Journal article Open Access

Design of the High-Payload Flapping Wing Robot E-Flap

Zufferey, Raphael; Tormo-Barbero, Jesus; Guzman, M.Mar; Maldonado, Fco; Sanchez-Laulhe, Ernesto; Grau, Pedro; Perez, Martin; Acosta, Jose Angel; Ollero, Anibal

Autonomous lightweight flapping-wing robots show potential to become a safe and affordable solution for rapidly deploying robots around humans and in complex environments. The absence of propellers makes such vehicles more resistant to physical contact, permitting flight in cluttered environments, and collaborating with humans. Importantly, the provision of thousands of species of birds that have already mastered the challenging task of flapping flight is a rich source of solutions. However, small wing flapping technology is still in its beginnings, with limited levels of autonomy and physical interaction capability with the environment. One significant limitation to this is the low payload available. Here we show the Eagle-inspired Flapping-wing robot E-Flap, a 510 g novel design capable of a 100% of payload, exceeding the requirement of the computing and sensing package needed to fly with a high degree of autonomy. The concept is extensively characterized, both in a tracked indoor space and in outdoor conditions. We demonstrate flight path angle of up to 50 ∘ and velocities from as low as 2 m/s to over 6 m/s. Overall, the robotic platform has been proven to be reliable, having performed over 100 flights. Through mechanical and electronics advances, the E-Flap is a robust vehicle prototype and paves the way towards flapping-wing robots becoming a practical fully autonomous flying solution. Video attachment:

Files (1.5 MB)
Name Size
1.5 MB Download
Views 71
Downloads 281
Data volume 431.9 MB
Unique views 55
Unique downloads 262


Cite as