Conference paper Open Access

Hypothesis Scoring and Model Refinement Strategies for FM-based RANSAC

Alberto Ortiz; Esaú Ortiz; Juan José Miñana; Óscar Valero

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.4964749</identifier>
      <creatorName>Alberto Ortiz</creatorName>
      <affiliation>University of the Balearic Islands</affiliation>
      <creatorName>Esaú Ortiz</creatorName>
      <affiliation>University of the Balearic Islands</affiliation>
      <creatorName>Juan José Miñana</creatorName>
      <affiliation>University of the Balearic Islands</affiliation>
      <creatorName>Óscar Valero</creatorName>
      <affiliation>University of the Balearic Islands</affiliation>
    <title>Hypothesis Scoring and Model Refinement Strategies for FM-based RANSAC</title>
    <subject>fuzzy metrics</subject>
    <subject>model estimation</subject>
    <date dateType="Issued">2021-06-16</date>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4964748</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;Robust model estimation is a recurring problem in application areas such as robotics and computer vision. Taking inspiration from a notion of distance that arises in a natural way in fuzzy logic, this paper modifies the well-known robust estimator RANSAC making use of a Fuzzy Metric (FM) within the estimator main loop to encode the compatibility of each sample to the current model/hypothesis. Further, once a number of hypotheses have been explored, this FM-based RANSAC makes use of the same fuzzy metric to refine the winning model. The incorporation of this fuzzy metric permits us to express the distance between two points as a kind of degree of nearness measured with respect to a parameter, which is very appropriate in the presence of the vagueness or imprecision inherent to noisy data. By way of illustration of the performance of the approach, we report on the estimation accuracy achieved by FM-based RANSAC and other RANSAC variants for a benchmark comprising a large number of noisy datasets with varying proportion of outliers and different levels of noise. As it will be shown, FM-based RANSAC outperforms the classical counterparts considered.&lt;/p&gt;</description>
    <description descriptionType="Other">This work is also supported by project PGC2018-095709-B-C21 (MCIU/AEI/FEDER, UE), and PROCOE/4/2017 (Govern Balear, 50% P.O. FEDER 2014-2020 Illes Balears).</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/779776/">779776</awardNumber>
      <awardTitle>Robotics Technology for Inspection of Ships</awardTitle>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/871260/">871260</awardNumber>
      <awardTitle>Autonomous Robotic Inspection and Maintenance on Ship Hulls and Storage Tanks</awardTitle>
All versions This version
Views 8080
Downloads 5858
Data volume 44.9 MB44.9 MB
Unique views 6161
Unique downloads 5454


Cite as