

Особенности генетических полиморфизмов наследственно-обусловленной тромбофилии у детей

Таранушенко Татьяна Евгеньевна - зав. кафедрой педиатрии ИПО, д.м.н., профессор, заслуженный врач, ORCID 0000-0003-2500-8001

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» МЗ РФ, Россия, г. Красноярск

Ваганов Анатолий Анатольевич - аспирант кафедры педиатрии ИПО, врач-педиатр консультативно-диагностической детской поликлиники, ORCID 0000-0001-6032-6035 ФГБОУ ВО «Красноярский государственный медицинский университет

им. проф. В.Ф. Войно-Ясенецкого» МЗ РФ; КГБУЗ «Красноярский краевой клинический центр охраны материнства и детства», Россия, г. Красноярск

Паршин Никита Андреевич - ординатор по специальности неонатологии кафедры педиатрии ИПО, ORCID 0000-0002-7991-1063

Моргун Андрей Васильевич - д.м.н., доцент кафедры педиатрии ИПО, декан педиатрического факультета, ORCID 0000-0002-9644-5500 Емельянчик Елена Юрьевна - д.м.н., профессор, кафедра педиатрии, ORCID 0000-0001-5013-2480

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» МЗ РФ, Россия, г. Красноярск

Аннотация. Ранее выявление тромбофилий - один из основных факторов профилактики тромботических событий в будущем. Наличие тромбогенных полиморфизмов и их комбинаций может помочь в определении тактики и прогнозировании негладкого течения первичной тромбофилии.

Целью нашей работы выбрано изучение особенностей генетического статуса детей с наследственно-обусловленной тромбофилией в зависимости от возраста.

Проведен ретроспективный анализ историй болезни детей, находившихся на стационарном лечении в КГБУЗ «Красноярский краевой клинический центр охраны материнства и детства» в период 01.2014 – 01.2020

В ходе исследования установлено, что у новорожденных вдвое чаще обнаружена мутация гена МТНFR: g.677C>T по сравнению со второй группой (62,5% против 29,4% соответственно). Выявлена тенденция связи осложненного течения тромбофилии с такими комбинациями, как МТНFR: g.677C>T, МТНFR: g.1298A>C, МТR: g.2756A>G и МТRR: g.66A>G.

Ключевые слова: тромбофилия, тромбоз, гемостаз, новорожденные.

Введение

Тромбофилия – наследственно-обусловленное или приобретенное состояние, которое предрасполагает к патологическому образованию тромбов [1,2].

По данным литературы встречаются данные о том, что от 13% до 78% всех тромбозов у детей формируются на фоне генетически детермированных тромбофилий [2,3,4].

Актуальность проблемы определяется риском осложненного течения, которые могут зависеть от таких персистирующих факторов риска, как мутации и дефекты системы гемостаза [1,4,5,6].

Цель исследования

Изучение особенностей генетического статуса детей с наследственно-обусловленной тромбофилией в зависимости от возраста дебюта (по данным многопрофильного стационара КГБУЗ "Красноярский краевой клинический центр охраны материнства и детства" (КГБУЗ КККЦОМД)).

Материалы и методы

Проведен ретроспективный анализ историй болезни детей, находившихся на стационарном лечении в КГБУЗ КККЦОМД в период с января 2014 по январь 2020 гг.

Критерии включения:

- дети в возрасте до 18 лет;
- документированный первичный тромбоз;
- наличие протромбогенных полиморфизмов.

Критерии не включения - развитие тромбоза на фоне:

- паранеопластического синдрома;
- онкологического процесса;
- обструктивных врожденных пороков правых отделов сердца;
 - хроническая болезнь почек (ХБП);
- системной красной волчанки, антифосфолипидный синдром (АФС).

Анализ данных выполнялся с использованием пакета программ пакетов статистических программ STATISTICA v. 8.0 (StatSoft Inc., США), Microsoft Office 2016 (Microsoft Corporation, США). Описание количественных показателей выполнено с указанием в виде Me [Q1; Q3]. Проводился расчет относительного риска при р <0,05.

Этическая экспертиза

Проведение данного исследования одобрено локальным этическим комитетом Φ ГБОУ ВО КрасГМУ N2102/2020 от 27.11.2020.

Результаты

В исходную выборку отобраны 25 пациентов. В начале работы дети были разделены две группы: 1 группу составили 8 новорожденных детей, 2 группу - 17 больных в возрасте от 28 дней до 18 лет. Данное разделение обусловлено физиологическими особенностями гемостаза, включающее преходящий дефицит естественных антикоагулянтов – рС и ATIII, наиболее выраженный у недоношенных детей [7, 8].

Таблица 1. **Возрастно-половая характеристика исследуемых детей.**

Характеристики		1 группа, п	2 группа, n
Пол, (М:Ж)		4:4	7:10
Возраст	0 - 28 день	7	_
дебюта	29 день - 17 лет	-	17

Примечание. М-мужской пол, Ж-женский пол.

Медиана гестационного возраста наблюдаемых пациентов1 группы составила 29,8 [26.75; 38.36]

недель, 5 наблюдаемых пациентов (71,43%) были недоношенными. Медиана возраста пациентов 2 группы – 10,83 [7;15] лет (Табл. 1).

У больных 1 группы максимальное распространение получили мутации, связанные с фолатным (МТНFR: g.677C>T) и метиониновым циклами – (МТRR: g.66A>G и МТНFR: g.1298A>C) (Табл.2).

Во 2 группе частота выявления изученных полиморфизмов сравнимой с новорожденными детьми. Важным отличием является отсутствие во 2 группе пациентов мутации F5: g.1691G>A, определяющей формирование резистентности фактора V к одному из основных физиологических антикоагулянтов – протеину С. Помимо этого частота встречаемости мутации МТНFR: g.677C>T оказалась вдвое более редкой, чем у пациентов 1 группы.

Исследование аллельных вариантов полиморфизмов в 1 группе выявило преобладание гетерозиготного носительства тромбогенных мутаций в генах, регулирующих фолатный цикл – 5 случаев (62,5%) МТR: g.66A>G и по 3 случая (37,5%) МТR: g.2756A>G и МТНFR: g.677C>T соответственно (Табл.2). Частота носительства гомозиготного состояния варианта МТНFR: g.677C>T составила 25% (2 случай), что соответствует литературным данным [9]. Другие гены такие, как МТНFR: g.1298A>C и МТRR: g.66A>G имели гомозиготное состояние в 1 случае (12,5%) (Табл.2).

Таблица 2. Тромбогенные полиморфизмы факторов гемостаза при первичной тромбофилии.

Гот-	Вариант генома	Группа №1		Группа №2		DD (050/ 1111)
Ген		n	%	n	%	RR (95% ДИ)
F7: g.10976G>A	Гетерозигота	0	0	1	5,88	-
F7: g.10976G>A	Гомозигота	0	0	0	0	-
F2: g.20210G>A	Гетерозигота	2	25	0	0	-
F2: g.20210G>A	Гомозигота	0	0	0	0	-
F5: g.1691G>A	Гетерозигота	1	12,5	0	0	-
F5: g.1691G>A	Гомозигота	0	0	0	0	-
MTHFR: g.1298A>C	Гетерозигота	2	25	5	29,41	0.85 (0.208-3.475)
MTHFR: g.1298A>C	Гомозигота	1	12,5	2	11,76	1.063 (0.112-10.067)
MTHFR: g.677C>T	Гетерозигота	3	37,5	4	23,53	1.594 (0.462-5.501)
MTHFR: g.677C>T	Гомозигота	2	25	1	5,88	4.25 (0.449-40.267)
MTR: g.2756A>G	Гетерозигота	3	37,5	3	17,65	2.125 (0.544-8.296)
MTR: g.2756A>G	Гомозигота	0	0	1	5,88	0
MTRR: g.66A>G	Гетерозигота	5	62,5	5	29,41	2.125 (0.854-5.286)
MTRR: g.66A>G	Гомозигота	1	12,5	6	35,29	0.354 (0.051-2.472)
ITGA2: g.807C>T	Гетерозигота	1	12,5	1	5,88	2.125 (0.151-29.82)
ITGA2: g.807C>T	Гомозигота	0	0	0	0	_
PAI-1: g.(-675)5g>4g	Гетерозигота	1	12,5	0	0	-
PAI-1: g.(-675)5g>4g	Гомозигота	0	0	1	5,88	-

Примечание: RR (95% ДИ) - отношение рисков (доверительный интервал 95%).

Среди наиболее значимых полиморфизмов у пациентов 2 группы выявлены: гомозиготная мутация МТRR: g.66A>G в 6 случаях (35,29%), и МТНFR: g.1298A>C – 2 случая (11,76%). Большинство мутаций в обеих группах приходятся на гены, отвечающие за обмен фолатов, метионина и гомоцистеина. Полиморфизмы генов, кодирующих ключевые белки системы гемостаза, обнаружены только в гетерозиготном состоянии – в 1 группе F5: g.1691G>A и F2:

g.20210G>A (12,5% - 1 пациент и 25% - 2 человека соответственно), во 2 группе F7: g.10976G>A - 1 пациент (5,88%).

При оценке количества тромбогенных мутаций у детей с острыми и отсроченными осложнениями первичной тромбофилии отличий от пациентов с гладким течением практически не было выявлено (Табл. 3).

Таблица 3. **Распределение пациентов** с учетом клинического течения и числа тромбогенных полиморфизмов.

Количество полиморфизмов у одного пациента	Гладкое течение, n (%)	Осложненное течение, n (%)
Один	4 (40)	4 (28,57)
Два	3 (30)	6 (42,86)
Три	2 (20)	2 (14,29)
Четыре	1 (10)	-
Пять	-	2 (14,29)

Таблица 4. **Комбинации полиморфизмов** при осложненном течения первичной тромбофилии в группе 1.

Nº	Пол, возраст дебюта	Осложнение	Полиморфизмы
1	M 2 novy	ВЖК	MTR: g.2756A>G гетерозигота;
	М, 3 день	DAKK	MTRR: g.66A>G гетерозигота
2	Ж, 19 день	НЭК	MTHFR: g.677С>Т гетерозигота
			F2: g.20210G>A гетерозигота;
3		ОПН, летальный исход	F5: g.1691G>A гетерозигота;
	М, 22 день		MTHFR: g.677С>Т гомозигота;
			MTR: g.2756A>G гетерозигота;
			MTRR: g.66A>G гетерозигота
4	М 14 поп	некроз/	MTHFR: g.1298A>C гетерозигота;
4	М, 14 день	ампутация фаланг	MTRR: g.66A>G гомозигота
5	М, 10 день	некроз/	MTHFR: g.1298A>C гомозигота
3	ти, то день	м, ю день ампутация фаланг	WITHIR. g.1230A/C TOMOSUI OTA
			MTHFR: g.677С>Т гомозигота;
		некроз/	MTR: g.2756A>G гетерозигота;
6	Ж, 28 день	ампутация фаланг,	MTRR: g.66A>G гетерозигота;
		ТЭЛА, летальный исход	ITGA2: g.807C>T гетерозигота;
			PAI-1: g.(-675)5g>4g гетерозигота

Примечание. М-мужской пол, Ж-женский пол.

Таблица 5. **Комбинации полиморфизмов** при осложненном течения первичной тромбофилии в группе 2.

Nº	Пол, возраст дебюта	Осложнение	Полиморфизмы
1	М, 4 мес.	Парез/	МТНFR: g.1298A>С гетерозигота;
		паралич	MTRR: g.66A>G гомозигота
2	М 7 поп	Парез/	MTHFR: g.1298A>C гомозигота;
	М, 7 лет	паралич	MTRR: g.66A>G гомозигота
	Ж, 7 лет	некроз/	MTHFR: g.1298A>C гетерозигота;
3		ампутация фаланг,	F7: g.10976G>A гетерозигота;
		ТЭЛА, летальный исход	PAI-1: g.(-675)5g/4g гетерозигота
4	Ж, 7,5 лет	Парез/	MTHFR: g.677С>Т гомозигота;
4		паралич	MTRR: g.66A>G гетерозигота
	Ж, 10,8 лет	Отек головного мозга, летальный исход	MTHFR: g.1298A>C гомозигота;
5			MTR: g.2756A>G гетерозигота;
			MTRR: g.66A>G гомозигота
6	Ж, 10,8 лет	Парез/	MTR: g.2756A>G гомозигота;
O		паралич	MTRR: g.66A>G гомозигота
7	Ж, 17 лет	Парез/	MTHFR: g.677С>Т гомозигота
		паралич	WITH K. g.077C>1 TOMOSHIOTA
8	Ж, 17 лет	Парез/	ITGA2: g.807C>T гетерозигота
0		паралич	11 GA2. g. 807С/1 Тетерозигота

Примечание. М-мужской пол, Ж-женский пол.

В ходе исследования рассмотрен генетический статус у всех детей с острыми или отсроченными

стойкими нарушениями в результате венозных тромбозов (Табл. 4). Установлено, что у пациентов 1 группы

с осложненным течением у 3 пациентов (50%) встречались комбинации генов МТR: g.2756A>G - MTRR: g.66A>G, в 2 случаях (33,33%) дети имели набор МТR: g.2756A>G + MTRR: g.66A>G + MTHFR: g.677C>T. Два ребенка с летальными исходами в данной группе (33,33%) имели в числе комбинаций из пяти полиморфизмов МТНFR: g.677C>T (Табл. 4).

У четырех больных 2 группы с осложненным течением выявилено гомозиготное состояние MTRR: g.66A>G; у двоих – MTHFR: g.677 C>T, в двух случаях—МТНFR: g.1298A>C; у двоих – MTR: g.2756A>G (Табл. 5). Считаем важным отметить то, что в случаях летального исходов в данной группе пациенты имели комбинацию трех гомозиготных полиморфизмов (МТНFR: g.1298A>C; MTR: g.2756A>G; MTRR: g.66A>G).

Дети с неосложненным течением первичной тромбофилии в большинстве случаев имели гетерозиготное носительство тромбогенных мутаций.

Заключение

В ходе исследования удалось определить различия особенностей протромбогенных полиморфизмов у детей с разным по времени дебютом заболевания. Осложненное течение и летальные исходы в

рассмотренных случаях обнаружены на фоне наличия множественных тромбогенных полиморфизмов генов преимущественно фолатного цикла (МТНFR: g.677C>T, MTR: g.2756A>G и MTRR: g.66A>G) и/или гомозиготного состояния МТНFR: g.677C>T , MTHFR: g.1298A>C, PAI-1: g.(-675)5g>4g.

Анализ молекулярно-генетического исследования протромботических полиморфизмов выявил у 2 пациентов группы новорожденных детей с осложненным течением имелся набор полиморфизмов MTR: g.2756A>G + MTRR: g.66A>G + MTHFR: g.677C>T, a у пациентов с летальным исходом - комбинацию пяти мутаций с участием минорной мутации MTHFR: g.677C>T. Во второй группе генотип больных с осложненным течением представлен гомозиготным носительством генов фолатного цикла и/или ключевых генов системы гемостаза, что согласуется с литературными данными, в которых указана более частая встречаемость MTHFR: g.677C>T (статистически значимо выше определялась в группе больных детей с ОНМК), а также представлено отклонение от канонического равновесия Харди-Вайнберга для частот генотипа MTR: g.2756A>G у пациентов с перенесенным OHMK [9].

Литература:

- 1. Румянцев А.Г., Масчан А.А., Жарков П.А., Свирин П.В. Федеральные клинические рекомендации по диагностике, профилактике и лечению тромбозов у детей и подростков. Общественная организация Национальное общество детских гематологов, онкологов; ФГБУ «ФНКЦ ДГОИ им. Дмитрия Рогачева» Минздрава России, 2015. 113 с.
- 2. Жданова Л.В. Генетически детерминированные тромбофилии в детском возрасте // Вестник БГУ. Медицина и фармация. 2015. N²12. C.114–122.
- 3. Mahajerin A, Obasaju P, Eckert G, et al. Thrombophilia testing in children: a 7 year experience. Pediatr Blood Cancer. 2014;61(3):523-527. doi:10.1002/pbc.24846
- 4. Ishiguro A, Ezinne CC, Michihata N, et al. Pediatric thromboembolism: a national survey in Japan. Int J Hematol. 2017;105(1):52-58. doi:10.1007/s12185-016-2079-y
 - 5. Choi HS. Venous thromboembolism in children. Clinical Pediatric Hematology-Oncology. 2017;24(1):1-10.
- 6. Момот А.П. Проблема тромбофилии в клинической практике // Российский журнал детской онкологии и гематологии. 2015. №1. С. 36-48.
- 7. de la Morena-Barrio B, Orlando C, de la Morena-Barrio ME, et al. Incidence and features of thrombosis in children with inherited antithrombin deficiency. Haematologica. 2019;104(12):2512-2518. doi:10.3324/haematol.2018.210666
- 8. Law C, Raffini L. A guide to the use of anticoagulant drugs in children. Paediatr Drugs. 2015;17(2):105-114. doi:10.1007/s40272-015-0120-x
- 9. Колесникова М.А., Снигирь О.А., Строзенко Л.А. и др. Распределение протромботических полиморфных вариантов генов у детей с ишемическим инсультом // Journal of Siberian Medical Sciences. 2015. №6. С. 39-48