Published February 23, 2021 | Version v1
Journal article Open

Design of the High-Payload Flapping Wing Robot E-Flap

Description

Autonomous lightweight flapping-wing robots show potential to become a safe and affordable solution for rapidly deploying robots around humans and in complex environments. The absence of propellers makes such vehicles more resistant to physical contact, permitting flight in cluttered environments, and collaborating with humans. Importantly, the provision of thousands of species of birds that have already mastered the challenging task of flapping flight is a rich source of solutions. However, small wing flapping technology is still in its beginnings, with limited levels of autonomy and physical interaction capability with the environment. One significant limitation to this is the low payload available. Here we show the Eagle-inspired Flapping-wing robot E-Flap, a 510 g novel design capable of a 100% of payload, exceeding the requirement of the computing and sensing package needed to fly with a high degree of autonomy. The concept is extensively characterized, both in a tracked indoor space and in outdoor conditions. We demonstrate flight path angle of up to 50 ∘ and velocities from as low as 2 m/s to over 6 m/s. Overall, the robotic platform has been proven to be reliable, having performed over 100 flights. Through mechanical and electronics advances, the E-Flap is a robust vehicle prototype and paves the way towards flapping-wing robots becoming a practical fully autonomous flying solution. Video attachment: https://youtu.be/GpAa176TMf0

Files

Eagle_Inspired_Flying_Robot_RAL_Final.pdf

Files (1.5 MB)

Name Size Download all
md5:bd7a04c3ee148cd9b13552e7eddd406d
1.5 MB Preview Download

Additional details

Funding

GRIFFIN – General compliant aerial Robotic manipulation system Integrating Fixed and Flapping wings to INcrease range and safety 788247
European Commission