
Managing the far-Edge: are today’s centralized
solutions a good fit?

Gabriele Baldoni
ADLINK Technology Inc, France

Luca Cominardi
ADLINK Technology Inc, France

Milan Groshev
University Carlos III of Madrid, Spain

Antonio de la Oliva
University Carlos III of Madrid, Spain

Angelo Corsaro
ADLINK Technology Inc, France

Abstract—Edge computing has established itself as
the foundation for next-generation mobile networks,
IT infrastructure, and industrial systems thanks
to promised low network latency, computation
offloading, and data locality. These properties
empower key use-cases like Industry 4.0, Vehicular
Communication and Internet of Things. Nowadays
implementation of Edge computing is based on
extensions to available Cloud computing software
tools. While this approach accelerates adoption,
it hinders the deployment of the aforementioned
use-cases that requires an infrastructure largely more
decentralized than Cloud data centers, notably in
the far-Edge of the network. In this context, this
work aims at: (i) analyzing the differences between
Cloud and Edge infrastructures, (ii) analyzing
the architecture adopted by the most prominent
open-source Edge computing solutions, and (iii)
evaluating those solutions in terms of scalability
and service instantiation time in a medium-size far
Edge system. Results show that mainstream Edge
solutions require powerful centralized controllers and
always-on connectivity, making them unsuitable for
highly decentralized scenarios in the far-Edge where
stable and high-bandwidth links are not ubiquitous.

I. INTRODUCTION

Cloud computing has proven to be effective in
managing web-based and web-scale applications
but it falls short in latency sensitive applications,
such as Industry 4.0 (I4.0) (e.g., robotic control)
or Vehicle to everything (V2X) [1]. This limitation
is due mainly to the lack of control of the
connectivity between the Cloud and end-users,
which spans across different Internet Service

Providers (ISP). Such kind of applications requires
responsiveness at a machine time-scale while
today’s Cloud applications mostly require human
scale responsiveness.

To address this connectivity limitation, in the
last years, Edge computing has arisen as a new
paradigm in computing. Edge computing aims
to provide compute, networking, and storage
capabilities at the border of the network, closer to
end-users, while providing the same elasticity and
pricing model of Cloud computing (pay-as-you-go).
This approach led to the birth of different
initiatives: (i) Multi-Access Edge Computing
(MEC) [2], from Telco industry, as a extension
of Network Function Virtualization (NFV) [3]
technologies closer to the access-network;
(ii) hybrid-cloud, from IT industry, as a way to
manage on-premises infrastructure from Cloud
operators; and (iii) Fog computing [4], from
manufacturing world, as an extension of Industrial
IoT (IIoT).

Based on this consideration, the main
contributions of this work are:

• An analysis of the overall differences between
Cloud and Edge infrastructure, by diving into
how they are composed and managed.

• A study of the design and deployment options
of the most prominent open-source Edge
solutions.

• An evaluation of the selected Edge solutions
with a focus on their footprint and scalability
in the presence of decentralized and relatively

Edge

Fiber

Large DC
Leaf-Spine Topology

Small DC
Tree Topology

Metro Ring

ATs
Single Server

Mesh Topology (Un)reliable Wireless
OT Technologies
Wired connections

Multi-ATs

Low High

CPU ~ 1 CPU
RAM ~ KBs to MBs
Storage ~ MBs

CPU ~ up to 4 CPUs
RAM ~ GBs
Storage ~ GBs to TBs

High Low

Stationary

VMs

Containers

Containers

Native

Mobile

Battery

Cloud

Fiber
Ethernet

Fat Tree Topology

CPU ~ 8 to 96 CPUs
RAM ~ TBs
Storage ~ TBs to PBs

VMs

Containers

Stationary

Big Data
Aggregated Data

Context Information

Redundacy Energy Consumption Upgradability

Volatility Heterogenitity Mobility Maintenance CostPoint-of-Presence

near-Edgefar-Edge Scope of our work

Fig. 1: Cloud vs Edge

resource constrained devices.
• A discussion on the selected Edge solutions

with regards to their behavior and potential
implication of their design choices.

Those initiatives refer to different Edge concepts:
while MEC enables application developers and
content providers to leverage Cloud computing
capabilities and an IT service environment at
the edge of the network, hybrid-cloud combines
in-premises infrastructure and public-cloud
allowing data and applications to be shared between
them. Additionally, Fog computing distributes
resources and services across Cloud, Edge, and
devices on the field to create a cloud-to-thing
continuum. Although these approaches have
different scopes, their goals is the same: reduce
latency, jitter and improve Quality-of-Service(QoS)
by bringing compute, storage, and networking
closer to end-users. To accommodate this trend,
the Edge is therefore moving towards a more
decentralized infrastructure [5] in which every

device can host applications and services. This
will ultimately result in a very distributed system
that needs to be properly managed whilst exposing
a very familiar Cloud-like model to application
developers for having a chance to be successful.

II. DIFFERENCES BETWEEN CLOUD AND EDGE

INFRASTRUCTURE

From an infrastructure perspective, Cloud and
Edge domains differ under essential aspects, such
as network topology, heterogeneity, and volatility
as summarized in Fig. 1. Cloud computing relies
on powerful and well interconnected servers that
reside in a physically-secured data-center, usually
located in an area where both space and energy
are cheap [6], notably in remote locations far
from end-users. Keeping in mind that data-centers
can only be accessed via the Internet, it’s no
surprise that the major source of latency, jitter,
and throughput limitations in Cloud application
often resides in the network between the end-users
and the Cloud. While those limitations are not

Kubernetes K3s KubeEdge

cloud-
controller-
manager

kube-controller-
manager

kube-
scheduler

etcd
kube-api-

server

Kubernetes API ServerEmbedded SQLite Database

kube-proxy

kubelet kubelet

kube-proxy
EdgeHub

K3s Agent K3s Agent

Container Engine Container EngineContainer EngineContainer Engine

Cloud

Customized K8s Components

Metrics ServerC
on

tro
l P

la
ne

C
om

pu
te

 P
la

ne

K3s Server

Networking & Load Balancing

EdgeController DeviceController

CloudHub

CloudCore

Container Engine Device Abstratction

Fig. 2: Kubenetes, K3s, and KubeEdge architectures

strict for applications driven by human-scale
responsiveness like the web, email, AI-training, or
instant messaging, they are far to be compatible
with machine-scale responsiveness required by a
different class of applications like autonomous
driving and robotics.

To overcome such limitations, Edge computing
considers an infrastructure that goes from the edge
of the network to devices that are in the field such
as cars, robots or smartphones. Such infrastructure
can be subdivided further into two domains as
shown in Fig. 1: the near-Edge and the far-Edge.
The former presents some similarities with the
Cloud environment, resources are still organized in
data-centers, leveraging virtualization technologies
to increase application density. However, resources
present heterogeneity in both computing [7] and
networking [8] to cope with the geographical
distribution of such small data-centers. Examples of
near-edge infrastructure are given by metropolitan
deployments comprising cabinets, central offices,
and small data-centers. Such infrastructure allows
more latency sensitive applications like CDN
content caching or Cloud gaming to be deployed
closer to the user, improving the overall experience.
Although improving experience for human users,
such infrastructure introduces a minor delay and
jitter that may not still be suitable for latency
sensitive applications like control-loops in robots,
cars, and drones.

On the other hand, the far-Edge is composed

of resources that are by nature heterogeneous,
mobile and volatile. Such mobility and dynamicity
of resources makes the whole infrastructure in
the far-Edge to be dynamic in both time and
space, making it very variegate and unstructured
a priori. Resources usually leverages on Radio
Access Technologies (RAT) to interact between
themselves or to communicate with the near-Edge
infrastructure in order to offload the resource
extensive tasks like AI-training. Cooperation
among these resources is expected to provide
low-latency services [5], enabling use-cases
requiring machine-scale responsiveness, because
of time constraints coming from control-loops.
Example of far-Edge resources are: cars, robots,
drones or smartphones. While these resources are
far less powerful compared to near-Edge and Cloud
ones, they are powerful enough to host a large
set of applications, such as robot intelligence, car
infotainment, navigation, obstacle avoidance. Such
applications can take advantages of cooperation
and context information to take local decisions
and quickly respond to external events without
interacting with near-Edge or Cloud infrastructure.

III. CLOUD AND EDGE MANAGEMENT

SOLUTIONS

To better understand the challenges of
managing the far-Edge, let’s depart from
some of the management solutions already
available today. The most prominent Cloud

Raspberry Pi4

Master node

Logical Infrastructure

1GbE

Management
&

Orchestration

Virtualized Compute Nodes

Virtualization Server

Container
Engine

Physical Infrastructure

Hypervisor

VM … VM

Container
Engine1GbE

1GbE

Fig. 3: Illustration of the experimental testbed

solutions, namely OpenStack and Kubernetes,
have been designed in accordance with the
Cloud computing principles [9]. They provide,
respectively, an Infrastructure-as-a-Service (IaaS)
and a Platform-as-a-Service (PaaS) over a
shared virtualized infrastructure residing in
large centralized data-centers and they both
consider a logically centralized controller. The
controller comprises multiple physical instances
of the same software components to address
reliability and scalability requirements. Due to
the amount of real-time stream-based monitoring
information required by controllers to manage the
infrastructure [10], a dedicated network for control
and management planes is normally provisioned.
Moreover, servers are segmented and segregated
in clusters to improve resiliency and operational
management.

For what concerns Edge computing, multiple
solutions have appeared in the market, mainly
consisting in an adaptation and extension of existing
Cloud solutions to the near-Edge. Such solutions
focus on bridging Edge resources under the control
of existing Clouds, such as KubeEdge, AWS

Outpost or OpenHorizon, de facto extending the
Cloud to the Edge. Others instead have put the
focus on vertical markets: EdgeX Foundry focuses
on IoT applications and their requirements, while
Fledge specializes in Industry 4.0 and automation.
Still others focus on Edge-only deployments, such
as K3s, allowing the management of Edge-only
infrastructures without the need of being connected
to a Cloud. A brief summary of existing Edge
solutions is presented in Tab.I.

Conversely, far-Edge is still a subject of research
and no production-ready solutions are available
yet. Bearing in mind that far-Edge infrastructure
is by nature decentralized, different approaches
are being proposed to address such aspect. For
instance, [11] analyzes the impact of the far-Edge
on vertical markets like Industry automation.
Others, like [12], [13] propose to replace the
centralized components in nowadays Edge solutions
with distributed counterparts. Besides, [14], [15],
[16] focus on bridging cloud to support resource
constrained devices via ad-hoc allocation policies
and reduced resource utilization, with particular
attention on how to employ those devices in a
mixed scenario of near- and far-Edge.

To better compare Edge and Cloud architectures
and solutions, we select Kubernetes as a reference
open-source project, which presents tailored
versions for the Cloud (i.e., Kubernetes) and
the (near-)Edge (i.e., KubeEdge and K3s).
It is worth noticing that we selected these
projects because: (i) there are existing works on
extending these solutions for the far-Edge, (ii) the
selected solutions provide a Cloud-like model to
application developers, (iii) the selected solutions
present a good level of maturity required for the
experimental evaluation performed in Sec. IV,
and (iv) the selected solution are widely used in
industry and academia to build Edge computing
testbeds.

Fig. 2 illustrates the architectures for
Kubernetes, K3s, and KubeEdge. All these
architectures are composed of two different sets
of components: Control Plane and Compute
Plane. The components of the former provide
the management and orchestration functionalities
across the infrastructure. While the components of
the latter provide the deployment and monitoring

functionalities for the nodes composing the
infrastructure. A brief overview of each solution is
provided in the following.

1) Kubernetes: it is a portable, extensible,
open-source platform for managing containerized
workloads. It provides a PaaS offering: (i)
service discovery and load-balancing, (ii) storage
orchestration, (iii) automated rollouts and rollbacks,
(iv) autonomous placement, (v) self-healing and (vi)
secrets and configuration management. Kubernetes
deployments are arranged in clusters. A cluster is a
set of nodes that are managed by the same control
plane. Kubernetes control plane components are
designed around the kube-api-server and etcd.
The kube-api-server enables the communication
among all other components in the cluster, both
control plane and compute plane. While etcd
provides the storage functionalities for state and
infrastructure information across the cluster. These
two components are key in Kubernetes as all
the interaction goes through them. Kubernetes
compute plane is composed by the kubelet and
the kube-proxy. The kubelet communicates with
the kube-api-server for monitoring and container
allocation. It manages containers interacting
with the container engine. The kube-proxy is
instructed by the kube-api-server about the
network configuration needed by the containers.

2) K3s: it is a lightweight version of Kubernetes
that keeps the same centralized architecture. k3s
comprises two main components: the k3s-server
and the k3s-agent. The k3s-server embeds all the
Kubernetes Control Plane components, replaces
etcd with a more lightweight in-process SQLite
database, and adds networking, monitoring, and
load-balacing components. The k3s-agent packages
in a single binary all the Kubernetes Compute
Plane components. It is worth noticing that etcd
is the most resource demanding component of
Kubernetes.

3) KubeEdge: it is an extension to Kubernetes
for Edge hosts. The goal of KubeEdge is to
enable the deployment of applications designed for
Kubernetes at the Edge. KubeEdge components
are organized in Cloud components and Edge
components. KubeEdge Cloud components are
the Control Plane components, they communicate
with an external Kubernetes cluster northbound

and with KubeEdge nodes southbound. KubeEdge
control plane is expected to be deployed in a
centralized location. Edge components map to the
Compute Plane, they provide functionalities for
container deployment as well as an abstraction for
well-known Edge devices such as RaspberryPi.

IV. EXPERIMENTAL EVALUATION

This section describes the experimental
evaluation of the selected Edge solutions:
Kubernetes, KubeEdge, and K3s. The first
objective of the experimental analysis is to verify
baseline deployments based on each selected
solution. The second objective is an investigation
on their footprint and scalability properties when
employed in a far-Edge scenario composed by
relatively constrained resources.

A. Setup and methodology

To evaluate the selected solutions, we have built
an experimental testbed in our lab as illustrated in
Fig. 3. The testbed is composed of a Raspberry Pi4
model B equipped with ARM64 Cortex-A72, 8GB
of RAM, 128GB of storage, and 1GbE connectivity
that acts as a controller. A rack-mounted server
equipped with a Dual Intel Xeon-6130 16 Cores
with HyperThreading, 512 GB of RAM, 1TB of
SSD storage, is then used to emulate and virtualize
100 compute. Each compute node is virtualized as
a VM provisioned with 1vCPU, 2GB of RAM, and
16GB of storage, and Ubuntu 20.04 LTS as the
operating system. The selected configuration for the
virtualized node is representative of the computing
module present inside robots and drones, where
typically far-Edge applications will be instantiated.
Leveraging on network virtualization technologies
our testbed can also introduce arbitrary latency,
jitter and packet-loss between each compute node
and the controller.

The objective is to measure (i) the time required
to instantiate a given service and (ii) the resources
utilized by the controller node to keep the service
up and running. This will provide us an indication
of how many compute nodes and services can
be simultaneously managed in the far-Edge. To
that end, we used a reference lightweight service
composed of an Alpine-based container running
an NGINX web server, which is provisioned
before-hand on the compute nodes so as to avoid

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10
#Containers/Node

N
o

d
e

s

(a) Kubernetes

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10
#Containers/Node

N
o

d
e

s

(b) K3s

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10
#Containers/Node

N
od

es

1

2

3

4

5
LF

(c) KubeEdge

Fig. 4: Average RAM Load factor - LF (x, y) = RAMx,y

RAM0,0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

1

10

100

1000

K8s K3s KubeEdge
Edge Solution

N
et

w
or

k
U

sa
ge

 (
kb

it/
s)

Network Usage ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
Kbps/Container Kbps/Node

Fig. 5: Network Usage

copying the container images over the network
during the deployment. To test the scalability, we
consider an increasing number of compute nodes
(from 10 to 100 with a step of 10 nodes) while
on each node an increasing number of services
being deployed (from 1 to 10 with a step of 1
service). Each test is then performed 10 times.
Given that the communication between compute
nodes and controller is based on TCP, introducing
latency, jitter, packet-loss or bandwidth limitation,
between the operative limits of TCP will not affect
the communication between the nodes.
However in a real-world scenario, where the images

are not prefetched, having latency, jitter, packet-loss
and bandwidth limitation has an huge impact
in the application instantiation time because the
instantiation time will be dominated by the image
fetching time.

B. Results

Fig. 4 illustrates and defines (in the caption)
the RAM load factor measured in the controller
node at the variation of compute nodes and
containers/node. This metric provides the amount
of memory variation between a baseline (i.e.,
an empty cluster), while increasing the number
of machines controlled, and the number of
applications running in the cluster in order to
facilitate the comparison between the different
solutions. While each solution presents different
absolute values of RAM usage, we remark that in
every case the 5th-95th percentiles never exceed
±2% of their corresponding median.

In Fig. 4 we can see that for a cluster of 10 nodes
with 0 containers, Kubernetes uses 27% more RAM
compared with K3s, and 9% more compared with
KubeEdge, while KubeEdge uses 17% more RAM
than K3s. If we increase the number of nodes in
the system to 100 with 0 containers, we can notice
that Kubernetes uses 91% more RAM compared
with K3s, and 143% more than KubeEdge. In such
a scenario Kubernetes, K3s, and KubeEdge show,
respectively, an increase of RAM usage of 218%,
110% and 42% compared with an empty cluster(0
nodes with 0 containers).

We observe that the number of nodes composing
the cluster is the major factor impacting the overall

10

20

30

40

50

60

70

90

100

1 2 3 4 5 6 7 8 9 10
#Containers/Node

N
o

d
e

s

(a) Kubernetes

10

20

30

40

50

60

70

90

100

1 2 3 4 5 6 7 8 9 10
#Containers/Node

N
o

d
e

s

(b) K3s

10

20

30

40

50

60

70

90

100

1 2 3 4 5 6 7 8 9 10
#Containers/Node

N
od

es

50

100

150

200
DF

(c) KubeEdge

Fig. 6: Average Deployment factor - DF (x, y) =
TDeploy[x,y]

TDeploy[K8s][1,10]

memory utilization. This is due to need of the
controller to store large amount of information
about the state and available resources for each
node in the cluster. Finally, when we increase the
number of containers per node (e.g., 100 nodes with
10 containers per node), Fig. 4 shows marginal
increase of 6% for Kubernetes, while K3s and
KubeEdge RAM usage increases for 23% and
5%, respectively. On the contrary, we observe that
increasing the number of applications running on
the cluster has marginal impact on the memory
utilization. This is because the runtime information
(e.g., container state, networking information)
are stored in the compute nodes and not in the
controller, which in turn keeps track only of the
containers location and retrieves any additional
information only when needed.

Regarding network utilization, Fig. 5 shows
that the maximum network utilization per node
is approximately two orders of magnitude higher
then the network utilization per container. K3s
shows a network utilization per node of 30 times
higher than Kubernetes and KubeEdge. Moreover,
it shows a higher network utilization per container
of approximately 10 times compared to the other
two solutions. This is partially due to the Metrics
Server that K3S uses as one of its packaged
components. The Metrics Server reads 10 metrics
for each container and node running in the cluster.
Those metrics are used in horizontal and vertical
autoscaling provided by K3s.

Fig. 6 illustrates and defines (in the caption)
the Deployment factor measuring the variation of
the service instantiation time at the variation of

compute nodes and containers/node. Each tile in
the figure represents the Deployment factor. This
metric allows comparing the different solutions by
normalizing the absolute value of the instantiation
time to the fastest one, i.e. Kubernetes. In Fig. 6,
we observe that Kubernetes and K3s show similar
and intuitive growth of the instantiation time when
the overall number of containers in the cluster is
increased. On the other side, KubeEdge presents
a very different and counter intuitive pattern. For
deploying a service composed of 10 containers per
node in a cluster with 10 nodes, KubeEdge needs
approximately 40 times more than Kubernetes and
18 times more than K3s to instantiate the service.
The overall instantiation required in KubeEdge
ranges from 26.1 to 40.4 times longer than
Kubernetes and from 18.1 to 21.1 times longer
than K3s. In absolute terms, this translates into
tens of minutes instantiation time with KubeEdge
compared to tens of seconds in Kubernetes and
few minutes in K3s. This is because, with a
limited number of nodes in the cluster, KubeEdge
tends to allocate all the containers in a subset of
the available nodes, resulting in the nodes being
overloaded and a longer overall service instantiation
time.

Summarizing, from the presented results we
observed that:

1) the way solution component are deployed
(containerized or simple binaries) influences
memory utilization;

2) memory utilization is dominated by the
number of nodes composing the infrastructure;

3) monitoring of the infrastructure requires

Edge
Solution

Cloud
Managed

Edge
only Focus

KubeEdge Yes Possible Containers
K3s No Yes Containers

AWS
Outpost Yes No VMs

Containers
OpenHorizon Yes No Containers

EdgeX
Foundry Yes No IoT

Fledge Yes No I4.0

TABLE I: Summary of exiting Edge Computing
solutions

approximately two orders of magnitude more
bandwidth compared to container monitoring;

4) scheduling decisions may overload some
nodes increasing the overall service
instantiation time.

V. DISCUSSION

This work discusses the issues of today’s
centralized management solutions when applied to
the far-Edge; an environment heavily characterized
by volatility, mobility and decentralization of
resources. During our analysis we have identified
several aspects to consider in the design of the next
generation Edge systems:

a) Infrastructure monitoring: it plays a
critical role in the management systems where
the life-cycle management of the applications
highly depends on the real-time information about
the state of the infrastructure. To support this
information, current management systems (see
Sec. III) adopt a stream-based monitoring approach,
which poses stringent requirements on networking,
like always-on connectivity, minimum required
bandwidth and low-latency. However, based on
our analysis of the far-Edge infrastructure in
Sec. II, this scenario is characterised by unreliable
networking without any guarantees. Hence, a
stream-based approach can led to saturation of the
already scarce networking resources, resulting in a
harmful behavior. In addition, the use of outdated
information in real time decisions, e.g. scheduling,
may yield to sub-optimal performance. A different
approach is then needed to overcome this issue
like new monitoring paradigms designed to work
over low-bandwidth and unreliable networks.
Examples of such paradigms are event-based

and threshold-based monitoring, which relax
requirements over the network.

b) Information model: is the representation
of concepts, relationships, constraints, rules and
operations used to describe a certain domain. In
our case it refers to how each solution describes
the underlying infrastructure, applications and
their relationships. Based on our analysis in
Sec. III current solutions are designed for the
Cloud environment, composed of static, large
scale data-centers (see Sec. II). Moreover, Cloud
applications are usually packaged either as Virtual
Machines or containers. While these virtualization
technologies provide isolation for applications
sharing the same infrastructure, they introduce a
limitation on the features they can access on the
host machine. Far-Edge Applications in use-cases
like Edge robotics, UAVs and vehicles may require
direct access to sensors and actuators that for
security reasons should be given via privileged
containers/VMs. This is an example of new
characteristics introduced by the far-Edge concept.
These characteristics are very different from the
ones that can be found in a static data-center, as
a consequence they are not considered in current
management solutions. Therefore, extensions
to the current information model should be
considered in order to: (i) keep track of the
different capabilities, and mobility characteristics
of underlying infrastructure and (ii) allow broader
application packaging technologies (e.g., robotic
applications, micro-controller applications).

The next issue identified deals with the
consistency of the system and its degree of
centralization. Before discussing them, it is worth
introducing the CAP theorem and its implications
in both the Cloud and Edge domains. The CAP
(Consistency, Availability and Partition) theorem
was introduced in [17], and it states that any
distributed system that has to deal with data
can only provide two of the three following
characteristics:

• Consistency: everyone who reads information
from the system gets either the most recent
information or an error.

• Availability: everyone who reads information
gets a (non-error) response without the
guarantee that this is the most recent one.

• Partition tolerance: the system continues its
operations despite messages being dropped by
the network connecting the system elements.

Current Cloud solutions cope with the problem
described by this theorem by leveraging on
high-redundant networking and replication of data
and services (see Fig. 1). This approach allows to
reduce at minimum the risk of partitioning and
therefore such systems can operate by choosing
Consistency and Availability as their guarantees,
with the Partitioning provided by the underlying
physical infrastructure. However, in the far-Edge
environment it is unfeasible to reach such level
of physical redundancy, resulting in a high risk
of system partitioning that must be considered.
To get a trade-off between the three guarantees
in the far-Edge scenario, it is needed to explicitly
handle partitioning [18]. This need goes against the
centralized control and systems state considered in
Cloud environments.

c) Centralized control plane: as illustrated in
Fig. 2 each of the analyzed solutions is based
on a centralized control plane. Such design is
common in Cloud solutions (see Sec. III) because it
facilitates development. To achieve high-availability
and consistency, replication techniques, inherited
from state of the art web approaches can be
used. However, as state above, to achieve such
properties in the far-Edge it is necessary to explicit
handle partitions. This means that control functions
like scheduling and monitoring need to be aware
of the possible partitioning of the system, and
take decisions involving the trade-off between
consistency and availability.

In the light of this, we believe that distribution of
control functions and intelligence among nodes in
the system should be considered, because: (i) each
node can intelligently react to events even if it is
partitioned and (ii) the whole system does not stop
its evolution in case of partition.

d) Centralized system state: current solutions
are based on a centralized storage for the whole
system state that acts as source of truth (see
Sec. III). This approach is common in Cloud
and near-Edge since they can maintain easily
a centralize repository of information. However,
as shown by experimental results from Sec. IV
this requires a good amount of system memory

devoted to the storage of state information, yielding
to the need of powerful central servers to store
and provide this information across the whole
system. However, in the far-Edge environment
(i) redundancy may not be applicable, (ii) such
powerful machines may not be present and
(iii) partitions are likely to happen. The state
information is crucial for the system as all the
intelligence and decisions are based on them.

Therefore, distributing the state information
across nodes participating in the system should
be considered since (i) it reduces the burden of
having one single information storage requiring
large memory quantities by distributing the memory
needs across the nodes composing the system and
(ii) enables partitioning while providing availability.

It is clear that this approach needs to be handled
by design as it may require a change on the
consistency model of the system, that must be
taken into account when designing the management
algorithms.

VI. CONCLUSIONS

Recent years saw the advent of different
Edge solutions, each one focusing on a different
aspect of the Edge. This work presents an
analysis of the differences between Cloud and
Edge infrastructure and the most prominent
current solutions for controlling edge resources,
an evaluation on the scalability properties is also
provided. Results show that, (i) the amount of
information stored in the controller is dominated
by infrastructure information, (ii) infrastructure
monitoring relies on a constant stream of
information that may be incompatible with far-Edge
connectivity, (iii) scheduling decisions can lead
to over-provisioned nodes, leaving part of the
infrastructure unused, and, (iv) existing solutions
support only containerized applications workloads,
whereas with far-Edge an heterogeneous approach
is needed. As next steps, we plan to investigate
the proposed areas, in particular the modeling of
a decentralized, heterogeneous, mobile, and volatile
infrastructure and management solutions that do not
require centralized controllers.

VII. ACKNOWLEDGEMENT

This work has been partially funded by
the H2020 collaborative Europe/Taiwan research

project 5G-DIVE (grant no. 859881) and by the
H2020 European collaborative research project
DAEMON (grant no. 101017109).

REFERENCES

[1] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi,
“Edge computing for autonomous driving: Opportunities
and challenges,” Proceedings of the IEEE, vol. 107, no. 8,
pp. 1697–1716, Aug 2019.

[2] ETSI, “Multi-access Edge Computing (MEC);
Terminology,” European Telecommunications Standards
Institute (ETSI), Group Specification (GS) 001 v2.1.1, 1
2019.

[3] ——, “Network Functions Virtualisation (NFV); Use
Cases,” European Telecommunications Standards
Institute (ETSI), Group Report (GR) NFV 001 v1.2.1, 5
2017.

[4] IEEE, “Standards for Adoption of OpenFog Reference
Architecture for Fog Computing,” Institute of Electrical
and Electronics Engineers (IEEE), FOG - Fog Computing
and Networking Architecture Framework 1934, 7 2018.

[5] Networld2020, “Smart Networks in the context of NGI,”
Networld2020, Tech. Rep., 4 2018.

[6] I. Goiri, K. Le, J. Guitart, J. Torres, and R. Bianchini,
“Intelligent placement of datacenters for internet
services,” in 2011 31st International Conference on
Distributed Computing Systems, June 2011, pp. 131–142.

[7] Ramneek, S. Cha, S. H. Jeon, Y. J. Jeong, J. M.
Kim, S. Jung, and S. Pack, “Boosting edge computing
performance through heterogeneous manycore systems,”
in 2018 International Conference on Information and
Communication Technology Convergence (ICTC), Oct
2018, pp. 922–924.

[8] C. Hong and B. Varghese, “Resource management
in fog/edge computing: A survey,” CoRR, vol.
abs/1810.00305, 2018. [Online]. Available: http:
//arxiv.org/abs/1810.00305

[9] NIST, “The NIST Definition of Cloud Computing,”
National Institutee of Standards and Technology, Tech.
Rep. NIST Special Publication 800-145, 10 2011.

[10] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer,
L. Hu, and M. Wolf, “A flexible architecture integrating
monitoring and analytics for managing large-scale data
centers,” in Proceedings of the 8th ACM International
Conference on Autonomic Computing, ser. ICAC ’11.
New York, NY, USA: Association for Computing
Machinery, 2011, p. 141–150. [Online]. Available:
https://doi.org/10.1145/1998582.1998605

[11] M. Ciavotta, M. Alge, S. Menato, D. Rovere, and
P. Pedrazzoli, “A microservice-based middleware for
the digital factory,” Procedia Manufacturing, vol. 11,
pp. 931 – 938, 2017, 27th International Conference
on Flexible Automation and Intelligent Manufacturing,
FAIM2017, 27-30 June 2017, Modena, Italy. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S2351978917304055

[12] A. Lebre, J. Pastor, A. Simonet, and F. Desprez,
“Revising openstack to operate fog/edge computing
infrastructures,” in 2017 IEEE International Conference
on Cloud Engineering (IC2E), April 2017, pp. 138–148.

[13] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud
to edge with kubeedge,” in 2018 IEEE/ACM Symposium
on Edge Computing (SEC), Oct 2018, pp. 373–377.

[14] P. Kayal, “Kubernetes in fog computing: Feasibility
demonstration, limitations and improvement scope :
Invited paper,” in 2020 IEEE 6th World Forum on Internet
of Things (WF-IoT), 2020, pp. 1–6.

[15] T. Goethals, F. DeTurck, and B. Volckaert, “Extending
kubernetes clusters to low-resource edge devices
using virtual kubelets,” IEEE Transactions on Cloud
Computing, pp. 1–1, 2020.

[16] A. Munir, P. Kansakar, and S. U. Khan, “Ifciot: Integrated
fog cloud iot: A novel architectural paradigm for the
future internet of things.” IEEE Consumer Electronics
Magazine, vol. 6, no. 3, pp. 74–82, 2017.

[17] E. A. Brewer, “Lessons from giant-scale services,” IEEE
Internet Computing, vol. 5, no. 4, pp. 46–55, 2001.

[18] E. Brewer, “Cap twelve years later: How the ”rules” have
changed,” Computer, vol. 45, no. 2, pp. 23–29, 2012.

Gabriele Baldoni received his Bachelor’s and Master’s
degree in Computer Engineering and Telecommunication
Engineering at the University of Catania, Italy, in 2015 and
2017 respectively. From 2017 works as research engineer at
ADLINK Technology. Starting from 2020 he is a PhD Student
at University Carlos III of Madrid (UC3M) his main focus is
end-to-end orchestration in Edge and Fog environment. Contact
him at gabriele.baldoni@adlinktech.com

Luca Cominardi received his Bachelor’s and Master’s degrees
in Computer Science at the University of Brescia, Italy, in 2010
and 2013, respectively. He received his Master’s degree and
Ph.D. in Telematics Engineering from the University Carlos
III of Madrid (UC3M), Spain, in 2014 and 2019, respectively.
From 2019 works as Senior Technologist at ADLINK
Technology working on Fog Computing and distributed
systems. Contact him at luca.cominardi@adlinktech.com

Milan Groshev received the B.S. degree in telecommunication
engineering from the The Saints Cyril and Methodius
University of Skopje, Macedonia in 2008 and the M.S. degree
in telecommunication engineering from the Politecnico di
Torino, Turin, Italy in 2016. He is currently pursuing the
Ph.D. degree in telematics engineering at University Carlos III
Madrid (UC3M), Spain. Contact him at mgroshev@pa.uc3m.es

Antonio De La Oliva received his telecommunications
engineering degree in 2004 and his Ph.D. in 2008 from the
Universidad Carlos III Madrid (UC3M), Spain, where he has
been an associate professor since then. He has served as
Vice-Chair of IEEE 802.21b and Technical Editor of IEEE
802.21d. He has also served as a Guest Editor of IEEE
Communications Magazine. Contact him at aoliva@it.uc3m.es

Angelo Corsaro is Chief Technology Officer (CTO) at
ADLINK Technology Inc. where he looks after corporate
technology strategy and innovation, leads the Advanced
Technology Office and the Software and Technology
Business Unit. He is a world top expert in edge/fog
computing and a well-known researcher in the area of
high-performance and large-scale distributed systems. Contact
him at angelo.corsaro@adlinktech.com

