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abstract: The generation time is commonly defined as the mean
age of mothers at birth. In matrix population models, a general for-
mula is available to compute this quantity. However, it is complex
and hard to interpret. Here, we present a new approach where the gen-
eration time is envisioned as a return time in an appropriate Markov
chain. This yields surprisingly simple results, such as the fact that the
generation time is the inverse of the sum of the elasticities of the
growth rate to changes in the fertilities. This result sheds new light
on the interpretation of elasticities (which as we show correspond
to the frequency of events in the ancestral lineage of the population),
and we use it to generalize a result known as Lebreton’s formula. Fi-
nally, we also show that the generation time can be seen as a random
variable, and we give a general expression for its distribution.

Keywords: generation time, matrix population model, Markov chain,
return time, elasticity.

Introduction

The generation time (Coale 1972; Caswell 2001) is a bio-
logical descriptor frequently used in many fields, including
some outside biology, such as history (where it can be used
to obtain rough estimates of the timing of events by con-
verting generations into years) or archaeology (where it is
an important parameter to model the migration of human
populations; see, e.g., Hazelwood and Steele 2004). In biol-
ogy, it is also used as a quantitative parameter in empirical
studies, most notably in the study of molecular evolution,
where there has been some effort to relate it to the rate ofmu-
tation (for a recent example where additional references on
this topic can be found, see Thomas et al. 2010). But beyond
its applications and the resulting need for solid estimates,
the generation time is of theoretical importance. Indeed, it

is an appropriate candidate for the timing of processes taking
place at the level of the population. Moreover, since it cor-
responds to the intuitive notion of the time it takes for a
generation to be replaced by the next, it can been seen as
the inverse of a turnover rate for isolated populations at
the demographic equilibrium. These considerations—in
addition to its correlation with the number of DNA rep-
lications and the rate of molecular evolution—make the
generation time a valuable proxy for the timing of evolu-
tion. Finally, the generation time is in allometric relation
with other important biological descriptors, such as body
size or evolutionary entropy (Demetrius et al. 2009; e.g.,
smaller organisms tend to have shorter generation times).
Therefore, it is an important parameter for the metabolic
theory of ecology (Brown et al. 2004), which investigates
how such allometric relations emerge from the metabolism
of organisms.
But the generation time is more of an intuitive notion

than a well-defined quantity. As a result, several measures
have been used to quantify it (Coale 1972), namely (1) the
time it takes for the population to grow by a factor of its net
reproductive rate, (2) the age at which members of a cohort
are expected to reproduce, and (3) the mean age of mothers
at birth in the stable population. How these three quanti-
ties relate to one another remains poorly understood (an
approximate relation between them has been suggested,
but we will show that it does not hold in the general case),
though it should be noted that recent work has contributed
to shed light on this question (Steiner et al. 2014).
In this article, we introduce a new measure of the gen-

eration time: the average time between two reproductive
events in the genealogy of the population. We study it in
the context of matrix population models (Caswell 2001),
which describe the dynamics of structured populations and
allow one to compute many useful biological descriptors.
These models are widely used in theoretical population biol-
ogy but also in more applied fields, such as fisheries man-
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agement, conservation biology, or human demography. Be-
cause mathematical formulas have been derived in matrix
population models for each of the three measures presented
above (Cochran and Ellner 1992; Cushing and Yicang 1994;
Lebreton 1996), we are able to show that in matrix popula-
tion models, our definition is equivalent to the more classic
mean age of mothers at birth in the population, though this
is not the case in general. Moreover, in contrast to the exist-
ing formula for the mean age of mothers at birth, which is
rather complex and whose derivation relies on biological in-
terpretations, our final expression is quite simple and our
approach is more independent of the biological context
and does not involve complex calculations.

Our approach comprises two preliminary steps that
greatly simplify subsequent calculations: first, we build a
Markov chain modeling the genealogies of individuals from
the population projection matrix, a process we call mar-
kovization. This Markov chain is similar to the ones clas-
sically used in population genetics with the coalescent
approach (for a review, see Rousset 2004). As a result, be-
cause matrix population models are available for a wide
range of taxa, our approach should be of interest to pop-
ulation geneticists. Second, because in non-age-classified
models the newborn stages are somewhat ambiguously de-
fined (in the sense that individuals can sometimes be in
newborn stages without having just been born), it is more
appropriate to study the sequence of transitions rather than
stages in the ancestral lineage. To do so, we introduce a
simple method that consists of building a graph whose
nodes correspond to the arcs of the graph from which it
is derived. Applying this method to the graph of the back-
ward time Markov chain modeling genealogies reveals an
important link between the backward time framework and
classic population dynamics by showing that the elasticities
of the growth rate—biological descriptors that have been
studied intensely—can be interpreted as the frequency of
events in the ancestral lineages of a population. In that
sense, our work contributes to bringing together popula-
tion genetics and classic population dynamics.

Matrix Population Models

During their life, organisms go through different stages, typ-
ically developmental stages followed by reproductive stages,
where they produce new organisms. Accordingly, the pop-
ulation is structured into classes and is represented by a di-
rected graph, the life-cycle graph. In the life-cycle graph,
nodes correspond to classes, and arcs weighted by the
demographic parameters represent transitions between
classes (figs. 1A, 2).

The life-cycle graph is represented by a nonnegative ma-
trix, the population matrix, whose entries are the demo-
graphic parameters. Matrix population models allow us to

project populations in discrete time tp 0, 1, 2, ::: , reflecting
the traversal of the life-cycle graph by individuals.
For birds and mammals, the classes are conveniently pa-

rameterized by age, leading to age-classified models such as
the Leslie model (Leslie 1945). But for organisms with in-
determinate growth, such as plants or fishes, size is a more
relevant parameter (Kirkpatrick 1984). Moreover, stages
or transitions can describe other biological situations. For
example, in the modeling of metapopulations, site-specific
life cycles are connected by transitions corresponding to
migrations between sites (Lebreton 1996).
In the population matrix Ap (aij), the entry aij associ-

ated with the arc j→ i describes the contribution of stage
j to stage i from a time step to the next, so that if nj(t) is
the number of individuals in stage j at time t, then

ni(t1 1)pojaijnj(t),

or, in matrix form,

n(t1 1)pAn(t),

where np (ni) is the population vector.
The transitions in the life-cycle graph can be partitioned

into reproductive transitions (which lead to the production
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Figure 1: Example life-cycle graph (A) and the corresponding gene-
alogy (B). In B, oblique lines indicate birth, and with the vertical
lines that follow, they correspond to a given individual. The death
of an individual occurs when the vertical line stops. The correspon-
dence between stages in A and B is indicated by colors.
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of new individuals) and other transitions (which we broadly
consider as survival transitions). Determining whether a
transition is reproductive is usually clear but depends on
the biological setting and on the question being studied.
For example, vegetative reproduction could be considered
as a reproductive event or not. Once reproductive transi-
tions have been identified, the population projection ma-
trix can be decomposed into ApF1 S, where the entries
of the fertility matrix F correspond to reproductive transi-
tions. The entries of S typically correspond to survival prob-
abilities, but this need not be the case (e.g., if vegetative re-
production is not counted as a reproductive transition).

Some life cycles contain mixed transitions, which are sin-
gle transitions corresponding to either reproduction or sur-
vival. This is the case, for instance, in the most general form
of the size-classified model, as shown in figure 2A: when
small individuals are fertile, they can fail to grow and re-
main in the small class (survival probability s), but they
can also produce new individuals in the small class (fertil-
ity f ). In order to obtain the population projection matrix,
the weights of the two transitions are summed, yielding a
mixed transition with weight f 1 s. But in the rest of this

article, we shall view these mixed transitions as two distinct
transitions associated with one arc each in the life-cycle
graph (as in fig. 2).
Matrix population models have been extensively studied,

and many analytical results are available (Caswell 2001).
The population matrix A can in general be assumed prim-
itive, and we will make this assumption throughout the
study. This means that (1) A is irreducible: it is possible
to go from any node to any other node by following the arcs
of the life-cycle graph; and (2) A is aperiodic: the greatest
common divisor of the cycle lengths equals 1. The Perron-
Frobenius theorem (Seneta 2006) then ensures that A has
a real eigenvalue l > 0, larger in modulus than any other
eigenvalue, called the dominant eigenvalue. Moreover, l is
simple, and its associated left and right eigenvectors—v
and w, respectively—are positive. This implies that for large
t, the population vector verifies n(t1 1)∼ln(t). Thus, l
can be interpreted as the asymptotic growth rate of the pop-
ulation. When normalized so that its entries sum to 1, the
right eigenvector wp (wi) is interpreted as the stable stage
distribution of the population. Indeed, the proportion of
individuals in stage i tends toward wi:
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Figure 2: A, B, Examples of life cycles containing mixed transitions. The reproductive transitions are shown in red. A, General form of the
standard size-classified model, including one mixed transition (dashed arrows). B, Size-classified model with possibility of retrogression to
smaller stages, including two mixed transitions (dashed and dotted arrows). C, D, Life-cycle graphs illustrating how survival into newborn
stages can occur, even when there are no mixed transitions. C is a theoretical example of a typical size-classified model, while D is a real-
world example of a life cycle where the situation is even more complex (life cycle of the teasel Dipsacus sylvestris). Stages: 1, dormant seed
year 1; 2, dormant seed year 2; 3, small rosette; 4, medium rosette; 5, large rosette; 6, flowering plant (Caswell 2001). Reproductive transitions
and newborn stages are in red, while nonreproductive transitions entering newborn stages are in blue.
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ni(t)

oj nj(t)
→
t→∞

wi.

As a result,

n(t) ∼ cltw. (1)

Here, c is a constant that depends on the initial population
size and structure. Finally, the entries of the row vector v
can be interpreted as the reproductive values of the stages.

Modeling Genealogies with Markov Chains

We now explain how matrix population models can be
used to model genealogies. By genealogy, we refer to a one-
sex (or no-sex) demographic process followed at the indi-
vidual level and represented as a branching process, as in
figure 1. Given such a genealogy, it is natural to define the
generation time as the time between two consecutive re-
productive events (i.e., the length of the branches located
between two oblique lines). However, the population pro-
jection matrix does not model these genealogies. Never-
theless, it is possible to use the information it contains
about the population to estimate what happens at the in-
dividual level.

To do so, it is convenient to proceed backward in time
because, in one-sex and no-sex models, an individual has
only one parent whereas it can have several descendants.
This makes it possible to study some properties of the ge-
nealogy of a population by going up the family tree of one
individual. This approach assumes that all individuals are
identical within a class, a working hypothesis of matrix pop-
ulation models.

To study the genealogies, we introduce a Markov chain
P associated with the population matrix A. We consider a
particle performing a backward random walk in the life-
cycle graph, moving from class to class in the same way as
one would do when going up a lineage. The particle can be
interpreted as a gene or as a germ-line cell, but our results
do not rely on this interpretation.

The appropriate Markov matrix, Pp (pij), is given by
the probabilities

pij pP½an individual in class i comes
from an individual in class j�:

At time t, there are ni(t)p oj aijnj(t2 1) individuals in
class i, aijnj(t2 1) of which come from class j. Therefore,

pij p
aijnj(t2 1)

ni(t)
.

Assuming the population at the stable stage distribution,
we substitute equation (1) in the previous expression and
obtain

pij p
aijclt21wj

cltwi

p
aijwj

lwi

, (2)

which is independent of t. For mixed transitions (aij p fij 1
sij), we have pij p p f

ij 1 psij, where

p f
ij p

fijwj

lwi

 and psij p
sijwj

lwi

are the probabilities that an individual in class i comes from
an individual in class j through reproduction and through
survival, respectively.
The matrix defined by equation (2) is a Markov matrix

(it can be checked that its rows sum to 1) and is primitive.
Its stationary probability distribution p is given by

pi p
viwi

vw
. (3)

Indeed, it is checked that the row vector pp (pi) is such
that pppP and oi pi p 1.
The Markov matrix P that we have just defined has been

introduced by Demetrius and is central to the definition of
evolutionary entropy (Demetrius 1974, 1975). However, it
does not seem to have been used to compute other, more
classic biological descriptors. This Markov matrix also al-
lows us to fall back on a classic framework of population ge-
netics, and indeed, pi corresponds to the class reproductive
value, which had already been interpreted as frequency of
the stage in the genealogy of the population (for an intro-
duction to this framework, see Rousset 2004).
Given the Markov matrix P, it is easy to compute the

mean time between two newborn stages in the genealogy:
it is the mean return time to the set N of newborn stages.
Let us recall that in a primitive Markov chain, the mean
time of first return to stage i is

Ti p
1
pi

.

This classic result about return times can be found in any
introductory textbook on Markov chain (e.g., Feller 1968,
ch. XV). It is easy to intuit by picturing a particle perform-
ing a random walk in the markovized life-cycle graph:
since pi is the asymptotic proportion of time spent on node
i, it means that in k steps, the particle will have been on
average pi k times on node i. Thus, the mean time between
two visits of node i is k=(pik)p 1=pi.
Similarly, for any subset S of the set of stages, the aver-

age proportion of time spent in the stages i∈S will be the
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multiplicative inverse of oi∈S pi. We obtain that the mean
return time to the set N of newborn stages is

TN p
1

oi∈N pi

. (4)

Example: The Leslie Model

The population projection matrix of the age-classified Les-
lie model (Leslie 1945) is

Ap

f1 f2 ⋯ fm21 fm
s1 0 ⋯ 0 0
0 s2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ sm21 0

2
66664

3
77775,

where the si’s represent survival probabilities and the fi’s rep-
resent fertilities. The characteristic equation is

o
m

ip1
fil

2i p 1,

where f1 p f1 and fi p s1 ::: si21 fi for ip 2, ::: ,m are the
age-specific net fertility rates.

The stable stage distribution vector w is given by

wi p

 Yi21

kp1

sk

!
l2(i21).

Here, w has not been scaled so that oi wi p 1. We could do
it, but the scaling factor would cancel out in the numerator
and the denominator when applying equation (2) to marko-
vize A, which gives

Pp

f1l
21 f2l

22 ⋯ fm21l
2(m21) fml

2m

1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0

2
66664

3
77775.

The fact that P is a Markov matrix is made apparent from
the characteristic equation oi fil

2i p 1.
Here the distribution of the return time to the single new-

born stage (stage 1) is easily obtained without having to find
the stationary probability distribution of P because the only
probabilistic event in this Markov chain is the departure
from the newborn stage: from stage 1, a particle goes to
stage i in one step (recall that the particle is going backward
in time, so this means that the parent of the newborn is cho-
sen in stage i) with probability fil

2i. Then, it comes back
to stage 1 deterministically in i2 1 steps, so that the return

time associated with this cycle is i. Hence, the probability
distribution of the return time is given by

P½T p i�pfil
2i.

Computing the mean of T gives the classic result for the
mean age of mothers at birth:

Tp o
i
ifil

2i. (5)

The Generation Time as the Time between
Reproductive Events in the Genealogy

In some instances, the newborn stages are not well defined
because individuals can be observed in these stages with-
out having just been born. For example, this can happen
in size-classified models when a newborn survives but fails
to grow (fig. 2C, blue loop on node 1) or when the model
includes the possibility of individuals shrinking to a smaller
class. In some cases, such as the teasel Dipsacus sylvestris,
whose life cycle is presented in figure 2D (Werner and Cas-
well 1977; Caswell 2001), the situation can be even more
complex: in this annual plant, stage 4, which corresponds
to the medium rosette class, is mainly reached through
the 6 → 4 transition (flowering adult → medium rosette),
which is associated with reproduction. It can thus be con-
sidered to be a newborn stage. But this stage can also be
reached through other transitions, such as 3→ 4 (small ro-
sette → medium rosette), which do not correspond to re-
production but to the survival of an existing individual.
The same can be said about nodes 3 and 5, which are
reached by both reproductive transitions (in red) and non-
reproductive ones (in blue).
For this reason, it is more satisfying to define the gen-

eration time as the return time to reproductive transitions,
which by definition always correspond to the production of
new individuals. This ensures that what we compute really
is the time between two reproductive events in the geneal-
ogy of the population. Indeed, if we had used the return
time to newborn stages in amodel where a nonreproductive
transition enters a newborn stage, the generations would
not have been properly counted; for example, an individ-
ual remaining in a newborn class for k consecutive years
would have yielded a series of k return times equal to 1, de-
spite the absence of reproduction, biasing the measure.
To compute the return time to reproductive transitions,

we introduce a simple method that consists of building a
new Markov chain ~P that models the random walk on the
arcs of P induced by the random walk on its nodes. In other
words, rather than modeling the sequence of stages encoun-
tered when going up a genealogy, ~P will model the sequence
of transitions. Thus, the nodes of ~P correspond to the arcs
of P.
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~P is defined as follows:

~p½i→ j�½k→ l � p
pkl if jp k,

0 otherwise.

(
(6)

Here, ½i→ j � is the node of ~P corresponding to the arc go-
ing from i to j in P (i.e., to the transition from j to i in the
life-cycle graph) and ~p½i→ j�½k→ l � is the weight of the arc go-
ing from ½i→ j � to ½k→ l � in ~P (the weight is taken to be
0 when there is no such arc). When ½k→ l � is a mixed tran-
sition, treating it as two distinct arcs ½k→ l �f and ½k→ l �s
yields ~p½i→ j�½k→ l�x p pxkl for x∈ f f , sg and jp k, where p f

ij p
fijwj=lwi and psij p sijwj=lwi. More details about this con-
struction are given in “Turning Nodes into Arcs: The Line
Graph” (available online).

To find the return time to reproductive transitions us-
ing equation (4), we need to compute the stationary prob-
ability distribution of ~P. Given the stationary probability
distribution p on the nodes of P, the stationary probability
distribution ~p on its arcs is given by

P½using arc i→ j�p

P½being on node i�#P½going from node i to node j�.

Thus,

~p½i→ j� ppipij.

It is furthermore checked that ~pp ~p~P and oi ~pi p 1.
From equations (2) and (3), we obtain

~p½i→ j� p
viaijwj

lvw
. (7)

When there is a mixed transition, treating it as two distinct
arcs ½i→ j�f and ½i→ j�s gives the frequency of the corre-
sponding reproductive and survival transitions:

~p½i→ j�f p
vi fijwj

lvw
,

~p½i→ j�s p
visijwj

lvw
.

The Elasticities as a Probability Distribution

Let us recall that the elasticity of the growth rate l to
changes in the population matrix entry aij (Demetrius
1969; Caswell 1978) can be expressed in terms of v and w:

el(aij)p
aij

l

∂l

∂aij

p
aij

l

viwj

vw
. (8)

The elasticity quantifies proportional changes in the growth
rate due to proportional changes in a demographic param-
eter (de Kroon et al. 1986).

Considering this, equations (7) and (8) lead to

~p½i→ j� p el(aij). (9)

This result provides a novel interpretation of the elastici-
ties: el(aij) is the asymptotic frequency at which the arc as-
sociated with aij is traversed along the genealogy, that is,
the frequency of the event associated with aij in the ances-
tral lineage of the population. Note that this interpretation
makes the fact that the elasticities sum to 1 very intuitive.
In the case of a mixed transition, equation (9) remains

valid (with ~p½i→ j � p ~p½i→ j � f 1 ~p½i→ j �s), but one should be
careful because ~p½i→ j � f ( el( fij) and ~p½i→ j �s ( el(sij). This
is because elasticities are not additive: el(aij)( el( fij)1
el(sij).

Mean Generation Time

From the population matrix A, we have constructed a Mar-
kov chain P on the nodes of the life-cycle graph and then
the Markov chain ~P on its transitions. We can now com-
pute the generation time as a return time to the set R of
reproductive transitions. Applying equation (4) to compute
mean return times, we obtain

Tp
1

o½ j→ i�∈R ~p½i→ j �

. (10)

Substituting ~p½i→ j� from equation (7) into equation (10), we
have

Tp
lvw

o½ j→ i�∈R viaijwj

. (11)

Using the Ap F1 S decomposition of the population ma-
trix (where the matrix of fertilities F corresponds to the re-
productive transitions ½ j→ i�∈R) and taking advantage
of matrix notation, we obtain a general expression for the
mean generation time

Tp
lvw
vFw

. (12)

This expression holds when there are mixed transitions
in the life cycle. Moreover, since w is a right eigenvector,
lvwp vlwp vAwp vFw1 vSw, so that we can also
write

Tp 11
vSw
vFw

. (13)

When the life-cycle graph does not contain mixed transi-
tions (which is most often the case), we can use equations
(9) and (10) to express the mean generation time as a func-
tion of the elasticities:
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Tp
1

oi, j el( fij)
. (14)

Example: Application to Dipsacus sylvestris

We apply equation (14) to the teasel Dipsacus sylvestris
(Werner and Caswell 1977; Caswell 2001), whose life cycle
is displayed in figure 2D. The matrix of elasticities is

0 0 0 0 0 0.0667
0.0007 0 0 0 0 0
0.0023 0.0007 0.0004 0 0 0.0045
0.0073 0 0.0025 0.0271 0 0.2285
0.0563 0 0.0051 0.1875 0.0226 0.0439

0 0 0 0.0509 0.2928 0

2
6666664

3
7777775
,

where the underlined entries correspond to the four reproduc-
tive transitions. Therefore, the generation time is

Tp
1

0.06671 0.00451 0.22851 0.0439
p 2.91 years,

in accordance with the computation of Cochran and Ellner
(1992).

Lebreton’s Formulas

We use equation (14) to generalize an important demo-
graphic result shown by Lebreton for age-classified mod-
els (Houllier and Lebreton 1986; Lebreton 1996). Let c be
a common parameter multiplying all fertilities, that is, all
weights associated with reproductive transitions (e.g., such
a parameter can be the primary sex ratio or—in prebreed-
ing census models—juvenile survival). Then

el(c)p
1
T
. (15)

Similarly, if d is a parameter multiplying the nonreproduc-
tive transitions (such as some stage-independent compo-
nent of survival; e.g., predation or hunting affecting equally
all individuals),

el(d)p 12
1
T
. (16)

These formulas show that in short-lived species, the effect
of selection should be higher when it affects juvenile sur-
vival and primary sex ratio, whereas in long-lived species
it should be higher when it affects adult survival. This adds
to the idea of considering the generation time as parame-
terizing the fast-slow continuum of species: toward the fast
end, species have short generation times, low survival rates,
and high fecundities, whereas toward the slow end, they have
longer generation times, high adult survival rates, and low
fecundities (Gaillard et al. 2005).

Using equation (14), the proof of these formulas be-
comes trivial. Indeed, since c multiplies the fertilities, for
a reproductive arc ½ j→ i�∈R, we have aij p cbij. Hence
∂aij=∂cp bij p aij=c for ½ j→ i�∈R and ∂aij=∂cp 0 other-
wise. Now, after applying the chain rule to the definition
of el(c), we can substitute ∂aij=∂c and keep only nonzero
terms to recover equation (15):

el(c)p
c
l

∂l

∂c
p

c
l
o
i,j

∂l

∂aij

∂aij

∂c
p o

½ j→i�∈R

aij

l

∂l

∂aij

p o
i,j
el( fij)p

1
T
.

The corresponding identity for el(d) (eq. [16]) results from the
fact that the elasticities of l to the aij’s sum to 1. Note that this
very simple proof relies on only equation (14), so it holds for
any matrix population model as long as there are no mixed tran-
sitions in the life cycle.

Distribution of the Generation Time

So far, we have focused on the mean return time to re-
productive transitions. But it is possible to be more general
and define the generation time as a random variable T
(thus, Tp E(T )). It is then possible to derive a closed ex-
pression for the full distribution of T . Indeed, simply by re-
arranging the order of the indexes of its rows and columns
so as to group reproductive and nonreproductive transi-
tions, ~P can be written as

~Pp
~PRR ~PRS
~PSR ~PSS

� �
,

where R and S are the sets of reproductive and survival
transitions and the submatrix ~PRR contains the weights of
the arcs going from R to R (similar notations hold for the
other submatrices). Likewise, the stationary probability dis-
tribution can be written

~pp (~pRj~pS).

The subvector ~pR can be scaled so that its entries sum to 1.
We denote the resulting vector q, interpreted as a stationary
probability distribution onR; that is,qa pP½Xp a∣X ∈R�.
The probability of going through path ½i→ j�→ ½ j→ k�→

⋯ → ½l→m�→ ½m→ n� (composed of exactly t nodes) be-
tween time 0 and t is P½X(0)p ½i→ j ��#~p½i→ j �,½ j→ k�#⋯#
~p½l→m�,½m→n�. Moreover, the probability of starting from R
and returning there for the first time at time t is the sum of
the probability of going through any path starting from R
at time 0 and coming back there after exactly t time inter-
vals. As a result, we can write that

P½T p t�p
q(~PRR)e tp 1,

q(~PRS)(~PSS)
t22(~PSR)e t ≥ 2,

(
(17)
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where e is a column vector of 1’s of the same length as q (e
allows us to sum the entries of the row vector by which it
is multiplied). We have taken advantage of matrix notation
to write this expression, but it can be checked that expanding
it yields the correct sum of products.

We therefore have an explicit expression for the distri-
bution of T , which makes it possible to compute numeri-
cally any function associated with this random variable (e.g.,
variance, Shannon entropy [Shannon 1948]). Examples of
distributions of T are given in figure 3. In some cases, it is
also possible to derive closed expressions for these quan-
tities; however, the resulting expressions are complicated
and not very informative.

Discussion

In this study, we have developed a general framework for
computing the generation time in any matrix population
model represented by a primitive matrix. The methodol-
ogy relies on envisioning the generation time as the return
time to the set of reproductive transitions and construct-
ing an appropriate Markov chain. The novelty of this ap-
proach perhaps explains why the simple formula we obtain
has been overlooked so far. Moreover, the general equa-
tion (10) can be used to compute the return time to any
set of arcs in the life-cycle graph other than the set of re-
productive arcs, thus potentially addressing other biologi-
cal questions.

We now discuss some points raised by the study. The
first point is the interpretation of the markovization. Al-
though, mathematically, it is clear that this method enables
us to compute the desired quantity (namely, the length of
the branches between two reproductive events in the ge-
nealogy of a population at the stable stage distribution), a
more biological interpretation of markovization is possible.
The Markov chain described by equation (2) gives the prob-
ability that an individual in a class comes from another
class. If the individual was already alive at the previous time
step, we simply follow the different stages that it traversed
during its life. But, going backward in time, we eventually
reach a time when the individual was not born. In this case,
we start to follow the parent of the individual. As a result,
what we follow is not so much the individuals as the infor-
mation they carry and pass on to their offspring. It is there-
fore tempting to interpret the Markov chain as modeling the
moves of a gene (in the population genetics sense of a copy
of an allele, not in the sense of a locus) between classes, in
which case we are exactly in the coalescent framework of
population genetics. In that context, the generation time is
simply the time that a gene spends in the body of an indi-
vidual. However, although this interpretation is correct in
no-sex models (where all individuals are taken into ac-
count), one must be careful when dealing with female-based
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Figure 3: A, Example of distributions of the generation time. Some
of these discrete distributions are displayed with continuous curves
for readability. B, Comparison of the three measures of the genera-
tion time, showing that they can differ importantly and that the re-
lation TR ≈ (T1TC)=2 does not hold in general. The life cycles used
are from Orcinus orca (Brault and Caswell 1993), Astrocaryum mexi-
canum (Pinero et al. 1984), Dipsacus sylvestris (Caswell 2001), Homo
sapiens (Keyfitz and Flieger 1971), Cypripedium acaule (Cochran and
Ellner 1992), and Gopherus agassizii (Doak et al. 1994). Most of them
can be found in the study by Caswell (2001).
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models: because males are not taken into account, the gene-
alogy described by markovizing these models is composed
exclusively of female individuals. As a result, the quantity
computed in thesemodels is conditioned on the gene having
been carried exclusively by females. Thus, unless both sexes
reproduce at the same ages, it cannot rigorously be inter-
preted as the time spent by a gene in an individual.

Second, it is natural to wonder about how our expres-
sion for the generation time relates to existing ones. In-
deed, Cochran and Ellner (1992) gave valuable analytical ex-
pressions for many demographic descriptors, including the
mean age of mothers at birth, for which they gave the ex-
pression

Tp
om

ip1 yiwigi

om

ip1 wigi

, (18)

where m is the number of classes, y the distribution of ages
in classes, and g the fecundity in newborn equivalents of
the classes. y and g are given by

yi p
om

jp1½(I2 l21S)22�ijbj

om

jp1½(I2 l21S)21�ijbj
, where bj p

(Fw)j

om

ip1 (Fw)i

,

and

gi p
(vF)i
vref

,

with vref a newborn stage of reference (v, w, F, and S have
the same meaning as in this study).

We show in “Simplification of Cochran and Ellner’s
Formula” (available online) that this expression is equiva-
lent to our equation (12). This is because primitive matrix
population models are ergodic: averaging the age at repro-
duction over several lineages at a given time (mean age of
mothers at birth in the population) and over a long period
of time in a given lineage (mean time between reproduc-
tive events in the genealogy of the population) gives the
same results. But the two measures should not be assumed
to be identical in general.

In addition to our expression being simpler, its derivation
is more independent of the biological context. Moreover, it is
easy to reformulate it in various ways; for instance, we have
seen that Tp 11 vSw=vFw. This expression makes appar-
ent the fact that the generation time depends on the relative
importance of survival (S) and reproduction (F; organisms
that invest more in reproduction and less in survival will
have a shorter generation time). However, onemust be care-
ful not to overinterpret this expression, since S and F are
implicitly linked to v and w (via v(S1F)p lv and (S1
F)wp lw).

As to how this definition of the generation time relates
to the two other definitions commonly used (TC, the age at

which members of a cohort of newborns are expected to
reproduce or cohort generation time, and TR, the time it
takes for the population to grow by a factor of its net repro-
ductive rate; i.e., lTR pR0) is still an open question, and we
have not been able to find an analytical relation between the
three measures. Nevertheless, numerical investigations show
that they can differ importantly and that the relation sug-
gested by Coale (1972) for humans (namely, that TR ≈ (T1
TC)=2) does not hold in general (fig. 3).
When it comes to saying whichmeasure is better adapted

for a particular use, it seems that because it is a measure of
the time between reproductive events in the ancestral lin-
eage, T should be the most relevant measure when study-
ing evolutionary processes, while TR, being defined in terms
of the global population dynamics only, should be more
adapted to the study of ecological processes (it should be
noted, however, that TR—not T—links fitness with the net
reproductive rate). Finally, TC, corresponding to the genera-
tion time as it is perceived by individuals, might be more rel-
evant for studies focusing on individuals.
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Appendix from F. Bienvenu and S. Legendre, “A New Approach to the
Generation Time in Matrix Population Models”
(Am. Nat., vol. 185, no. 6, p. 000)

Turning Nodes into Arcs: The Line Graph

To compute the return time to transitions rather than stages, we construct an appropriate Markov chain in which we
can use equation (4). This new Markov chain should have the following properties: (1) there should be a one-to-
one correspondence between its arcs and the nodes of the initial Markov chain; (2) there should be a one-to-one
correspondence between paths in both Markov chains; and (3) for every cycle, the weights of the arcs along corresponding
cycles in the two Markov chains should be identical. This leads us to define the new Markov chain according to
equation (6); that is,

~p½i→ j�½k→ l � p
pkl if jp k,

0 otherwise,

(

where ½i→ j� is the node of ~P that corresponds to the arc going from i to j in P. This simply means that the weight of an arc
of ~P equals the weight of the arc of P that corresponds to the node of ~P to which it points. This is why equation (6) can be
extended as we did to mixed transitions by treating them as two distinct transitions. Examples of this construction are
given in figure A1.

The intuition for this definition is the following: because of the one-to-one correspondence between the paths in both
graphs, it should be possible to go from ½i→ j� to ½k→ l� in ~P if and only if there are paths in P in which the transition i→ j
occurs just before the transition k→ l, which clearly is possible if and only if jp k. And because of the one-to-one
correspondence between the weights of the paths in both graphs, the weights of the arcs of ~P should be chosen from the
weights of the arcs of P. Here, the weights of the arcs of ~P correspond to the weight of the arc of P to which they point. In
graph theory terms, we have built what is known as a line graph (or adjoint graph) of a directed graph (Aigner 1967).

We now show some properties of the line graph that ensure that ~P indeed allows us to compute the return time to a set of
transitions. We must show that (1) ~P is a Markov matrix, (2) ~P is primitive (assuming P is), and (3) the return time to any
transition i→ j in P is the same as the return time to the corresponding node ½i→ j� in ~P.

First, we need to introduce some vocabulary: graphs in which there are more than one arc going from one node to
another are called multigraphs. Thus, when mixed transitions are treated as two distinct transitions, the life-cycle graph is a
multigraph. By contrast, there is always at most one arc going from one node to another in ~P (by construction). Graphs
that have this property are called simple graphs to distinguish them from multigraphs.

~P Is a Markov Matrix

Clearly, the entries of ~P are in the [0, 1] range. So all we have to show is that its rows sum to 1. Let ½i→ j� be the index of a
row of ~P. Then, by using equation (6) and the fact that the rows of P sum to 1 (because P is a Markov matrix), we have

o
½k→l�

~p½i→ j�,½k→ l� p o
l
~p½i→ j�,½ j→ l � p o

l
pjl p 1.

~P Is Primitive

Let ½i→ j� and ½k→ l� be any two nodes in ~P. Because P is irreducible, there exists a path from j to k in P, say j→ j1 →
⋯ → jm → k. Because, by construction of the arcs of ~P according to equation (6), all the arcs of the putative path of ~P defined
by ½i→ j�→ ½ j→ j1�→ ⋯ → ½ jm → k�→ ½k→ l� do exist, we have exhibited a path going from ½i→ j� to ½k→ l � in ~P.
Therefore, ~P is irreducible.

Now, let i→ j→ ⋯ → k→ i be a cycle of P. Clearly, the corresponding cycle in ~P is ½i→ j�→ ½ j→ ⋯ �→ ⋯ →
½⋯ → k�→ ½k→ i�, and both cycles have the same length. Thus, the lengths of the cycles of P are also the lengths of
the corresponding cycles in ~P. With P being aperiodic, the greatest common divisor of the lengths of its cycles is 1, and as a
1
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result, so is that of ~P. Note that this proof is easily generalized to multigraphs. Indeed, in a multigraph, a cycle is
defined by its arcs. As a result, to a cycle of P, defined by its arcs, corresponds a cycle in ~P, unambiguously defined by
its nodes because ~P is a simple graph. With ~P being irreducible and aperiodic, it is primitive.

The Return Time to Any Transition i→ j in P Is the Same as the Return Time to the Corresponding Node ½i→ j� in ~P

We have just shown that to every cycle of P corresponds a unique cycle of ~P. In fact, this is a one-to-one correspondence;
indeed, as we have just mentioned, with ~P being a simple graph, any of its cycles is unambiguously defined by its nodes. To
this list of nodes corresponds a list of arcs in P, which uniquely define a cycle. Thus, because there is a one-to-one
correspondence between the cycles of bothMarkov chains and because the weights composing these cycles are the same, the
return times are going to be identically distributed in both Markov chains.
Simplification of Cochran and Ellner’s Formula

We show that the formula of Cochran and Ellner (1992) is equivalent to our equation (12), T p lvw=vFw. Indeed,
Cochran and Ellner’s formula is

T p
om

ip1 yiwigi

om

ip1 wigi

, with

yi p
om

jp1½(I2 l21S)22�ijbj

om

jp1½(I2 l21S)21�ijbj

where bj p
(Fw)j

om

ip1 (Fw)i
,

gi p
(vF)i
vref

where vref is a newborn stage of reference.

8>>>>><
>>>>>:

After substituting gi and simplifying the vref , we can write this formula as

T p
om

ip1 yiwi(vF)i

om

ip1 wi(vF)i

, (A1)

which makes it clear that, as in our formula, the denominator is equal to vFw and allows us to focus on the numerator,
om

ip1 yiwi(vF)i. We start by looking at

yi p
om

jp1½(I2 l21S)22�ijbj

om

jp1½(I2 l21S)21�ijbj

, where bj p
(Fw)j

om

ip1 (Fw)i

.

Because bj is in both the numerator and the denominator, its denominator om
ip1 (Fw)i, which is independent of j, can be

simplified. Taking advantage of matrix notation, we have

yi p
½(I2 l21S)22(Fw)�i
½(I2 l21S)21(Fw)�i

. (A2)

Now, we note that (S1F)wp lw, so that we also have Fwp l(I2 l21S)w. But because l21S is a convergent matrix (a
proof of this can be found in appendix 4 of Cochran and Ellner 1992), we know that (I2 l21S) is inversible. Therefore,

(I2 l21S)21Fwp lw. (A3)

Similarly, we can show that

vF(I2 l21S)21 p lv. (A4)
2
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We can now substitute equation (A3) into equation (A2). After simplifying the l’s, this yields yi p ½(I2 l21S)21w�i=wi,
which we can in turn substitute in om

ip1 yiwi(vF)i. After this, we get that the denominator of equation (A1) is equal to

o
m

ip1
½(I2 l21S)21w�i(vF)i p vF(I2 l21S)21w.

Using equation (A4), we obtain that this is also lvw. Therefore, Cochran and Ellner’s formula for the mean age of mothers
at birth can be rewritten as

T p
lvw

vFw
,

which is identical to our equation (12).
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Figure A1: Examples of line graphs. The initial graphs (left) could correspond to the markovized graph of a model with two size
classes. A does not include mixed transitions, while B does (small individuals are fertile), illustrating how mixed transitions are dealt
with. In both cases, each arc of the initial graph corresponds to a unique node of the line graph. The labels on the arcs of both graphs
indicate their weight, and the colors only aim at easing the identification of the correspondence between the elements of each graph.
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