription information element is the

“uri”. This element must be a valid HTTP endpoint enabled by the subscribing client to receive notifications.

MSO-LO sends notifications via a POST request targeting the aforementioned “uri”.

The notifications management is delegated to specific components, responsible for checking the status of

operations applied to NS instances for each type of NFVO. To better understand how the specific components

works, we use a message sequence chart for each of them to show the interaction of the MSO-LO with the other

components of the 5G EVE ecosystem.

Figure 27 shows the case of the ONAP NFVO located in the French Site. At first step, the MSNO sends a

request to instantiate an NS Instance, and the MSO-LO takes care to handle the request forwarding it to the

specific ONAP Translation Component. At step 2 the MSNO sends a request in order to create a subscription

for a specific NS Instance to the MSO-LO (the one that has been just created) and, if the request is valid, the

subscription is stored inside the IWF Repository.

As soon as the ONAP Translation Component has a change of state for an operation to be notified, it sends a

POST on the SBI of the MSO-LO, specifically on the endpoint “/nfvo/{nfvoId}/notifications”. At this point,

50

the MSO-LO takes care of the notification and checks whether there are any subscriptions related to the NS

Instance involved and it forwards the notification on the URI that was defined by the MSNO during the creation

of the subscription.

Figure 27: Subscriptions and notifications management for ONAP

Figure 28 shows the case of the OSM NFVO. The first two steps, the instance creation and the subscription

creation, are similar to the use case of the ONAP NFVO described above. Contrary to the previous case, the

OSM NFVO is not able to independently notify a change of state happening on one of its managed resources.

Then, a background process is activated within the MSO-LO that periodically check for any operations

happening in the OSM NFVO. The last state of a specific operation is stored in an in-memory storage

implemented with Redis, a key-value database. If a change in the operation’s state is detected, the MSO-LO

takes care of forwarding the notification to the subscribed client.

51

Figure 28: Subscriptions and notifications management for OSM

3.5.2.3 OSM specific features

The OSM specific features remains the same as described in D3.4, in particular the sites hosting the OSM NFVO

have shown the need to support additional parameters during the instantiation phase. To meet this request the

MSO-LO, in accordance with the ETSI NFV-SOL 005 ([5]) standard, supports the “additionalParamsForNs”

field in the body of requests to the endpoint “/nfvo/{nfvoId}/ns_instance/{nsInstanceId}/instantiate”. The

information included in this field is only processed by the OSM driver, while other drivers ignore it.

The following instantiation parameters are supported:

• vim network name: this allows the association of a VLD to an existing network in the targeted site,

useful when there is a static management network.

• vim account: this allows the MSO to specify in which VIM a particular VNF must be instantiated, useful

in case there are multiple VIMs within a site.

3.5.2.4 Open API description

It is possible to view the updated version of the API specification in the 5G EVE public organization hosted on

GitHub44. Table 6 and Table 7 summarize in tabular format the contents of the YAML file containing the API

methods offered by the MSO-LO interface, respectively for the NFVO and RANO interfaces.

Table 6: MSO-LO API interface for NFVO

Service Path Method Input Output Description

MSO-LO /nfvo GET -
Array of

NFVO info

Retrieve list of

local NFVO.

44 https://github.com/5GEVE/OpenAPI

52

MSO-LO /nfvo/{nfvoId} GET - NFVO info

Read an

individual

NFVO.

MSO-LO
/nfvo/{nfvoId}/ns_in

stances
POST

nsdId,

nsName,

nsDescription

NS identifier

Creates and

returns a

Network Service

identifier (nsId)

in a Nfvo

MSO-LO
/nfvo/{nfvoId}/ns_in

stances
GET -

Array of NS

instances

Retrieve list of

NS instances.

MSO-LO

/nfvo/{nfvoId}/ns_in

stances/{nsInstanceI

d}

GET - NS instance

Read an

individual NS

instance resource.

MSO-LO

/nfvo/{nfvoId}/ns_in

stances/{nsInstanceI

d}

DELETE - -

Delete an

individual NS

instance resource.

MSO-LO

/nfvo/{nfvoId}/ns_in

stance/{nsInstanceId

}/instantiate

POST nsFlavourId -
Instantiate a NS

instance.

MSO-LO

/nfvo/{nfvoId}/ns_in

stance/{nsInstanceId

}/terminate

POST
terminationTi

me
-

Terminate a NS

instance.

MSO-LO
/nfvo/{nfvoId}/subsc

riptions
POST

filter,

callbackUri

subscription

identifier

Subscribe to NS

lifecycle change

notifications.

MSO-LO
/nfvo/{nfvoId}/ns_lc

m_op_occs
GET -

Array of NS

LCM

operation

Query multiple

NS LCM

operation

MSO-LO

/nfvo/{nfvoId}/ns_lc

m_op_occs/{nsLcm

OpOccId}

GET
nsLcmOpOccI

d

NS LCM

operation

Read an

individual NS

LCM operation

occurrence

resource.

MSO-LO
/nfvo/{nfvoId}/subsc

riptions
GET -

Array of

subscription

information

Query multiple

subscriptions.

MSO-LO

/nfvo/{nfvoId}/subsc

riptions/{subscriptio

nId}

GET -
subscription

information

Read an

individual

subscription

resource.

MSO-LO

/nfvo/{nfvoId}/subsc

riptions/{subscriptio

nId}

DELETE - -
Terminate a

subscription.

MSO-LO
/nfvo/{nfvoId}/notifi

cation
POST

nsInstanceId

operation
-

Notify a status

change of a

53

operationState
operation state to

MSO-LO

Table 7: MSO-LO API interface for RANO

Service Path Method Input Output Description

MSO-LO /rano GET -
Array of

RANO info

Retrieve list of

local RANO.

MSO-LO /rano/{ranoId} GET - RANO info

Read an

individual

RANO.

MSO-LO
/rano/{ranoId}/ns_in

stances
POST

nsdId,

nsName,

nsDescription

NS identifier

Creates and

returns a

Network Service

identifier (nsId)

in a Nfvo

MSO-LO
/rano/{ranoId}/ns_in

stances
GET -

Array of NS

instances

Retrieve list of

NS instances.

MSO-LO

/rano/{ranoId}/ns_in

stances/{nsInstanceI

d}

GET - NS instance

Read an

individual NS

instance resource.

MSO-LO

/rano/{ranoId}/ns_in

stances/{nsInstanceI

d}

DELETE - -

Delete an

individual NS

instance resource.

MSO-LO

/rano/{ranoId}/ns_in

stance/{nsInstanceId

}/instantiate

POST nsFlavourId -
Instantiate a NS

instance.

MSO-LO

/rano/{ranoId}/ns_in

stance/{nsInstanceId

}/terminate

POST
terminationTi

me
-

Terminate a NS

instance.

MSO-LO
/rano/{ranoId}/

ns_lcm_op_occs
GET -

Array of NS

LCM

operation

Query multiple

NS LCM

operation

MSO-LO

/rano/{ranoId}//ns_lc

m_op_occs/{nsLcm

OpOccId}

GET
nsLcmOpOccI

d

NS LCM

operation

Read an

individual NS

LCM operation

occurrence

resource.

54

3.6 IWF Repository

As stated in deliverable D3.4 the 5G EVE IWF Repository is the component in charge of storing shared

information about sites and their features. It acts as a centralized storage element, exposing its data to other

components of the Interworking Framework via a REST HTTP interface. The source code can be found in

GitHub45.

3.6.1 Software architecture

With respect to the previous release the working principle of the software architecture remains the same, but in

this release the major changes concern the information elements, in particular Figure 30 shows an updated and

detailed Entity-Relationship diagram of the generated database. The IWF Repository is a REST HTTP Java

application using a PostgreSQL database for persistent storage. To enforce best practices and speed up the

development process, we use the Spring Framework46 and the Spring Boot configuration convention. Figure 29

shows the IWF components that make use of the IWF Repository in their operational workflows.

Figure 29: IWL components that use the IWF Repository.

Information elements as mentioned in D3.4 are encoded as Java classes and annotated with ‘@Entity’ following

the standard defined by the Java Persistence API. The Spring Framework, thanks to Hibernate47, uses the

annotations to define the data structures in PostgreSQL using the proper Data Definition Language. No direct

interaction with the database is required from the developer. The approach made it possible to create a complex

database schema in a short time.

45 https://github.com/5GEVE/iwf-repository

46 https://spring.io/

47 https://hibernate.org/

55

Figure 30: Entity-Relationship diagram for IWF Repository database

56

To expose the entities and related operation on an HTTP REST interface, we use the module ‘spring-data-rest’.

This Spring module automatically exposes a discoverable REST APIs by discovering the entities defined in the

project. The API supports CRUD operations in HTTP format, such as POST, GET, PATCH/PUT, DELETE

and generates sub-paths to navigate the associations. The amount of code and development effort to generate

all this is extremely limited. As for the previous release, we use Dockerfile + docker-compose. The Dockerfile

downloads all necessary dependencies and builds the application. The docker-compose creates a multi-service

environment including both the IWF Repository application and a PostgreSQL database instance. The

application is extremely portable, and it can be deployed on any environment with zero configuration.

3.6.2 Open API description

It is possible to view the updated OpenAPI documentation for IWF Repository interface in the 5G EVE public

organization hosted on GitHub48. Since it is auto generated, the documentation is very verbose.

Table 8: IWF Repository main REST API paths

Service Path Method Input Output Description

site-inventory /availabilityZones GET -

Array of

Availability

Zone entities

Retrieve list of

Availability

Zones entities.

site-inventory /availabilityZones POST
Availability

Zone entity

The newly

created entity

Create new

Availability Zone

entity.

site-inventory /availabilityZones/{id} GET -
Availability

Zone entity

Retrieve a single

Availability Zone

entity

site-inventory /availabilityZones/{id} PUT

Availability

Zone entity

with updated

values

Availability

Zone entity

Update an

existing

Availability Zone

entity.

site-inventory /availabilityZones/{id} DELETE - -

Delete an

existing

Availability Zone

entity.

site-inventory /availabilityZones/{id} PATCH
Fields to be

updated

Availability

Zone entity

Update an

existing

Availability Zone

entity.

site-inventory /dataShippers GET -

Array of Data

Shipper

entities

Retrieve list of

Data Shipper

entities.

site-inventory /dataShippers POST
Data Shipper

entity

The newly

created entity

Create new Data

Shipper entity.

site-inventory /dataShippers/{id} GET -
Data Shipper

entity

Retrieve a single

Data Shipper

entity

site-inventory /dataShippers/{id} PUT

Data Shipper

entity with

updated

values

Data Shipper

entity

Update an

existing Data

Shipper entity.

48 https://github.com/5GEVE/OpenAPI

57

site-inventory /dataShippers/{id} DELETE - -

Delete an

existing Data

Shipper entity.

site-inventory /dataShippers/{id} PATCH
Fields to be

updated

Data Shipper

entity

Update an

existing Data

Shipper entity.

site-inventory /subscriptions GET -

Array of

LccnSubscripti

on entities

Retrieve list of

LccnSubscription

entities.

site-inventory /subscriptions POST
LccnSubscri

ption entity

The newly

created entity

Create new

LccnSubscription

entity.

site-inventory /subscriptions/{id} GET -
LccnSubscripti

on entity

Retrieve a single

LccnSubscription

entity

site-inventory /subscriptions/{id} PUT

LccnSubscri

ption entity

with updated

values

LccnSubscripti

on entity

Update an

existing

LccnSubscription

entity.

site-inventory /subscriptions/{id} DELETE - -

Delete an

existing

LccnSubscription

entity.

site-inventory /subscriptions/{id} PATCH
Fields to be

updated

LccnSubscripti

on entity

Update an

existing

LccnSubscription

entity.

site-inventory /networks GET -

Array of

Network

entities

Retrieve list of

Network entities.

site-inventory /networks POST
Network

entity

The newly

created entity

Create new

Network entity.

site-inventory /networks/{id} GET - Network entity
Retrieve a single

Network entity

site-inventory /networks/{id} PUT

Network

entity with

updated

values

Network entity

Update an

existing Network

entity.

site-inventory /networks/{id} DELETE - -

Delete an

existing Network

entity.

site-inventory /networks/{id} PATCH
Fields to be

updated
Network entity

Update an

existing Network

entity.

site-inventory /nfvOrchestrators GET -

Array of

NfvOrchestrat

or entities

Retrieve list of

NfvOrchestrator

entities.

site-inventory /nfvOrchestrators POST
NfvOrchestra

tor entity

The newly

created entity

Create new

NfvOrchestrator

entity.

site-inventory /nfvOrchestrators/{id} GET -
NfvOrchestrat

or entity

Retrieve a single

NfvOrchestrator

entity

58

site-inventory /nfvOrchestrators/{id} PUT

NfvOrchestra

tor entity

with updated

values

NfvOrchestrat

or entity

Update an

existing

NfvOrchestrator

entity.

site-inventory /nfvOrchestrators/{id} DELETE - -

Delete an

existing

NfvOrchestrator

entity.

site-inventory /nfvOrchestrators/{id} PATCH
Fields to be

updated

NfvOrchestrat

or entity

Update an

existing

NfvOrchestrator

entity.

site-inventory /ranOrchestrators GET -

Array of

RanOrchestrat

or entities

Retrieve list of

RanOrchestrator

entities.

site-inventory /ranOrchestrators POST
RanOrchestr

ator entity

The newly

created entity

Create new

RanOrchestrator

entity.

site-inventory /ranOrchestrators/{id} GET -
RanOrchestrat

or entity

Retrieve a single

RanOrchestrator

entity

site-inventory /ranOrchestrators/{id} PUT

RanOrchestr

ator entity

with updated

values

RanOrchestrat

or entity

Update an

existing

RanOrchestrator

entity.

site-inventory /ranOrchestrators/{id} DELETE - -

Delete an

existing

RanOrchestrator

entity.

site-inventory /ranOrchestrators/{id} PATCH
Fields to be

updated

RanOrchestrat

or entity

Update an

existing

RanOrchestrator

entity.

site-inventory /ranZones GET -

Array of

RanZone

entities

Retrieve list of

RanZone entities.

site-inventory /ranZones POST
RanZone

entity

The newly

created entity

Create new

RanZone entity.

site-inventory /ranZones/{id} GET -
RanZone

entity

Retrieve a single

RanZone entity

site-inventory /ranZones/{id} PUT

RanZone

entity with

updated

values

RanZone

entity

Update an

existing RanZone

entity.

site-inventory /ranZones/{id} DELETE - -

Delete an

existing RanZone

entity.

site-inventory /ranZones/{id} PATCH
Fields to be

updated

RanZone

entity

Update an

existing RanZone

entity.

site-inventory /sites GET -
Array of Site

entities

Retrieve list of

Site entities.

site-inventory /sites POST Site entity
The newly

created entity

Create new Site

entity.

59

site-inventory /sites/{id} GET - Site entity
Retrieve a single

Site entity

site-inventory /sites/{id} PUT

Site entity

with updated

values

Site entity

Update an

existing Site

entity.

site-inventory /sites/{id} DELETE - -

Delete an

existing Site

entity.

site-inventory /sites/{id} PATCH
Fields to be

updated
Site entity

Update an

existing Site

entity.

site-inventory /vimAccounts GET -

Array of Vim

Account

entities

Retrieve list of

Vim Account

entities.

site-inventory /vimAccounts POST
Vim Account

entity

The newly

created entity

Create new Vim

Account entity.

site-inventory /vimAccounts/{id} GET -
Vim Account

entity

Retrieve a single

Vim Account

entity

site-inventory /vimAccounts/{id} PUT

Vim Account

entity with

updated

values

Vim Account

entity

Update an

existing Vim

Account entity.

site-inventory /vimAccounts/{id} DELETE - -

Delete an

existing Vim

Account entity.

site-inventory /vimAccounts/{id} PATCH
Fields to be

updated

Vim Account

entity

Update an

existing Vim

Account entity.

3.6.3 Service description

Some components of the Interworking framework activate REST API calls within their operational workflows,

these calls allow access for the aforementioned components to the IWF Repository. The API access is preferred

for a number of reasons with respect to a direct access to a Database Management system. Indeed, the API

performs some validation checks on data entities when they are created e.g., `not null` constraints, pattern

matching for UUIDs and IP addresses. Furthermore, having a REST API enables to limit the client operations

on the data entities (e.g., for read-only entities) and it keeps open the option to add security mechanisms in the

future (at the moment, Site-Inventory interface listens on a local subnet with restricted access through a VPN

server). Spring offers some well-established modules in order to support the developer in adding security

features to its application.

60

Figure 31: Example HTTP requests to create new entities in IWF Repository

The creation of new entities in the IWF Repository through the REST API must take also an additional step to

create the associations. For example, let us consider the creation of a new Nfv Orchestrator entity as showed in

Figure 31. We can create the new database record in the proper table by performing a POST request to

/nfvOrchestrators (first message in Figure 31). The IWF Repository returns a 201-status code if this operation

is successful (second message in Figure 31). Now, to associate the newly created entity with a Site entity, an

additional PUT request is needed (third message in Figure 31 The request path, in our example, is

‘/nfvOrchestrators/{new-id}/site’. The headers must contain a Content Type header with value ‘text/uri-list’.

Finally, the request body must contain the path of the Site entity we want to associate: /sites/{id-of-desired-

site}. If the association has been created successfully, the IWF Repository returns a 204-status code (fourth

message in Figure 31).

61

3.7 Site adaptations

Following we describe the work we have been done in WP3 in each of the 5G EVE sites. We include only

French and Spanish sites in this document as they are the sites with relevant updates. For Italian and Greek site

please refer to D3.4.

3.7.1 French site

The French Site facility is designed as a star topology within a central management point located in Chatillon,

Paris. Several geo distributed entities located in Rennes, Lannion, Saclay and Sophia Antipolis are surrounding

Paris and connects via VPN. 5G-EVE portal treats each of those locations as a single French sub-site, where NS

might be instantiated.

The Open Network Automation Platform (ONAP) solution has been selected as a main tool of management and

orchestration in French Site. It is an open-source, complete solution that provides a comprehensive platform for

real-time, policy-driven service orchestration and automation. In the French Site ONAP is deployed in Chatillon

with five different Virtual Infrastructure Managers (VIMs) connected, where NS can be deployed. NS can be

instantiated on OpenStack instances (Chatillon, Lannion, Rennes, Saclay) or OpenShift clusters (Sophia

Antipolis). In order to integrate ONAP and the I/W Framework (IWL), ONAP driver in MSO-LO and

Translation Component (TC) in French Site were implemented. The final implementation of MSO-LO with

ONAP driver provides all required operation for the management of NS and VNF instances and notification

systems. Architectural integration of IWL with French Site with ONAP is depicted in Figure 32.

Figure 32: The overview architecture of French Site

62

Translation Component (TC) has been implemented in order to integrate French Site with IWL. Main

responsibility of TC is to automate deployment process of network services (NS) and provide ONAP a

communication compliance with ETSI NFV SOL005 standard. As far as MSNO is communicating using the

SOL005 standard and ONAP uses its own custom interfaces - we introduced a component that is translating

SOL005 requests and calls a set of ONAP APIs. To be more precise - when any request comes from IWL via

ONAP Driver to French Sites - in the first step it is passed to TC that has defined REST APIs and may be treated

as an “external interface of French Site”. Depending on the request type, TC triggers proper action using

onapsdk [20] python package to interact with ONAP APIs to manage the life cycle of NS instances.

TC provided the following basic functionalities required by 5G-EVE IWL:

• create, instantiate, terminate and delete network service instances;

• retrieve a list of network services and life-cycle management operation occurrences;

• retrieve information about selected network service or life-cycle management operation occurrence

resource;

• notification about life-cycle management operation occurrences of network services.

Taking into account the design of the French Site, TC has to provide a functionality to select the target French

sub-site for NS instances. To achieve that, all sub-sites in the French node have to be configured in TC. Each

of them is treated as a single VIM with a unique identifier (vimShortId). That id has to be in line with the SiteId

in the IWF Repository. The information about the selected localisation for NS instance within the experiment

is passed from portal to IWL. Next, the ID of the target sub-site is passed to TC by the ONAP Driver in the

body of “create ns instance Id” request. Next, NS instance is deployed in a proper sub-site.

TC provides also an integration of ONAP and MS-Catalogue. The main goal is to synchronize services’

descriptors managed by ONAP with IWL Catalog. TC implements dedicated API to retrieve service

specification from French Site. It allows MS-Catalogue to access ONAP and retrieve selected service

specifications as a tosca csar archive. MS-Catalog implements a dedicated tool to translate ONAP service model

into the format required by IWL. It allows to receive and store specific information about services like: topology,

resource requirements, services management interfaces. More detailed information regarding this custom tool

can be found in MS-Catalogue description. Information retrieved in a process of ONAP-IWL catalog

synchronization can be utilized by other components, like portal - to present detailed information about use

cases in French Site.

Table 9 describes in detail the API methods offered by Translation Component provided SOL005 compliance

for ONAP.

Table 9: API provided by Translation Component as a “external API of French Site”.

Service Path Method Input Output Description

Translation

Component
/instances GET - Array of NS

instances
Retrieve a list of

NS instances

Translation

Component
/instances/
{nsInstanceId}

GET - NS instance Read an

individual NS

instance

resource.

Translation

Component
/create POST nsdId,

nsName,

nsDescription
vimShortId

NS

identifier
Creates and

returns a

Network

Service

identifier (nsId)

in a Nfvo

63

Translation

Component
/instantiate/
{nsInstanceId}

POST - - Instantiate a NS

instance.

Translation

Component
/terminate/

{nsInstanceId}
POST - - Terminate a NS

instance

Translation

Component
/delete/
{nsInstanceId}

DELETE - - Delete a NS

instance

Translation

Component
/ns_lcm_op_occs GET - Array of

LCM
Retrieve a list of

NS LCM

operation

occurrences.

Translation

Component
/ns_lcm_op_occs/
{nsLcmOpOccId}

GET - LCM Info Retrieve an

individual NS

LCM operation

occurrence

resource.

Translation

Component
/ns_lcm_op_occs/
ns_id/
{nsInstanceId}

GET - Array of

LCM for

NS instance

Retrieve a list of

NS LCM

operation

occurrences for

NS instance

Translation

Component
/service_specification GET - Array of

NSD
Retrieve a list of

NSD

Translation

Component
/service_specification/{nsdId} GET - csar archive

for NSD
Download csar

archive with

service tosca

model

Translation

Component
/vims GET - Array of

configured

vims

Retrieve a list of

configured vims

in TC

3.7.2 Greek site

No new content for Greek site, please refer to [16].

3.7.3 Italian site

No new content for Italian site, please refer to [16].

3.7.4 Spanish site

In order to carry out the experimentation planned to be performed at the Spanish site, here we present an NFV

system mainly constituted by a software MANO stack and two standalone private cloud platforms as depicted

in Figure 33. The cloud platforms comprise the NFV infrastructure that enables the deployment of VNFs both

at the cloud and/or at the edge sides, depending on the experimentation procedure. Related with the resource

orchestration, ETSI OSM is in charge of providing the MANO implementation and, in particular, this platform

utilizes OSM Release SEVEN [6]. To facilitate the installation and the deployment of the NFVO and VNFM

64

stack, ETSI OSM is executed as a virtual machine within the 5TONIC laboratory and in compliance with the

requirements established by the OSM community.

Figure 33. MANO at the Spanish site

The characteristics of the ETSI OSM, VIM and all servers in this infrastructure were already presented in D3.4,

so in this document we only present the updates done since that report.

It is worth mentioning that the testbed also integrates the required networking that enable the proper operation

of the complete NFV system, supporting the orchestration and deployment of multi-site network services over

the three cloud platforms comprising the NFVI. These networks can be summarized as follows:

• External networks, which are exposed externally to other sites, using the VPN tunnel connecting the

Spanish site with the Italian one. These networks are:

o Orchestrator-to-VNF networks (i.e., the red solid line in Figure 33): the objective in this case

is to allow the ETSI OSM platform to control and monitor the VNFs lifecycle (i.e., get the

VNFs state information and support the scaling operations based on this information), as well

as the VNF configuration. For this reason, ETSI OSM requires IP connectivity with each of the

VNFs hosted by their respective platform. This network is exposed outside the infrastructure to

allow other 5G EVE components, like the Runtime Configurator, to manage all VNFs.

o IWL network (i.e., the orange dotted line in Figure 33): this network is used to provide access

to the Spanish OSM to the IWL components hosted by TIM at the Turin site.

o User plane network (i.e., the blue solid line in Figure 33): this network is used to connect the

user/data plane network of some VNFs/PNFs with the user/data plane at other sites. For security

purposes, only a subset of all the range dedicated to the user plane is allowed to connect with

other sites.

65

• Internal networks, used only internally at the Spanish site, which are not exposed to other sites. These

networks are:

o Infrastructure management networks (i.e., the blue round dot line in Figure 33): the aim of these

types of networks is to allow each VIM to be capable of managing the computational resources

of the cloud platform under its control. Therefore, these networks are present independently in

all the parts of the NFVI testbed.

o Orchestrator-to-VIM networks (i.e., the green long dash line in Figure 33): these networks are

in charge of supporting the reservation and allocation of the necessary resources for enabling

the subsequent network services deployment. In addition, these networks are in charge of the

lifecycle management of the stated network services and slices. In this context, the ETSI OSM

is able to interact with each of the VIMs included in the testbed and handle the designed

deployments in the experimentation procedure.

o Service-oriented networks (i.e., the purple long dash dot line in Figure 33): this latter

encompasses the networks among the different VNFs comprising a network service (regardless

of the platform on which they are executed) to ensure the proper functioning of the implemented

service.

3.7.4.1 Network Controller

We include a new orchestrator in Spanish site, called Network Controller, which is in charge of configuring the

Radio Access Network in 5Tonic lab. With this, we allow to automatically adapt the laboratory to the conditions

required for an experiment. The network controller allows to:

• Select the RAN technology: 4G, 5G NSA, 5G SA;

• Select the coverage area of the experiment;

• Select the Network Slice (eMBB, URLLC, mMTC);

• Leverage the uplink/downlink throughput: LTE-5G Aggregation, Change of TDD patterns.

4 Inter-site connectivity status49

As reported in D3.3 [3], we selected a star architecture for connecting the 5G EVE sites, being Turin’s site the

centre of the connectivity. Using this, we selected a distributed deployment for the 5G EVE Framework, with

the 5G EVE Portal in 5TONIC and the IWL in Turin’s site.

As we planned, we interconnect three networks:

• Orchestration and Management network, which is required for connecting 5G EVE components and for

the IWL-site connectivity.

• Control plane network, for connecting 5G Core elements.

• User plane network, for connecting elements in the data path of the 5G users. We setup and test the

connectivity between Spanish and Greek sites and we use the setup in the Gaming use case

demonstration.

49 This section is almost equal to section 4 reported in D3.4. We included the full text for maintaining the clarity, just adding the update

of the user plane setup.

66

Figure 34: 5G EVE site integration

One issue we faced is the IP addressing overlapping among the 5G EVE sites. Since this is not an issue easy to

solve, as it involves parts of the networks that are not related with 5G EVE project, we decided to use an IP

translation system, which allows us to define common subnets for all the 5G EVE sites. We describe in Figure

34 the integration of the 5G EVE lab with TIM’s lab.

The performance measurements of the inter-site connectivity are described in the Deliverable 3.7, which will

be published at the same time of this deliverable.

5 Updated roadmap

In Table 10 we show the summary of the features supported by IWL, according to the plan exposed in D 3.2.

ITALY5TONIC

FRANCE GREECE

TIM

Control P subnet
172.17.73.0.24

User subnet 1
172.17.74.0/23

User subnet 2
172.17.76.0/24IWL server

172.17.73.6

PoliTO

CP subnet

10.50.7.0/24

10.50.80.0/24

MANO

10.50.7.21

Service Subnet

10.50.160.0/23

subnet1
172.17.252.0.24

subnet2
172.17.253.0/24

ControlP subnet
172.17.254.0/24

TUNNEL SITE

Control Plane
10.154.144.0/24

User Plane
10.154.145.0/24

User Plane
10.3.16.48/28

EVE Portal

193.147.105.235

UC3M

ERICSSON

FORTINET

subnet1
172.17.107.0.24

subnet2
172.17.106.0/24

CP subnet
172.17.105.0/24

TUNNEL SITE

subnet1
172.17.44.0.24

subnet2
172.17.43.0/24

CP subnet
172.17.42.0/24

TUNNEL SITE

TUNNEL SITE

VLAN 333

INTERNET

KAFKA

IP?

mgmt vertical VM

10.20.5.0/24

MSNO

10.3.5.4:8000

OSM

10.5.7.5

O
R

A
N

G
E

Nokia

Eurécom

BCOM

INTERNET
VLAN 330

VLAN 332

VLAN 331

Control Plane
10.102.46.0/24

Data Plane
10.102.0.20/32

67

Table 10: 5G EVE Interworking Framework Roadmap

Key Features Category Brief Description
D3.3

(M16)

Drop 1

(M18)

Drop 2

(M22)

D3.4

(M24)

Final

Delivery

Single-Site scenarios

Orchestration

Plane

Interworking

Connectivity
Low Bandwidth performance but secure connectivity

among sites for orchestration traffic

Italian

and

French

sites

Full

provided
Full provided

Full

provided

Full

provided

Single-site

Experiment

Monitoring

Support

Monitoring

Capability of translating the monitoring requirements

defined by experimenters (based on selected KPIs) to the

requested site. Sites will typically have different local

monitoring tools and mechanisms.

-

Support

of basic

UC (one

per site)

Full provided
Full

provided

Full

provided

Single-site

Applications

Deployment

Support

Operation

Capability to deploy the required VNFs, hosted in the 5G

EVE Catalogue, at the requested site. Sites will typically

have different local orchestrators.

-

Support

of basic

UC (one

per site)

Full provided
Full

provided

Full

provided

Single-site

Network

Automation

Support

Operation

Capability to deploy the required connectivity services (first

phase) and slices (second phase) to the requested site. Sites

will typically have available different local controllers and

network infrastructure.

-

Support

of basic

UC (one

per site)

Full provided
Full

provided

Full

provided

Multi-Site scenarios

Control Plane

Interworking
Connectivity

Low Bandwidth performance but secure connectivity

among sites for control traffic
- -

Demonstrated

with one

selected UC

Full

provided

Full

provided

Data Plane

Interworking
Connectivity

Secure connectivity among sites for user traffic. Low

bandwidth performance experiments will employ best effort

connectivity. High bandwidth performance experiments

will employ a parallel high bandwidth low latency network,

which will be available at least between two sites.

- - -

Depends on

final UC

requirements

Full

provided:

demonstrated

between

Spanish and

Greek site

68

Multi-Site

Experiment

Monitoring

support

Monitoring

Capability of translating the monitoring requirements

defined by experimenters (based on selected KPIs) to the

sites taking part in the same experiment. Sites will typically

have different local monitoring tools and mechanisms.

- -

Selected UC

working in

multi-site

deployment

Full

provided

Full

provided

Multi-Site E2E

Orchestration

Support

Operation

Capability to deploy the required slices, and VNFs hosted

in the 5G EVE Catalogue on top of them, to the sites taking

part in the same experiment. Sites will typically have

different local orchestrators, controllers and network

infrastructure.

- -

Selected UC

working in

multi-site

deployment

Full

provided

Full

provided

Multi-Site slicing

Vertical Slicing Slicing
End-to-end slice that satisfies the requirement of the

Vertical
-

Selected

UC
Full provided

Full

provided

Full

provided

Multi-Site Slicing Slicing Vertical Slice that spans across multiple sites - - Selected UC
Full

provided

Full

provided

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 69 / 83

6 Pending automated tests

In this Section, the pending tests to be reported from deliverable D3.7 are included. For a better readability of

this chapter, only the pending tests will be included in this Section, omitting the finished tests that have been

already reported in D3.7.

The summary of the previous test cases execution, reporting the number of pending tests for each test suite, can

be checked in Table 11.

Table 11: Summary of test cases execution

Test Test Suites

Test Summary

Number of

Passed Tests

Number of

Failed Tests

Number of

pending Tests

Component Tests

Multi-Site

Catalogue Test

Suites

Multi-Site Catalogue – NSD

Management
6 9

Multi-Site Catalogue – VNF

Management
2 - 4

Multi-Site Catalogue – PNFD

Management
- - 6

Multi-Site

Inventory Test

Suites

Multi-Site Inventory – Write

Operation
3 - 6

Multi-Site Inventory – Query

Operation
2 - 1

Multi-Site

Network

Orchestrator

Test Suites

Multi-Site Network Orchestrator 3 - 2

Data Collection

Manager Test

Suites

Data Collection Manager Kafka 5 - -

Data Collection Manager Kafka –

ELK Interconnection – NBI
1 - -

Data Collection Manager Kafka –

Filebeat Interconnection – SBI
2 - -

Runtime

Configurator

Test Suites

Runtime Configurator 3 - -

Adaptation

Layer Test

Suites

MSO-LO – Configuration MSO-

LO-Turin
3 - -

MSO-LO – Configuration MSO-

LO-RF
4 - -

MSO-LO – Configuration MSO-

LO-Ever
1 - 2

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 70 / 83

Integration Tests

NSO-Catalogue

integration

Multi-Site Network Orchestrator-

Catalogue
3 - 1

System Tests

Site-facilities’

interconnection

Test Suites

IWL – French Site 2 - -

IWL – Spanish Site 2 - -

IWL – Italian Site 2 - -

IWL – Greek Site 2 - -

6.1 Reporting format

The results of the execution of the test cases will be reported in two different formats, following the same

instructions than the ones provided in D3.7:

• Using tables which will follow the specific format shown in Table 12 and including the following

fields:

o Name of the test component and test suite: lists the name of the component and title of the test

suites;

o Test title/<Test ID>: each test suite consists of a set of tests specified by a title and an ID;

o Test purpose: describes the aim of the test;

o Test tools: tools used for executing the tests (Robot Framework is commonly used as an

automated testing tool);

o Result: outlines the test results;

o Comments/Details: any further comments or details apart from what is described in the Result

field.

• The test cases executions are uploaded on a specific Github repository50. In this repository, there are

three main folders, related to the three main test categories covered in this testing process (i.e.

Component, Integration and System tests). Each of them has different sub-folders containing each entity

involved.

Table 12: Table format to report the execution of test cases.

Name of the Component and Test Suite

Test 1 title <Test ID>

Test purpose Summary of what is included in D3.6 [4]. If there are some modifications, include them here.

Test tools Tools used for executing the test.

Result Passed/Failed/[Other].

Comments Comments related to the test that are interesting to be shared.

Details Specific details that should be mentioned.

Test N title <Test ID>

Test purpose Summary of what is included in D3.6 [4]. If there are some modifications, include them here.

Test tools Tools used for executing the test.

50 The repository can be found here: https://github.com/5GEVE/D3.7-Test-Suites-Results (tag d3.5).

https://github.com/5GEVE/D3.7-Test-Suites-Results

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 71 / 83

Result Passed/Failed/[Other].

Comments Comments related to the test that are interesting to be shared.

Details Specific details that should be mentioned.

6.2 Interworking Framework Component Tests

6.2.1 Multi-Site Catalogue pending tests

This section aims at reporting the Multi-Site Catalogue tests pending from what was reported in D3.7. In

particular, not all of the features for NSD, VNFD and PNFD management offered by the Multi-Site Catalogue

were covered at that time by individual component tests. More precisely, with reference to the test plan defined

in D3.6, only a subset of the functional tests defined was developed and run. The following sub-sections report

the pending tests executed, in terms of test configuration and scenario, test results and a brief final result

analysis.

6.2.1.1 Test configuration, scenario and execution

The Multi-Site Catalogue pending tests have been developed and executed as automated validation tests using

Robot Framework [19]. For the execution phase, two main relevant test environments have been used: the

Nextworks lab, where all of the Multi-Site Catalogue developments and early validations have been performed,

and the Interworking Framework setup in Turin, where the actual production IWL is deployed.

Three main test configurations have been used to run the Multi-Site Catalogue pending tests, as shown in Figure

35. The component tests related to single-site scenarios against a local site orchestrator based on OSM have

been executed with the setup depicted in Figure 35a, while those against a local site orchestrator based on ONAP

have been executed with the setup depicted in Figure 35b. On the other hand, the component tests related to

multi-site scenarios have been performed with the configuration of Figure 35c, with two local site orchestrators

based on OSM. In all the three test configurations, Robot Framework acts as test system, thus issuing the specific

requests to the component under test (i.e., the Multi-Site Catalogue) and validating the responses received, when

needed also interacting with local site orchestrators for additional triggers or checks.

Figure 35: Multi-Site Catalogue pending tests configuration.

6.2.1.2 Test Results

Table 13, Table 14 and Table 15 provide a summary of the pending Multi-Site Catalogue test results following

the template described in section 6.1 and the test plan reported in D3.6. With this new set of tests developed and

executed, the Multi-Site Catalogue has been validated against both ETSI OSM and ONAP local site

orchestrators, thus covering all of the possible options for the 5G EVE site facilities. Moreover, all of the Multi-

Site Catalogue features have been tested at least once against ETSI OSM. Indeed, as it was agreed at project

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 72 / 83

level to keep the interaction with ONAP local site orchestrators (at the Multi-Site Catalogue level) at the bottom-

up direction only (i.e. the onboard of NSDs from the 5G EVE Portal to the Multi-Site Catalogue and then to

ONAP driver is not supported), some of the pending tests related to the interaction with ONAP actually became

not applicable.

The tables below provide details for the automated tests executed with Robot Framework [19] as test system,

thus as test trigger and validation tool against the expected behaviour for each test. The Robot Framework source

code, together with the outputs generated when executing the tests are available on the project repository51.

Table 13: Multi-Site Catalogue - NSD Management test results

Multi-Site Catalogue – NSD Management

Test 2 - NSD Update to single site - OSM Nsd-update-single-site-to-osm

Test purpose This test aims at verifying that an existing NSD modelling a vertical experiment can be

modified in the Multi-Site Catalogue from its NBI and updated in a specific per-site OSM

orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 5 - NSD Update from single site - OSM Nsd-update-single-site-from-osm

Test purpose This test aims at verifying that an existing NSD modelling a single site service (previously

onboarded from a per-site OSM orchestrator) can be modified in the Multi-Site Catalogue

from its SBI when it is updated in the original per-site OSM orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 7 - NSD Onboarding to single site - ONAP Nsd-onboard-single-site-to-onap

Test purpose This test aims at verifying that an NSD modelling a vertical experiment (in TOSCA format)

can be successfully onboarded in the Multi-Site Catalogue from its NBI and delivered to a

specific per-site ONAP orchestrator.

Test tools -

Result Not Applicable

Comments The interaction with ONAP local site orchestrators is finally possible in the bottom-up

direction only

Details -

Test 8 - NSD Update to single site - ONAP Nsd-update-single-site-to-onap

Test purpose This test aims at verifying that an existing NSD modelling a vertical experiment can be

modified in the Multi-Site Catalogue from its NBI and updated in a specific per-site ONAP

orchestrator.

Test tools -

Result Not Applicable

51 https://github.com/5GEVE/D3.7-Test-Suites-Results/tree/master/component_tests/multi_site_catalogue/

https://github.com/5GEVE/D3.7-Test-Suites-Results/tree/master/component_tests/multi_site_catalogue/

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 73 / 83

Comments The interaction with ONAP local site orchestrators is finally possible in the bottom-up

direction only

Details -

Test 9 - NSD Deletion to single site - ONAP Nsd-delete-single-site-to-onap

Test purpose This test aims at verifying that an existing NSD modelling a vertical experiment can be

deleted in the Multi-Site Catalogue from its NBI and removed from a specific per-site ONAP

orchestrator.

Test tools -

Result Not Applicable

Comments The interaction with ONAP local site orchestrators is finally possible in the bottom-up

direction only

Details -

Test 10 - NSD Onboarding from single site - ONAP Nsd-onboard-single-site-from-onap

Test purpose This test aims at verifying that an NSD modelling a single-site service can be successfully

onboarded in the Multi-Site Catalogue through the SBI from a specific per-site ONAP

orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 11 - NSD Update from single site - ONAP Nsd-update-single-site-from-onap

Test purpose This test aims at verifying that an existing NSD modelling a single site service (previously

onboarded from a per-site ONAP orchestrator) can be modified in the Multi-Site Catalogue

from its SBI when it is updated in the original per-site ONAP orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 12 - NSD Deletion from single site - ONAP Nsd-delete-single-site-from-onap

Test purpose This test aims at verifying that an existing NSD modelling a per-site service (previously

onboarded from a per-site ONAP orchestrator) can be deleted in the Multi-Site Catalogue

from its SBI when it is removed in the original per-site ONAP orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 14 - NSD Update to multiple sites – OSM and ONAP Nsd-update- multiple-site-to-osm-onap

Test purpose This test aims at verifying that an existing NSD modelling a vertical experiment can be

modified in the Multi-Site Catalogue from its NBI and updated simultaneously in the specific

per-site OSM and ONAP orchestrators.

Test tools Robot Framework

Result Passed

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 74 / 83

Comments -

Details -

Table 14: Multi-Site Catalogue - VNF Management test results

Multi-Site Catalogue – VNF Management

Test 2 - VNF Update from site - OSM vnf-update-from-osm

Test purpose This test aims at verifying that an existing VNF can be modified in the Multi-Site Catalogue

through the SBI from a specific per-site OSM orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 4 - VNF Onboarding from site - ONAP vnf-onboard-from-onap

Test purpose This test aims at verifying that a VNF can be successfully onboarded in the Multi-Site

Catalogue through the SBI from a specific per-site ONAP orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 5 - VNF Update from site - ONAP vnf-update-from-onap

Test purpose This test aims at verifying that an existing VNF can be modified in the Multi-Site Catalogue

through the SBI from a specific per-site ONAP orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 6 - VNF Deletion from site - ONAP vnf-delete-from-onap

Test purpose This test aims at verifying that an existing VNF can be deleted in the Multi-Site Catalogue

through its SBI from a specific per-site ONAP orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Table 15: Multi-Site Catalogue – PNFD Management test results

Multi-Site Catalogue – PNFD Management

Test 1 - PNFD Onboarding from site - OSM pnfd-onboard-from-osm

Test purpose This test aims at verifying that a PNFD can be successfully onboarded in the Multi-Site

Catalogue through the SBI from a specific per-site OSM orchestrator.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 75 / 83

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 2 - PNFD Update from site - OSM pnfd-update-from-osm

Test purpose This test aims at verifying that an existing PNFD can be modified in the Multi-Site Catalogue

through the SBI from a specific per-site OSM orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 3 - PNFD Deletion from site - OSM pnfd-delete-from-osm

Test purpose This test aims at verifying that an existing PNFD can be deleted in the Multi-Site Catalogue

through its SBI from a specific per-site OSM orchestrator.

Test tools Robot Framework

Result Passed

Comments -

Details -

Test 4 - PNFD Onboarding from site - ONAP pnfd-onboard-from-onap

Test purpose This test aims at verifying that a PNFD can be successfully onboarded in the Multi-Site

Catalogue through the SBI from a specific per-site ONAP orchestrator.

Test tools -

Result Not Applicable

Comments PNFDs not supported in ONAP and Translation Tool

Details -

Test 5 - PNFD Update from site - ONAP pnfd-update-from-onap

Test purpose This test aims at verifying that an existing PNFD can be modified in the Multi-Site Catalogue

through the SBI from a specific per-site ONAP orchestrator.

Test tools -

Result Not Applicable

Comments PNFDs not supported in ONAP and its Translation Component

Details -

Test 6 - PNFD Deletion from site - ONAP pnfd-delete-from-onap

Test purpose This test aims at verifying that an existing VNF can be deleted in the Multi-Site Catalogue

through its SBI from a specific per-site ONAP orchestrator.

Test tools -

Result Not Applicable

Comments PNFDs not supported in ONAP and its Translation Component

Details -

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 76 / 83

6.2.1.3 Results Analysis

As described in deliverable D3.6 [4], the Multi-Site Catalogue test plan was composed by a total of 27 test cases

(15 for NSD Management, 6 for VNF Management and 6 for PNF Management). Out of these 27 Multi-Site

Catalogue planned tests, 8 were already successfully performed and reported in deliverable D3.7. The 19 MSC

pending tests are listed in Table 11, and mostly refer to the interaction with ONAP based local site orchestrators,

as well as to dynamic updates of NSDs and VNFDs, and PNFD management. Out of these 19 tests, 13 have

been successfully executed as part of the work reported in this deliverable, while the remaining 6 became not

applicable, as it was agreed at WP3 and project level to not support (and therefore implement) the related

functionalities that were originally designed and considered in deliverable D3.2 [REF]. In particular, two main

categories of not applicable tests emerged: i) tests for interactions with ONAP based local site orchestrators for

top-down operations (i.e., in the direction 5G EVE portal towards the local site catalogues, through the Multi-

Site Catalogue), ii) tests for PNFD management against ONAP based local site orchestrators. For the first

category, the ONAP used in the French site (i.e., the only site using ONAP as local orchestrator) and the related

Translation Tool were agreed to support the onboarding (and update) of NSDs in the bottom-up direction only

(i.e., from ONAP to the Multi-Site Catalogue). For the second category, PNFs and PNFDs were agreed to not

be supported by the ONAP used in the French site. It is worth to mention that the non-applicability of such tests

(and related features) had no impact in the support of all of the 5G EVE and ICT-19 vertical experiments at the

Multi-Site Catalogue and IWL framework as a whole.

In practice, all the applicable and required Multi-Site Catalogue features have been implemented and

successfully tested. This has enabled a full use of the Multi-Site Catalogue within the IWL first, and the whole

5G EVE platform as well, as part of all of the multi-site vertical experiments carried out in the project. Indeed,

the Multi-Site Catalogue has been successfully tested and validated against all of the 5G EVE site facilities,

supporting both single-site and multi-site experiments.

In summary, as reported in Table 16, among the applicable tests the results show an overall 100% execution

rate and 100% success rate. If we consider also the not applicable tests (that however had no impact in the

support of 5G EVE and ICT-19 vertical experiments) the results show an overall 78% execution rate with a

100% success rate.

Table 16: Summary of Multi-Site Catalogue test cases execution

Test Test Suites

Test Summary

Number of

Passed Tests

Number of

Failed Tests

Number of Not

Applicable Tests

Component Tests

Multi-Site

Catalogue Test

Suites

Multi-Site Catalogue – NSD

Management
12 0 3

Multi-Site Catalogue – VNF

Management
6 0 0

Multi-Site Catalogue – PNFD

Management
3 0 3

6.2.2 Multi-Site Inventory pending tests

Following we report the pending tests on the Multi-Site Inventory, mainly related to Multi-Site use cases.

The following tests were defined but finally not executed because the features (scaling, update) described in the

test case are not finally implemented:

• Test 2 - NSI scaling at single site

• Test 3 - NSI update at single site

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 77 / 83

• Test 6 - Composite NSI scaling

• Test 7 - Composite NSI update

Table 17: Multi-Site Inventory - Write Operation test results

Multi-Site Inventory – Write Operation

Test 2 - NSI scaling at single site write-nsi-lifecycle-single-site-scale

Test purpose This test aims at verifying that after the Multi-Site NSO scales a NS in a single site, it

correctly updates the appropriate existing entry at the Multi-Site Inventory.

Test tools Robot Framework [19]

Result -

Comments Discarded as feature is not required

Details -

Test 3 - NSI update at single site write-nsi-lifecycle-single-site-update

Test purpose This test aims at verifying that after the Multi-Site NSO updates a NS in a single site, it

correctly updates the appropriate existing entry at the Multi-Site Inventory.

Test tools Robot Framework [19]

Result -

Comments Discarded as feature is not required

Details -

Test 5 - Composite NSI instantiation write-nsi-lifecycle-composite-instance

Test purpose This test aims at verifying that after the Multi-Site NSO instantiates a composite NS in at

least two sites, it correctly updates the Multi-Site Inventory, creating a new entry. The entry

must include all the information related to the NS, in particular, its VNFs/PNFs and Virtual

Links, and at which site they are deployed.

Test tools Robot Framework [19]

Result Passed

Comments Evidence included in D3.7 repository

Details -

Test 6 - Composite NSI scaling write-nsi-lifecycle-composite-scale

Test purpose This test aims at verifying that after the Multi-Site NSO scales a composite NS, it correctly

updates the appropriate existing entry at the Multi-Site Inventory.

Test tools Robot Framework [19]

Result -

Comments Discarded as feature is not required

Details -

Test 7 - Composite NSI update write-nsi-lifecycle-composite-update

Test purpose This test aims at verifying that after the Multi-Site NSO updates a composite NS, it correctly

updates the appropriate existing entry at the Multi-Site Inventory.

Test tools Robot Framework [19]

Result -

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 78 / 83

Comments Discarded as feature is not required

Details -

Test 8 - Composite NSI termination write-nsi-lifecycle-composite-delete

Test purpose This test aims at verifying that after the Multi-Site NSO terminates a composite NS, it

correctly deletes the appropriate existing entry at the Multi-Site Inventory.

Test tools Robot Framework [19]

Result Passed

Comments Evidence included in D3.7 repository

Details -

Table 18: Multi-Site Inventory - Query Operation test results

Multi-Site Inventory – Query Operation

Test 3 - Non-existing NSI status query-non-existing

Test purpose This test aims at verifying that appropriate error handling is done in case the Multi-Site NSO

requests information about a non-existing NSI index at the Multi-Site Inventory.

Test tools Robot Framework [19]

Result Passed

Comments Evidence included in D3.7 repository

Details -

With these results we implement Unit Tests that verify the Multi Site implementation of the MSNO.

6.2.3 Multi-Site Network Orchestrator pending tests [ERI-ES]

Following the same approach of Multi-Site Inventory, we discarded the following test cases as the features

referred in the test cases (scaling, update, notifications) are not finally developed.

Table 19: Multi-Site Network Orchestrator test results

Multi-Site Network Orchestrator

Test 4 – NS Lifecycle management operations ms-nso-ns-lcm-op

Test purpose The purpose of this test is to validate the LCM operations of the NS LCM.

Test tools Robot Framework [19]

Result Discarded

Comments Discarded as feature is not required

Details -

Test 5 – Network Service Lifecycle Management notifications ms-nso-ns-lcm-not

Test purpose The purpose of this test is to validate the MSNO notifications.

Test tools Robot Framework [19]

Result Discarded

Comments Discarded as feature is not required

Details -

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 79 / 83

The case of notifications is relevant, as we still believe that for a large-scaling solution we cannot relay in the

pulling of the information and we would require an end to end notification system. But it is true that in the scope

of this project, the pulling approach is more than enough, and we decided to focus our efforts on other issues

(like for example, the network translations issues) needed for the success of the project

6.2.4 Adaptation Layer - EVER driver pending tests

The two tests concerning the integration with the IWL EVER driver using the robot framework and integration

with EVER site and its infrastructure. Both tests are passed, and reports are submitted in github. Just to note

that Test 3 is automatically done when robot framework is used for Test 2.

Table 20: Test summary for EVER driver Test suite

MSO-LO – Configuration MSO-LO-Ever

Test 2 – EVER driver Integration ever-driver-integration

Test purpose Assert that the request bodies sent to EVER NBI interface are correct. Assert that responses

from EVER are handled correctly. Assert that responses returned by Mso-Lo API are

correct.

Test tools Automatically via Robot Framework [19]

Result Passed

Comments Need RAN service slice extension in MSO-LO interface

Details Planned to be executed in Q3 2020 and reported in D3.5

Test 3 – EVER site integration ever-site-integration

Test purpose Assert that IWL request bodies sent to EVER NBI interface are correct. Assert that

responses from EVER are handled correctly by IWL component. Assert that radio and

transport infrastructure in Italian site are correctly configured.

Test tools Automatically (via MSNO)

Result Passed

Comments Need RAN service slice extension in MSO-LO interface

Details Planned to be executed in Q3 2020 and reported in D3.5

The tests report good results in terms of delay (it takes about 2 minutes) to perform a complete lifecycle

management for a RAN network slice (i.e., a complete setup and teardown of the service). The setup of EVER

site integration is also reported, which is very fast (about few seconds). In addition, we tried the test multiple

times, and we frequently used the driver without any problem occurring (so the software is quite robust).

6.3 Integration Tests between Interworking Framework components

6.3.1 NSO-Catalogue pending tests

Table 21: Multi-Site Network Orchestrator-Catalogue test results

Multi-Site Network Orchestrator-Catalogue

Test 4 – Network Service Lifecycle Management notifications ms-nso-ns-lcm-not

Test purpose The purpose of this test is to validate the MSNO notifications.

Test tools Robot Framework [19]

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 80 / 83

Result Not executed

Comments Discarded as notifications are not in the final scope

Details -

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 81 / 83

7 Conclusions

We present in this document the result of the work of WP3 in the whole project.

In our opinion, we demonstrate that the IWL designed, developed and tested in this WP solves the initial

problem of integrating multiple sites with heterogeneous technology, allowing to the experiments to work with

a unique interface that hides the complexity behind the 5G architecture.

We also demonstrate the flexibility of the IWL design, as we incorporate new components on-the-fly: The IWF

repository for configuring the 5G EVE details, new RAN orchestrators that provides capabilities of adapting

the sites’ Radio Access Network and even an ICT-19 driver (5Growth) to incorporate a new site orchestrated

with a new orchestrator (5Growth Service Orchestrator).

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 82 / 83

Acknowledgment

This project has received funding from the EU H2020 research and innovation programme under Grant

Agreement No. 815074.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 83 / 83

References

[1] 5G EVE D3.1: Interworking capability definition and gap analysis document, available at

https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-

analysis.pdf

[2] 5G EVE D3.2: Interworking reference model, available at https://www.5g-eve.eu/wp-

content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf

[3] 5G EVE D3.3: First implementation of the interworking reference model, available at

https://doi.org/10.5281/zenodo.3628179

[4] 5G EVE D3.6: Interworking test suites, available at https://doi.org/10.5281/zenodo.3628189

[5] ETSI GS NFV-SOL 005 V2.6.1: Network Functions Virtualisation (NFV) Release 2; Protocols and

Data Models; RESTful protocols specification for the Os-Ma-nfvo Reference Point, available at

https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.06.01_60/gs_nfv-sol005v020601p.pdf

[6] OSM, "Open Source MANO: ETSI-hosted project to develop MANO software stack aligned with

ETSI NFV", Accessed on: Jun. 1, 2020.[Online]. Available: https://osm.etsi.org/

[7] 5G EVE D.2.6: Participating vertical industries planning. Available at

https://doi.org/10.5281/zenodo.3628261

[8] ETSI GS NFV-SOL 001 V2.6.1: Network Functions Virtualisation (NFV) Release 2; Protocols and

Data Models; NFV descriptors based on TOSCA specification. Available at

https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/02.06.01_60/gs_NFV-

SOL001v020601p.pdf

[9] 5G EVE D4.1: Experimentation tools and VNF repository. Available at

https://doi.org/10.5281/zenodo.3628201

[10] ETSI GS NFV-SOL 004 v2.4.1: Network Functions Virtualisation (NFV) Release 2; Protocols and

Data Models; VNF Package specification .Available at https://www.etsi.org/deliver/etsi_gs/NFV-

SOL/001_099/004/02.05.01_60/gs_nfv-sol004v020501p.pdf

[11] 3GPP TS28.530, V15.1.0, Telecommunication management; Management of 5G networks and

network slicing; Concepts, use cases and requirements, 2018

[12] 3GPP TS28.540, V15.1.0 Management and orchestration; 5G Network Resource Model (NRM); Stage

1

[13] E. Gamma, "Design patterns: elements of reusable object-oriented software," Pearson Education India,

1995.

[14] Ramon Perez, Jaime Garcia-Reinoso, Aitor Zabala, Pablo Serrano, Albert Banchs, “A Monitoring

Framework for Multi-Site 5G Platforms”, 2020 European Conference on Networks and

Communications (EuCNC): Operational \& Experimental Insights (OPE), pp. 52-56, 2020.

[15] ONAP TOSCA model: available at

https://wiki.onap.org/display/DW/4.+ONAP+Internal+TOSCA+Modeling+and+Data+Model

[16] 5G EVE D3.4: Second implementation of the interworking reference model, available at

https://doi.org/10.5281/zenodo.3946323

[17] H2020 5Growth, https://5growth.eu/

[18] H2020 5Growth Deliverable D3.3 “First version of software implementation for the platform”,

https://5growth.eu/wp-content/uploads/2019/06/D3.3-First_version_of_software_implementation.pdf

[19] “Robot Framework” – Available at https://robotframework.org/

[20] Python ONAP SDK, sdk to use onap programmatically with python code,” https://gitlab.com/Orange-

OpenSource/lfn/onap/python-onapsdk

[21] ETSI NFV Specifications: ETSI - Standards for NFV - Network Functions Virtualisation | NFV

Solutions (last visited 2021-05-24)

https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-analysis.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-analysis.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf
https://doi.org/10.5281/zenodo.3628179
https://doi.org/10.5281/zenodo.3628189
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.06.01_60/gs_nfv-sol005v020601p.pdf
https://osm.etsi.org/
https://doi.org/10.5281/zenodo.3628261
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/02.06.01_60/gs_NFV-SOL001v020601p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/02.06.01_60/gs_NFV-SOL001v020601p.pdf
https://doi.org/10.5281/zenodo.3628201
https://wiki.onap.org/display/DW/4.+ONAP+Internal+TOSCA+Modeling+and+Data+Model
https://doi.org/10.5281/zenodo.3946323
https://5growth.eu/wp-content/uploads/2019/06/D3.3-First_version_of_software_implementation.pdf
https://robotframework.org/
https://gitlab.com/Orange-OpenSource/lfn/onap/python-onapsdk
https://gitlab.com/Orange-OpenSource/lfn/onap/python-onapsdk
https://www.etsi.org/technologies/nfv
https://www.etsi.org/technologies/nfv

