Conference paper Open Access

On the standard fuzzy metric: generalizations and application to model estimation

Juan José Miñana; Alberto Ortiz; Esaú Ortiz; Óscar Valero


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.4964783">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.4964783</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.4964783"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Juan José Miñana</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of the Balearic Islands</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Alberto Ortiz</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of the Balearic Islands</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Esaú Ortiz</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of the Balearic Islands</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Óscar Valero</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of the Balearic Islands</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>On the standard fuzzy metric: generalizations and application to model estimation</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dcat:keyword>fuzzy metrics</dcat:keyword>
    <dcat:keyword>RANSAC</dcat:keyword>
    <dcat:keyword>model estimation</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/779776/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Innovation action/871260/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-06-16</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/4964783"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/4964783</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.4964782"/>
    <dct:description>&lt;p&gt;Different approaches to obtain a notion of metric in the context of fuzzy setting can be found in the literature. In this paper, we deal with the concept due to George and Veeramani, which is defined by means of continuous triangular norms. Different authors have addressed the study of such a concept from a theoretical point of view. In this paper, we provide a new methodology to induce fuzzy metrics which generalize the celebrated standard fuzzy metric. The aforementioned methodology allows us to approach some questions related to the continuous triangular norms from which such fuzzy metrics are defined. Morever, we show the applicability of the new fuzzy metrics to an engineering problem. More specifically, we address successfully robust model estimation through a variant of the well-known estimator RANSAC. By way of illustration of the performance of the approach, we report on the accuracy achieved by the new estimator and other RANSAC variants for a benchmark involving a specific model estimation problem and a large number of datasets with varying proportion of outliers and different levels of noise. The resulting estimator is shown able to outperform the classical counterparts considered.&lt;/p&gt;</dct:description>
    <dct:description>This work is also supported by project PGC2018-095709-B-C21 (MCIU/AEI/FEDER, UE), and PROCOE/4/2017 (Govern Balear, 50% P.O. FEDER 2014-2020 Illes Balears).</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4964783">https://doi.org/10.5281/zenodo.4964783</dcat:accessURL>
        <dcat:byteSize>400887</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4964783/files/JJM_estylf2021b_preprint.pdf">https://zenodo.org/record/4964783/files/JJM_estylf2021b_preprint.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/779776/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">779776</dct:identifier>
    <dct:title>Robotics Technology for Inspection of Ships</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Innovation action/871260/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">871260</dct:identifier>
    <dct:title>Autonomous Robotic Inspection and Maintenance on Ship Hulls and Storage Tanks</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
69
30
views
downloads
All versions This version
Views 6969
Downloads 3030
Data volume 12.0 MB12.0 MB
Unique views 5454
Unique downloads 2121

Share

Cite as