

interacts with

UC SANTA BARBARA

Katja Seltmann & Jorrit Poelen

Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara Digital Data, June 8, 2021 seltmann@ucsb.edu

Image: J.M. Garg, November 2009

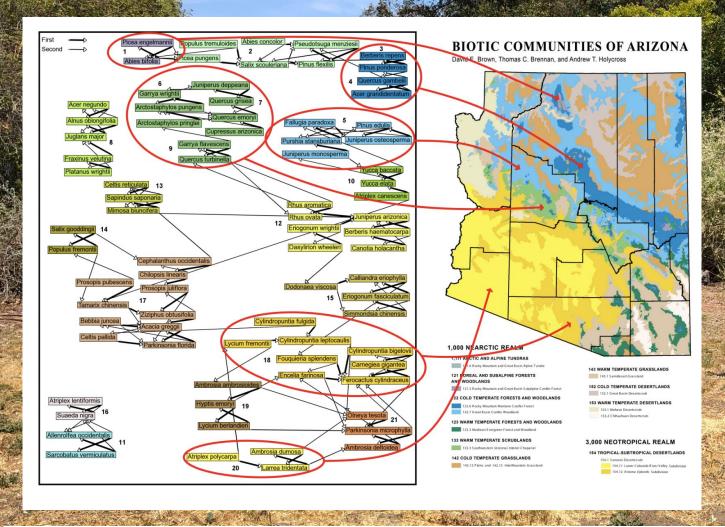
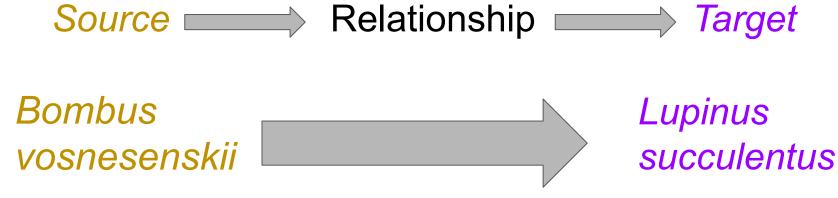


Image: Carlo Calderon


Phytosociological data

Leslie R. Landrum, Daryl Lafferty. 2015. PROXIMITY and CORRELATION: Two new computer programs for mining phytosociological information held in herbarium databases using central Arizona as a test case. Taxon

A biotic interaction



We know a lot because we have 2 taxon names and a relationship

What we have ...

"visits flowers of" "collected on flowers of" "carries pollen from" "pollinates"

Literature and Reports

Journal of Pollination Ecology, 25(3), 2019, pp 16-23

NATIVE AND NON-NATIVE PLANTS ATTRACT DIVERSE BEES TO URBAN GARDENS IN CALIFORNIA

Gordon Frankie¹, Jaime Pawelek², Marissa H, Chase¹, Christopher C, Jadallah¹, Ingrid Feng¹, Mark Rizzardi³, Robbin Thorp⁴

University of California, Berkeley; Department of Environmental Science, Policy, and Management. 94720 ²University of California, Berkeley, College of Natural Resource

³Humboldt State University, Department of Mathematics and ⁴University of California, Department of Entomology, Davis,

Abstract-Bees visit native and non-native Abstract—Bees vusit native and non-native pi wildland environments. Results of an extensive si 2005-2011 were used to examine host-plant rece non-native bes species; five cities were from no 7,659 bees and their floral host plants were eau Only four other non-Apiv species (all in Megael 402 individuals. These bees have been databased Essig Museum of Entomology. We identified 225 in urban areas. Of the 229 species, 71 bre species non-native host plants: and 106 were collected fr non-narive host plants; and 106 were collected f plants and non-narive plants, but there were s compared to native plants. Flowering periods in to flower later in the year. We propose that using opportunities for attracting a richter diversity relationships in an area is key to planning a b geographic origin. Keywords: habitat gardens, urban bees, native p

INTRODUCTION

Vol. 48

AND THOSE OF ITS SPHECODES PARASITE (HYMENOPTERA: APOIDEA) PHILIP F. TORCHIO Bee Biology and Systematics Laboratory, Agr. Res. Serv., USDA Logan, Utah 84322

ABSTRACT

Kansas Entomological Society

July, 1975

THE BIOLOGY OF PERDITA NUDA AND

DESCRIPTIONS OF ITS IMMATURE FORMS

ABSTRACT The biology of *Perdike* and C.R.II. is described in detail and compared with Spholog of only the program (C.R.I.), is the probability of the second sec

NESTING HABITAT

NESTING HABITAT Perdita nuda Ckll, was lound nesting on a low hill adjacent to Bear River, 3 miles northwest of Preston, Franklin County, Idaho, in August 1970. This particular hill was formed by sedimentation of the rivet of periodically by narrow versis of constructions that the set of the periodically by narrow versis of constructions of the set of the periodically by narrow versis of constructions of the set of the periodically by narrow versis of constructions of the set of the periodical set of the nesterly exposure. Nexts were closely congregated (2 nexts/10 cm²) on a surface composed of numerous gravel particles mixed with and, established on a horizontal surface composed of stand only. It was paproximately one-third the size of size A, and nexts were less congre-gated (0.7. nexts/10 cm²).

Received for publication October 29, 1974.

This content downloaded from 72.194.216.248 on Fri, 24 Apr 2020 18:05:20 UTC All use subject to https://about.jstor.org/terms

Flowering plant composition shapes pathogen infection intensity and reproduction in bumble bee colonies

Lynn S. Adler^{a,1}0, Nicholas A. Barber^b0, Olivia M. Biller^c0, and Rebecca E. Irwin^d0

"Department of Biology, University of Massehaetts, Anhent, MA 0402, "Scoops of Norgan Area, Department of Biology, San Dispo State University, San Dispo State University, Philadelphia, PA 19107, and "Department of Applied Ecology, North Carolina State University, Taking MC 2019." Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved April 10, 2020 (received for review January 3, 2020

Reduction the ratio with output of Data Onto Martenay and any cort of 2013 One and the origin in both burdle (see 10.1). The output of the ratio matching is a specific or the ratio matching is

Chantel Bar

rcotogr

Pollimator decline affects food security, and pollinators are threatened by streasors including pathogons and insufficient increase pollinator abundance and diversity in agricultural attings, but flowers can also be disease transmission sites compared to the diversity of the stream of the stream exception of the stream of the stream of the stream predict, or no lowering strips, with high- or low-interction and re-percise, or no lowering strips, on bese infection and re-percise, or no lowering strips. Img For sion ated patter sitat ple-sese nce -9). igh-ver lant ina-play wth tive creased pathogen infection inte Author contributions: LSA. and R.E.I. designed research; LSA. and Q.M.B. pe research: N.A.B. analyzed data: and LSA. wrote the paper.

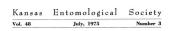
This article is a PNAS Direct Subr Data deposition: All data and R scripts are down alreafter? sterve may be arbitressed. Email: Sarlier@umass.erk

PNAS Latest Articles | 1 of 7

Human Observations

https://www.gbif.org/occurrence/2550024372

Natural History Specimens


Unstructured data

References: https: nated: 2020-01-07T21:14:30.000+0000 Rights holder: barbara_lb

Record license: http: References: Created: 2020-01-07721-14-20 000+0000 Rights holder: barbara_lb destifier: https://static.ic...al.ip.0215785978

THE BIOLOGY OF PERDITA NUDA AND DESCRIPTIONS OF ITS IMMATURE FORMS AND THOSE OF ITS SPHECODES PARASITE (HYMENOPTERA: APOIDEA)

PHILIP F. TORCHIO and Systematics Laboratory, Agr. Res. Serv., USDA Logan, Utah 84322

ABSTRACT

nula Ckll. is descri erdita species. The

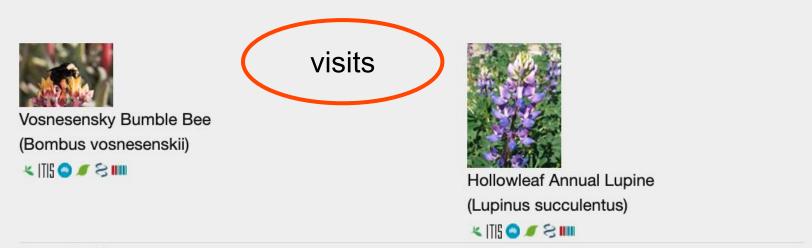
NESTING HABITAT

Neuron Martine Martine Products and Science and Scien Site B (a nesting site restricted to the northern edge of the area) was established on a horizontal surface com posed of sand only It was approximately one-third the size of site A, and nests were less gated (0.7 nests/10 cm²).

Received for publication October 29, 1974

This content downloaded from 72.194.216.248 on Fri, 24 Apr 2020 18:05:20 UTC All use subject to https://about.jstor.org/terms

Reusable/structured interaction data

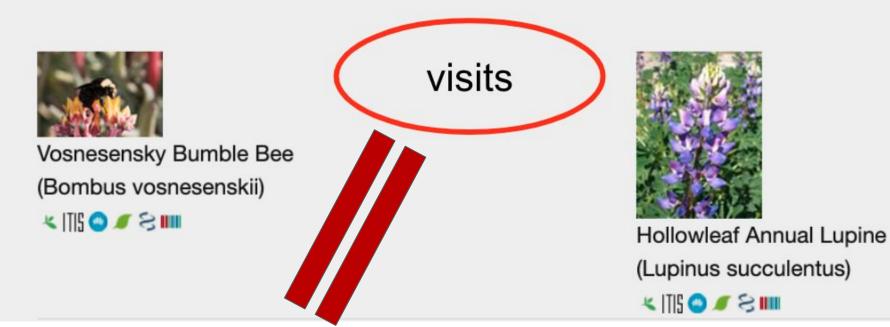

sourceTaxonName	sourceFamilyName	interactionTypeName	targetBodyPartName	targetTaxonName	targetFamilyNa	country	stateProvi	r county	verbatimLocality	referenceCitation
Lasioglossum titusi	Halictidae	collected on flowers	flower	Malacothrix implicata	Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W (1985). Insects Associated With the FI
Dialictus megastictur		collected on flowers	flower		Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W (1985). Insects Associated With the Fi
Dialictus megastictur	Halictidae	collected on flowers	flower	Malacothrix implicata	Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W (1985). Insects Associated With the Fit
Dialictus megastictur	Halictidae	collected on flowers	flower	Malacothrix implicata	Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W (1985). Insects Associated With the Fic
Dialictus pilosicaudu	Halictidae	collected on flowers	flower	Malacothrix implicata	Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W (1985). Insects Associated With the Fic
Dialictus cabrili	Halictidae	collected on flowers	flower	Malacothrix implicata	Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W (1985). Insects Associated With the Fic
Dialictus miguelensis	Halictidae	collected on flowers	flower	Malacothrix incana	Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W (1985). Insects Associated With the Flo
Dialictus perichlarus	Halictidae	collected on flowers	flower	Malacothrix incana	Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W (1985). Insects Associated With the Fic
Dialictus perichtarus	Halictidae	collected on flowers	flower	Malacothrix implicata	Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W. (1985). Insects Associated With the Flo
Anthidium palliventre	Megachilidae	collected on flowers	flower	Malacothrix incana x implicate	Asteraceae	United States	California	Santa Barbara	San Miguel Island	Miller, Scott & Davis, W (1985). Insects Associated With the Fix
Hypochrotaenia form	Apidae	collected on flowers	flower	Malacothrix incana	Asteraceae	United States	California	Ventura	San Nicolas Island;	(Miller, Scott & Davis, W. (1985). Insects Associated With the Fic
Agapostemon texani	Halictidae	collected on flowers	flower	Malacothrix incana	Asteraceae	United States	California	Ventura	San Nicolas Island;	Miller, Scott & Davis, W (1985). Insects Associated With the Flo
Agapostemon texani	Halictidae	collected on flowers	flower	Malacothrix incana x polycepl	Asteraceae	United States	California	Ventura	San Nicolas Island;	Miller, Scott & Davis, W (1985). Insects Associated With the Fic
Dialictus megastictur	Halictidae	collected on flowers	flower	Malacothrix incana	Asteraceae	United States	California	Ventura	San Nicolas Island;	Miller, Scott & Davis, W. (1985). Insects Associated With the Flo
Dialictus megastictur	Halictidae	collected on flowers	flower	Malacothrix incana x polycepl	Asteraceae	United States	California	Ventura	San Nicolas Island;	Miller, Scott & Davis, W (1985). Insects Associated With the Fic
Evylaeus kincaidii	Halictidae	collected on flowers	flower	Malacothrix incana	Asteraceae	United States	California	Ventura	San Nicolas Island;	Miller, Scott & Davis, W (1985). Insects Associated With the Fic
Evylaeus kincaidii	Halictidae	collected on flowers	flower	Malacothrix incana x polycepl	Asteraceae	United States	California	Ventura	San Nicolas Island;	Miller, Scott & Davis, W (1985). Insects Associated With the Flo
Agapostemon serice	Halictidae	parasitized by	nest	Nomada articulata	Apidae	United States	New York	Tompkins	Ithaca; Cornell Univ	Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Agapostemon serice	Halictidae	nest containing	nest	Sphecodes persimilis	Halictidae	United States	New York	Westchester	Lewisboro	Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Agapostemon serice	Halictidae	burrow usurpation by	nest	Andrena imitatrix	Andrenidae	United States	New York	Tompkins	Ithaca; Cornell Univ	Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Sancassania	Acaridae	feeding on mold in nest	nest	Agapostemon sericeus	Halictidae	United States	New York	Tompkins	Ithaca; Cornell Univ	Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Agapostemon angeli	Halictidae	burrow usurpation by	nest	Agapostemon cockerelli	Halictidae	United States	Arizona	Cochise	19 km southwest of	Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Agapostemon angeli	Halictidae	burrow usurpation by	nest	Agapostemon cockerelli	Halictidae	United States	Arizona	Cochise	19 km southwest of	Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Agapostemon texanu	Halictidae	parasitized by	nest	Nomada formula	Apidae	United States	California	Contra Costa	San Pablo Reservo	Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Agapostemon texani	Halictidae	nesting within nest aggr	nest	Halictus farinosus	Halictidae	United States	California	Yolo	Davis; University of	Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Agapostemon angeli	Halictidae	nesting on outskirts of a	nest	Diadasia australis	Apidae	United States	Colorado			Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Parapygmephorus (S	Pygmephoridae	parasitizing	thorax and metasoma	Agapostemon angelicus	Halictidae	United States	Arizona	Cocconino	San Francisco Mou	r Eickwort, G. C. (1981). Aspects of the Nesting Biology of Five N
Bombus	Apidae	visits flowers of	flower	Aptenia cordifolia	Aizoaceae	United States of	California	Alameda	Residential neighbo	Frankie, G. W., Thorp, R. W., Schindler, M., Hernandez, J., Ertte
Apis mellifera	Apidae	visits flowers of	flower	Aptenia cordifolia	Aizoaceae	United States of	California	Alameda	Residential neighbo	Frankie, G. W., Thorp, R. W., Schindler, M., Hernandez, J., Ertte
Coelionus	Monarhilidae	visite floware of	former	Antenia contitolia	Aimaneae	I Inited States of	California	Alamaria	Residential neighbor	Frankia G W Three R W Schindler M Hemandez J Ertte

Understandable by people and computers

Jorrit H. Poelen, James D. Simons, Chris J. Mungall (2014).vGlobal biotic interactions: An open infrastructure to share and analyze species-interaction datasets.Ecological Informatics.

GloBI Interaction Record

Supported by:


Andrea Kreuzhage. 2020. Bombus vosnesenskii nectar / pollen delivering plant Lupinus succulentus. iNaturalist.org. Accessed at <https://www.inaturalist.org/observations/40296280> on 06 Jun 2021. Provider: Ohttp://iNaturalist.org is a place where you can record what you see in nature, meet other nature lovers, and learn about the natural world. Accessed via <https://github.com/globalbioticinteractions/inaturalist/archive/1706a6dc719a6033d6cea1bebf438fee9871fd43.zip> at 2021-06-04T23:17:43.507Z. review discuss...

Chris. 2016. Bombus vosnesenskii eating Lupinus succulentus. iNaturalist.org. Accessed at https://www.inaturalist.org/observations/5516245> on 06 Jun 2021. Provider: Accessed at http://iNaturalist.org is a place where you can record what you see in nature, meet other nature lovers, and learn about the natural world. Accessed via http://iNaturalist.org is a place where you can record what you see in nature, meet other nature lovers, and learn about the natural world. Accessed via https://github.com/globalbioticinteractions/inaturalist/archive/1706a6dc719a6033d6cea1bebf438fee9871fd43.zip at 2021-06-04T23:17:43.507Z. review of discuss...

Refuted by:

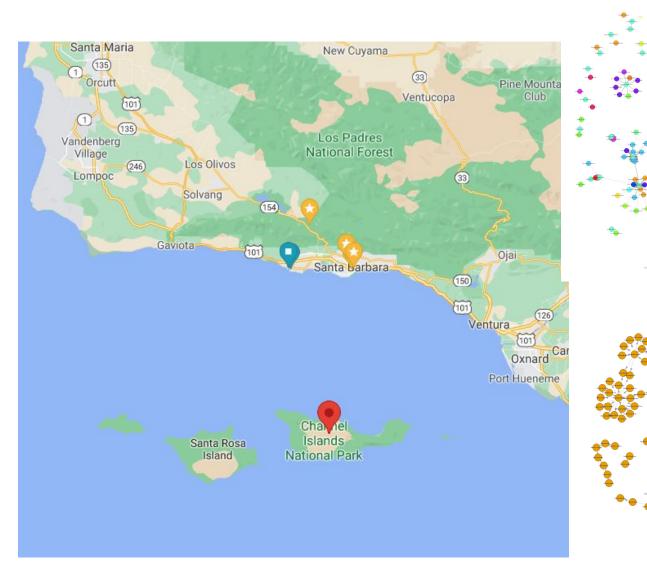
None.

Free text mapped to Relations Ontology term

Citation 1: "visits flowers of"

Citation 2: "collected on flowers of" Term IRI: http://purl.obolibrary.org/obo/RO_0002618

Property Hierarchy

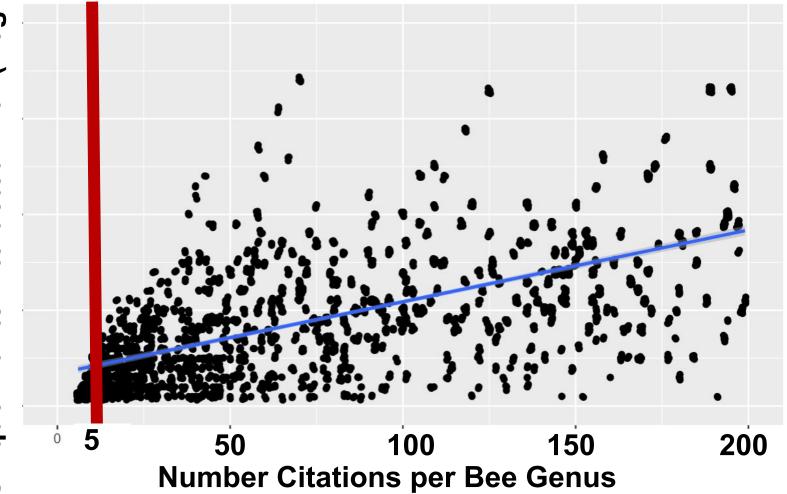

topObjectProperty

- + ecologically related to
 - + biotically interacts with
 - + participates in a biotic-biotic interaction with
 - + trophically interacts with
 - + symbiotically interacts with
 - is vector for
 - has vector
 - allelopath of
 - + visited by
 - <u>kills</u>
 - is killed by
 - <u>visits</u>
 - visits flowers of
 - lays eggs in
 - lays eggs on

Island and mainland bee-plant networks

mainland

island



Seltmann, K.C., Dewey, D., and McLaren, L. (2021) Anthophila of Santa Cruz Island

Are the networks complete and can we be confident in the results?

Bee Interaction Diversity

Nicholas R. Bachelder, Angel Chen, Mitchell K. Rapaport, Samantha J. Solomon, Zoe Fang, Michelle J. Lee, Joshua Bang and Katja C. Seltmann, Ecological Society of America, Abstract #93972

University of California Santa Barbapollen Specialist Bees of the Western United States

Home Search Images Insect Checklists UCSB Natural Reserve Checklists

me >> Native and non-native bees (Anthophila) of Santa Cruz Island

Jarrod Fowler (2020)

Native and non-native bees (Anthophila) of Santa (

Authors: Katja C. Seltmann, David Dewey & Lynn McLaren Citation: Seltmann, K.C., Dewey, D., and McLaren, L. (2021) Checklist of Anthophila of Sa Less Details

Locality: Santa Cruz Island, California, United States

Abstract: Taxonomy follows Ascher, J. S. and J. Pickering. 2020. Discover Life bee specie guide=Apoidea_species

Families: 5

Genera: 35

Species: 140 (species rank)

Total Taxa: 142 (including subsp. and var.)

ANDRENIDAE

Andrena angustitarsata Viereck, 1904

In "List of Bees of Santa Cruz Island, CA by Robbin W. Thorp, U.C. Davis [18 April 20 04-29 [SCIR] , B. J. Donovan 1969-04-27 [SCIR] , R. W. Thorp 1971-03-08 [SCIR] , n Andrena anisochlora Cockerell, 1936

R. O. Schuster 1971-03-11 [SCIR] , R. O. Schuster 1971-03-11 [SCIR] , R. O. Schuster more

Andrena auricoma Smith, 1879

Checklists & Expert datasets of 12008-04-10 Rebuild List

Andrena helianthi

👿 🖪 🖓

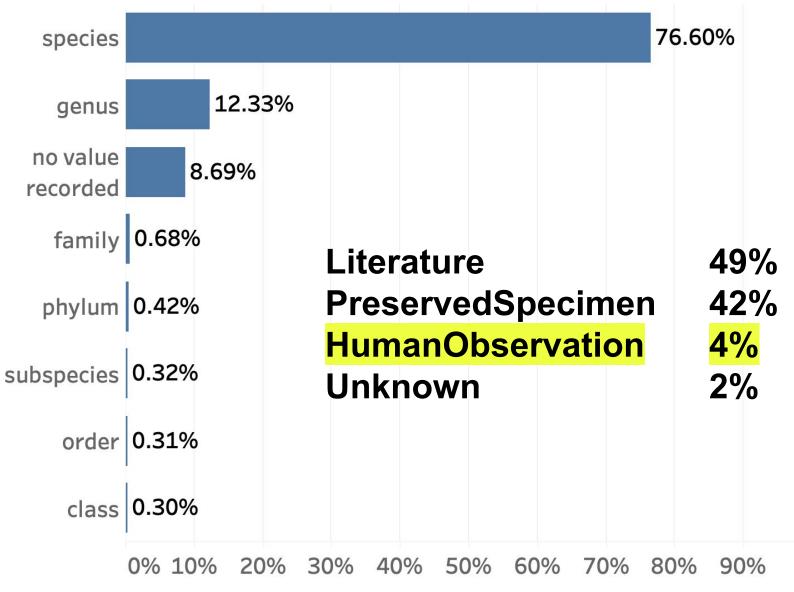
Introduction

This website compiles associations among native pollen specialist bees and native host plants from the Western United States. First, pollen specialist bees are defined and methods are described. Next, a table composed of pollen specialist bees and associated host plants is presented. Last, advice about conserving native nollen specialist bees is provided. Please note that this compilation is incomplete and in progress. Researchers are invited to add information to this website. Email records to: j@jarrodfowler.com

Fowler, J. (2020). Pollen Specialist Bees of the Central United States Fowler, J. & Droege, S. (2020). Pollen Specialist Bees of the Eastern United States

Pollen Specialist Bees

ushly 25% of the -2 000 species of bees native to the Western United States are pollen specialists um of facultative or obligate associations with flowering host



Large numbers of occurrence records

Based on investigations by Michelle J. Lee (UCSB), Graziella Vittoria DiRenzo (USGS), Chengyi Diao (UCSB), Katja Seltmann

GloBI Data

% of Total Count

GloBI Data

Coronaviridae	Pucciniaceae (rust fungi)		Miridae (plant insect)		Aphididae (plant insect)		
Gadidae (cod fish)	Apidae (bee)		sphaerellaceae ac fungi)	(flounder fish)	Pleuronectidae	Scombridae (tuna fish)	
		Andrenidae (bee)		r fish)		dae h) ectida	
	Strigidae						
	(owls)	Halictidae (bee)		Nymphalidae (butterfly)			

Count(*) 1849 53,188 569K

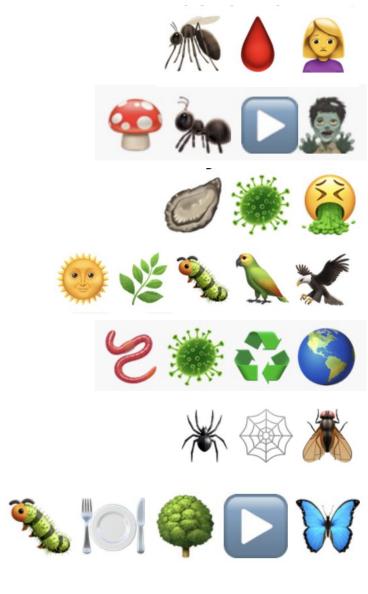
MYCOLOGY COLLECTIONS PORTAL

But what about owls??

Image: Carlos Delgado

UC SANTA BARBARA

Please join us for Connecting the world of biodiversity data TDWG 2021


DOMAIN

SYM16: Eat or be eaten: Don't

Uniting people, processes, and tools

miss out on interaction data

Organizers: José Augusto Salim, University of São Paulo, São Paulo, Brazil; Maarten Trekels, Meise Botanic Garden, Meise, Flanders, Belgium

