Conference paper Open Access

Hypothesis Scoring and Model Refinement Strategies for FM-based RANSAC

Alberto Ortiz; Esaú Ortiz; Juan José Miñana; Óscar Valero


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">fuzzy metrics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">RANSAC</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">model estimation</subfield>
  </datafield>
  <controlfield tag="005">20210616134815.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This work is also supported by project PGC2018-095709-B-C21 (MCIU/AEI/FEDER, UE), and PROCOE/4/2017 (Govern Balear, 50% P.O. FEDER 2014-2020 Illes Balears).</subfield>
  </datafield>
  <controlfield tag="001">4964749</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">22-24 September 2021</subfield>
    <subfield code="g">ESTYLF</subfield>
    <subfield code="a">Spanish Congress on Fuzzy Logic and Technologies</subfield>
    <subfield code="c">Malaga (Spain)</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of the Balearic Islands</subfield>
    <subfield code="a">Esaú Ortiz</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of the Balearic Islands</subfield>
    <subfield code="a">Juan José Miñana</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of the Balearic Islands</subfield>
    <subfield code="a">Óscar Valero</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">774007</subfield>
    <subfield code="z">md5:972b17faf208ecd13b41f87c3bbf752e</subfield>
    <subfield code="u">https://zenodo.org/record/4964749/files/AOR_estylf2021a.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-06-16</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4964749</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of the Balearic Islands</subfield>
    <subfield code="a">Alberto Ortiz</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Hypothesis Scoring and Model Refinement Strategies for FM-based RANSAC</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">779776</subfield>
    <subfield code="a">Robotics Technology for Inspection of Ships</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">871260</subfield>
    <subfield code="a">Autonomous Robotic Inspection and Maintenance on Ship Hulls and Storage Tanks</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Robust model estimation is a recurring problem in application areas such as robotics and computer vision. Taking inspiration from a notion of distance that arises in a natural way in fuzzy logic, this paper modifies the well-known robust estimator RANSAC making use of a Fuzzy Metric (FM) within the estimator main loop to encode the compatibility of each sample to the current model/hypothesis. Further, once a number of hypotheses have been explored, this FM-based RANSAC makes use of the same fuzzy metric to refine the winning model. The incorporation of this fuzzy metric permits us to express the distance between two points as a kind of degree of nearness measured with respect to a parameter, which is very appropriate in the presence of the vagueness or imprecision inherent to noisy data. By way of illustration of the performance of the approach, we report on the estimation accuracy achieved by FM-based RANSAC and other RANSAC variants for a benchmark comprising a large number of noisy datasets with varying proportion of outliers and different levels of noise. As it will be shown, FM-based RANSAC outperforms the classical counterparts considered.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4964748</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4964749</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
46
28
views
downloads
All versions This version
Views 4646
Downloads 2828
Data volume 21.7 MB21.7 MB
Unique views 3636
Unique downloads 2424

Share

Cite as