
 

Burn and coast method timing optimization for BYU 

Supermileage vehicle 

Alex Ostergaard, Justin Taylor and Bradley Wood 

 

ABSTRACT 

The Mechanical Engineering Department at Brigham Young University sends a team each year to 

compete internationally with a Supermileage vehicle of their own design and build.  The object of 

participation with their vehicle is to achieve the maximum fuel efficiency possible. High fuel efficiency is 

achieved by minimizing energy losses and developing optimal driving methods specific to the vehicle and 

the race track.  This research details procedures and results of optimization applied to the “burn and 

coast” method of driving that BYU implements in competition.  Total fuel consumption was the objective 

of the optimization. An objective function was derived from an energy balance defining the inputs and 

losses of the Supermileage vehicle. Optimization constraints were drawn from competition rules dictating 

average velocity limits. A constrained gradient based optimization was performed in Matlab using the 

fmincon function.  The design variables used were the start and end positions of the engine burns along 

the competition track. Results were calculated by the optimizer for one, two and three burns per lap, and 

several sets of initial conditions were implemented for each case thereof.  Results from the optimization 

limited total position of engine burn to ~16 m regardless of the number of burns or the initial conditions.  

Based on the given track and the results of the optimization it is suggested that the vehicle run the engine 

twice for each lap; once at the beginning of the lap and again shortly after the fourth turn.  

 

NOMENCLATURE 

V – Velocity (m/s) 

x – Position on the track (m) 

A – Frontal area of vehicle (m2) 

m – Mass of vehicle and driver (kg) 

Cd – Drag Coefficient 

μ – Coefficient of Friction (tire to road) 

η – Engine Efficiency 

ṁf – mass flow rate of fuel (kg/s) 

ρ – Air density (kg/m3) 

R – Turning Radius (m) 

g – Gravity (m/s2) 

h – Height (m) 

LHV – Lower Heating Value of fuel (kJ/kg) 

δe – Engine Boolean value (1 for engine on, 0 

for engine off 

δc – Cornering Boolean value 

P – Engine Ignition Penalty (kg) 

 

 



INTRODUCTION 

Each year a team of senior students from the Brigham Young University Mechanical Engineering 

Program designs and builds a Supermileage Vehicle to compete in an international, intercollegiate 

competition. The competition this year is the Shell Eco-marathon, and is held amongst participating 

universities to demonstrate the best solution for fuel efficiency of a single occupant vehicle powered by 

an internal-combustion engine (SAE International, 2016). Historically, the team strives to focus their 

efforts on building an efficient engine for their vehicle and minimize energy losses in their car due to 

friction and drag (see Figure 1 for a picture of the BYU vehicle). 

 

As part of their classic race-day strategy for maximizing fuel economy BYU implements a “burn and 

coast” racing technique. The burn and coast method involves selectively running the engine for short 

periods of time to minimize fuel consumption and maintain a competition-specified average velocity. In 

general the method has proven successful in obtaining improved fuel economy.  

Although the burn and coast method of driving the vehicle has proved more successful than other 

methods of driving the vehicle in terms of fuel efficiency, it is this aspect of the team's strategy that is the 

subject of this research. To this point in the team's competing history, BYU has utilized, but not 

optimized the timing of the burn and coast method for fuel economy. Thus, given data describing the 

physical characteristics of this year's vehicle and the competition track, the goal of this research was to 

apply optimization techniques to the timing of running the given engine on the specified track in order to 

minimize fuel consumption 

Competition rules drove several constraints on this optimization problem. Most notably, as per the Shell 

Eco-Marathon rules, the average velocity of the vehicle over the course of an entire run may not exceed 

25 mph (11.176 m/s), nor may it be less than 15 mph (6.7056 m/s) (SAE Supermileage Rules and 

Important Documents, 2016). The track itself is ~ 1 km in length and a full run consists of 10 laps of the 

track.  

 

Figure 1: The 2014 BYU Supermileage Vehicle.  It achieved 1300 mpg to win the 2014 
SAE Supermileage competition. 



FORMULATION OF OBJECTIVE 

The objective for the optimization of the burn and coast method was derived from an energy balance of 

the Supermileage Vehicle as derived by Dr. Jerry Bowman. The energy balance (1) was first derived in 

the time domain. It states that the change of the kinetic and potential energy of the vehicle with respect to 

time are equal to the energy output by the engine minus energy lost to friction at the tires, air drag, and 

cornering. The time-domain energy balance was simplified to a relationship that demonstrates the 

equivalence to the vehicle’s change of velocity with respect to time (Bowman, 2016). 
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Due to the nature of the race and the information available to us, it was more useful to minimize the fuel 

consumption in the space domain instead of the time domain.  This is because the design variables we 

have chosen to use are discrete positions (m) along the track. Therefore, using several substitutions for 

dV/dt, dh/dt and dx/dt, we were able to solve equation 2 in the space domain (3).   
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Now that we have the derivative of velocity with respect to position on the track, that formula is used to 

calculate the velocity at each respective velocity on the track (Vi=Vi-1+dVi/dt). Given the velocities at 

every position on the track, an average velocity can then be calculated. 

Ultimately, the objective (f) that we minimize is the total mass of fuel consumed by the engine (mf). The 

total fuel consumption is measured by summing the discrete amounts of fuel burned at each interval for 

which the engine is on.  Also, an ignition penalty of .7 g of fuel is applied for each time the engine is run 

as per dynamometer testing of the 2016 supermileage engine.  The function space is a result multiplying 

the 𝑚𝑓̇  by the corresponding burn time to get the fuel burned at each position and then summing the 

values of fuel burned at every position on the track. 

Simplifications to the model were made in order to develop a clean, generalized representation of the 

vehicle.  Some of the assumptions made include: 1) the turning radius at all corners is constant for each 



corner and relatively large (10 m), 2) the engine ignition penalty is always the same, 3) the engine 

experiences consistent performance (i.e. the efficiency is constant), and 4) there are no effects from wind 

or weather on the vehicle. 

OPTIMIZATION APPROACH 

We performed the optimization of this objective using a constrained gradient based method.  Matlab’s 

fmincon() function was implemented to perform the optimization (MathWorks, Inc., 2016).  Critical to the 

performance of the optimizer was the proper application of constraints to the function space.  Constraints 

on the average velocity can now be set corresponding to competition rules:  

6.7056
𝑚

𝑠
< 𝑉𝑎𝑣𝑔 < 11.176

𝑚

𝑠
 

 Other constraints are set such that the position of the start of an engine burn must be less than the end 

burn position: 

𝑥𝑖 < 𝑥𝑖+1 

The energy balance equation provided to us by Dr. Bowman is a nonlinear differential equation. Our 

numerical approximation to the equation is undefined at x= 0 and loses physical meaning if the velocity is 

negative. To prevent this from happening we attempted to constrain the velocity at each point along the 

track. Unfortunately our discretization of the solution created 10,000 constraints for one lap around the 

track. Attempts to optimize the full course, 10 laps, created 100,000 constraints. We thought an active set 

method would be deal with this large number of constraints but even it was unable to operate under these 

conditions (Nocedal, 2006). A decision was made to hard code a fail-safe to prevent the velocity from 

ever going below zero. Optimized solutions that triggered the fail safes were discarded and we input 

initial variables that would avoid these discontinuities. 

When supplying gradients to the optimizer two methods were tested, namely the finite difference method 

and complex step method. The difficulty in calculating these gradients lied in the nature of the input 

variables. Our inputs were used as switches for the burning fuel and turning fuel off. We feared that a 

small perturbation of the variables would not provide accurate gradients using the finite difference 

method. To check the gradient we moved to the complex method. However, because the imaginary 

perturbation was used in the switch and not directly on the function space no gradient was found. To work 

around this a new approach was needed. 

To calculate the needed time we used the average value theorem at each interval of burning and coasting 

to find the average velocity at burn and coast intervals (Stewart, 2008). This could in turn be used to find 

the optimal fuel usage while allowing for imaginary perturbations to take effect. 
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The results converged to similar results while optimizing with 2 input variables but for more variables the 

complex method gave nonsensical answers. This implies errors in implementing the mean value theorem 

to define the objective function. For simplicity and accuracy we elected to move forward with the finite 

difference method. 



In addition, many possible solutions fall outside constraint values.  In order to move the optimization 

search towards feasible solutions, the optimization algorithm employs a penalty method (Chandrupatla., 

1999).  Each time the constraint is violated, a penalty of one gram of fuel is given to the objective 

function.  This penalty for constraint violation assisted the optimization process in obtaining an optimal 

performance strategy.  

Difficulties arise in the optimization when solving for more than 2 variables. In several cases the first 

order optimality is on the order or 10-2 instead of 10-6. These may very well be due to the fact that our 

discretization of the energy balance equation is of order 10-1 limiting our resolution. To combat this 

problem we compared the diagnostics of the resulting optimization to determine by eye a reasonable 

optimal point that satisfied the constraints. To improve our understanding of the optimum we compare the 

achieved results from testing different number of burns for one lap around the track. In addition we 

compare our optimization of one lap to an optimization of the entire race (see Results). 

 

RESULTS  

Before reasonable results could be reached for any case, the function space was analyzed for 1 burn in 

order to get an initial understanding of where to expect to find minimums in the results. A low-

resolution example of the function space for one burn can be seen in Figure 2.  Within the function space 

it is obvious that the optimizer will trend towards the front-left face of the valley.  The dark floor towards 

the right of the plot represents the portion of the space where the beginning burn location is greater than 

the ending location and thus is infeasible.  The yellow plateaus represent areas that have violated the 

constraints. 

Figure 2: Preliminary contour plot of function space (fuel consumption) for one burn 



As mentioned previously, optimization was then performed for a single lap at one, two and three burns.  

For each burn case, four sets of initial points were tested in attempt to lower the risk of missing optimal 

results due to getting stuck in local minima.   

The first optimizations performed were for one lap and one burn at various initial points.  All of them 

demonstrated accordance with Figure 2 as the (x1,x2) location of the single burn resulted in a relatively 

short burn towards the beginning of the lap.   For example, in Figure 3, it is obvious that the location of 

the burn is at the very beginning of the lap, lasting only 15 or 20 meters. 

In order to validate the single-lap analysis approach, an entire run was put together of 10 laps of the track 

and an optimization of 10 burn positions was run.  The result is seen in Figure 4: 

The results of the 10 burn, full track optimization served to demonstrate that a single-lap analysis would 

be effective.  This conclusion was drawn from the fact that the burn position converged at the beginning 

of every lap and demonstrated distinct repeatability.  Therefore, further optimization proceeded in a 

single-lap analysis fashion.  Single laps were given initial velocities near the minimum acceptable average 

velocity (~6.7 m/s) and continued to be optimized for one, two and three burns per/lap at 4 different sets 

of initial burn positions. 

A rough analysis of the various retrieved velocity plots indicated that though elevation change over the 

length of the course does play some role in the energy loss and gain of the vehicle, cornering is a more 

significant loss and tended to impact the optimization much more.  When looking at equation 3, this is a 

Figure 4: Optimization results for 10 burns over complete course.  Position vs. Velocity is plotted, and indicates a single 
burn per lap towards the beginning of each lap. 

Figure 3: Plot of optimization results for Velocity vs. Position with one burn on a single lap of the course.  The Blue lines 
indicate turns on the course. 



logical result. The cornering term in equation 3 includes a velocity term of power 1.9, which results in 

cornering being the greatest power loss of the given model. 

 

 

Table 1: Results of one, two and three burn optimizations of various initial points. 

 

  Ultimately, the optimal result found was a two burn per lap run as seen in case 3 of the two-burn lap 

section of Table 1.  Overall optimal results tend towards a burn at the beginning of the run and after the 

Case #1 Case #2 Case #3 Case #4 Case #5

Initial Conditions 0, 200 200, 400 400, 600 600, 800 800, 980

Optimal Run Positions (m) 0, 16.9 291.5, 331.7  291.0, 331.3  292.3, 332.5 310.2, 326.5

Objective Function Value 5.88 11.18 11.18 11.16 5.52

Fuel Consumed (g) 9.41 17.89 17.89 17.86 8.83

 Predicted fuel efficiency (MPG) 1321.27 694.51 694.51 695.81 1406.68

Average Veloctiy (m/s) 7.03 7.86 7.86 7.87 6.73

Initial Conditions 0, 400, 500, 980 0, 300, 301, 500 0, 50, 690, 740 300, 500, 700, 900 

Optimal Run Positions (m)
356.5, 371.3 758.4, 

759.9

0, 10.2731, 

215.2099,  219.4550

24.9, 34.7, 715.6, 

717.5

0.7, 11.7, 747.7, 

749.0

Objective Function Value 5.52169 4.29628 4.02 4.95

Fuel Consumed (g) 8.83 6.87 6.44 7.92

 Predicted fuel efficiency (MPG) 1406.64 1807.84 1929.75 1569.09

Average Veloctiy (m/s) 6.7339 6.7408 6.7166 6.7169

Initial Conditions
0, 300, 300, 600, 

600, 900

0, 100, 100, 200, 

200, 300

0, 300, 400, 500, 

800, 900

300, 500, 600, 700, 

800, 900

Optimal Run Positions (m)
242.4, 251.0, 

553.66, 557.03, 

104.090, 119.453, 

175.73, 175.84, 

216.01, 228.37, 

433.12, 437.37, 

401.61, 411.89, 

632.35, 639.26, 

Objective Function Value 5.15 4.7105 5.313 6.09

Fuel Consumed (g) 8.24 7.54 8.5 9.74

 Predicted fuel efficiency (MPG) 1508.16 1648.87 1461.89 1275.37

Average Veloctiy (m/s) 6.7245 6.1494 6.732 6.701

One-Burn Lap

Two-Burn Lap

Three-Burn Lap

Figure 5: Plot of an optimization results for Velocity vs. Position with three burns on one lap.  The Blue lines indicate 
turns on the course.  It seems significant that engine burns come after corners where there is significant space 
before the succeeding corner. 



fourth lap.  Total burn distance is about 15 meters, and the average velocity hovers around the minimum 

constraint. 

 DISCUSSION 

There was a lot of perceivably valuable knowledge brought out through this optimization study.  One of 

the most significant portions of information drawn therefrom relates to the length of burn.  In most cases 

the total length of track over which the engine was turned on was between 14 and 20 meters.  This was 

true for one, two or even three burn positions, irrespective of the initial conditions.  We believe that the 

engine is not currently modeled very accurately.  We hypothesize that a more accurately modeled engine 

term would demonstrate a need for a longer overall burn in order to meet the constraining average 

velocities, however it appears that the same trend of consistent burn-distance would hold across all burn 

cases and their respective initial conditions for the given design variables. 

Another very important observation from the results was that initial conditions (starting points for the 

design variables) had a great deal of bearing on the final result.  We suppose that this is due largely to 

shape of the function space.  Scaling of the function objective as well as the derivative thereof was 

applied to the algorithm.  Generally, scaling aided in the reaching a better optimum.  However as seen in 

Error! Reference source not found., the initial conditions can result in very different burn locations 

albeit providing similar objective values.  In Error! Reference source not found. the pink trail shows an 

optimization history originating at (0,200) whereas the red history starts at (400,600).  Although both 

result in similar fuel consumption values, this may have interesting implications about the model used in 

the optimization and the assumptions made.  It is possible that assuming an initial velocity of 6.7 m/s isn’t 

appropriate.  Perhaps the single lap analysis is good for laps 2-9 but not as good for the first and last lap. 

Figure 6: Contour plot of one burn for one lap.  Overlaid are the optimization history of two initial conditions. The plot demonstrates the 
importance of picking initial conditions wisely. 



Added constraints dictating initial and final velocities for the first and last laps respectively may be 

necessary in order to truly model a full run. 

After examination of the results it is apparent that the highest fuel efficiencies that the team can achieve 

given the reported physical characteristics of the current vehicle (according to this model) will be through 

a two-burn lap. Not only is this indicated by the max fuel efficiency being found in a 2-burn lap (see 

TABLE 1), but the 3 burn lap results also all resulted in only two effective burns as one of them was 

forced to a near-zero burn time. 

Results for most cases also seemed to indicate, though not exclusively, that burns should be positioned 

before corners so as to avoid high velocities in the corners.  

CONCLUSION 

From our results, we conclude that the best approach to the Supermileage Vehicle burn and coast method 

is to burn about 20 meters at the beginning of the lap and after turn four.  Using this strategy, and under 

ideal conditions, the Supermileage Vehicle could achieve 1,930 miles per gallon.  According to our 

model, the velocity of the car is most adversely affected by the turning radius of the four modeled energy 

losses.  The effects of cornering drag can best be addressed by approaching the series of three turns with a 

minimal velocity, while still maintaining an average velocity of 15mph (6.7056 m/s).  This last plot 

illustrates the resulting velocity for a lap with the engine running from positions 24.9 to 34.7 meters and 

715.6 to 717.5 meters. 

 

The average velocity for this strategy over a lap is 6.72 m/s, or 15.1 mph, meeting the required velocity 

constraints. Admittedly, there remains many factors not consider in this calculation, human error notably. 

A person’s ability to correctly time the turning on and off of the engine involves a fair amount of 

unmeasurably uncertainty.  Furthermore, the error associated with turning is a rough approximation.  As a 

final recommendation to the Supermileage Team, we suggest improving the model of engine efficiency 

and power output.  The current model lacks the ability to accurately model change in velocity at values 

greater than one.  By addressing these issues, and following this proposed strategy, the Supermileage 

Team will be able to improve their performance at this year’s competition. 

  

Figure 7: Optimal Strategy for Lap 
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