
Anything-to-Graph
Knowledge Graph Conference
May 2021

Joshua Shinavier, PhD (   : joshsh)
Data @ 



Overview

○ Building graphs
○ Models
○ Mappings
○ Use cases
○ TinkerPop 4



Building graphs



There are graphs, and graphs

○ Domain-specific graphs are simplest
○ ETL a few data sources into a graph
○ Mappings can be written and maintained by hand
○ Off-the-shelf tools work well

○ Difficulty increases with
○ Complexity of source schemas
○ Diversity of ownership, quality, and governance in data sources
○ Lack of standardization on languages and vocabulary

○ Some challenges are organizational, others technical
○ Organizational: see Lessons From Reality (KGC 2019)
○ Technical: let’s take a closer look



The challenges of heterogeneity

○ Diverse data sources → need supporting metadata
○ E.g. see Uber’s Databook

○ Diverse data governance → need better data isolation
○ Typically, RDF triple stores do better than PG databases here

○ Diverse domain data models → need standardized schemas
○ E.g. see Uber’s Data Standardization

○ Diverse schema and data languages → need well-defined mappings
○ Enter the Dragon



Prerequisites

○ Data must conform to a schema
○ It is OK to have a mix of schemas, and schema languages

○ Unique identifiers must be clearly distinguished, and typed
○ What is this UUID field? Does it identify a User, a Document, etc.?

○ Some degree of standardization is needed
○ Are identifiers consistent across data sources?
○ Can this timestamp value be compared with that timestamp value? Etc.

○ Need well-defined mappings
○ From each data language into a graph format
○ From each schema language into a graph schema language
○ ...without losing too much information
○ ...and while maintaining consistency between schema and data



Models



Is there a “universal data model” for graphs?

○ Desirable characteristics
○ Centrality: ease of alignment with other graph and non-graph models
○ Flexibility: captures a wide variety of graph structures
○ Formality: serves as a tool for reasoning about data models
○ Practicality: serves as a basis for inference, query optimization, etc.
○ Intuitiveness: a good graph schema captures our mental model

○ Where can the right abstractions be found?
○ Logics? Set theory? Algebras? Category theory?

○ Does the data model already exist?
○ What about RDF-based languages (RDFS, OWL, SHACL, ShEx, etc.)?

○ Is that what GQL is going to be?



Graph features are very diverse

Spreadsheet by Gábor Szárnyas



Complexity is not the answer

○ No one language will ever satisfy all graph use cases
○ Implementing the model must be simple, or developers won’t

○ Who remembers CODASYL? Why aren’t we using it?
○ Go for minimalism + extensibility

○ Dimensions being explored for GQL
○ Mathematical foundations
○ Nominal vs. structural typing
○ Inheritance vs. composition
○ Graph element types vs. property types
○ Descriptive vs. prescriptive schemas



A little algebra goes a long way

○ Algebraic Property Graphs1

○ Pragmatic and opinionated graph data model

○ Schemas are vertex/edge/etc. labels bound to algebraic data types
○ Formally defined using category theory
○ Effectively a subset of SHACL
○ Ideally, GQL will also be a superset

[1] https://arxiv.org/abs/1909.04881

https://arxiv.org/abs/1909.04881


Mappings



Desirable properties

○ Composability
○ If we have f : A → B and g : B → C, we should also have f;g : A → C

○ Bidirectionality
○ If we have f : A → B, we should also have f-1 : B → A, with f;f-1 ≅ f-1;f ≅ id

○ Data : schema consistency
○ Mappings should be defined for data and schemas languages in parallel
○ If data d conforms to schema s, then we need f(d) to conform to f(s)



Topology of mappings

○ Arbitrary / ad-hoc topology
○ Pros: seems easiest; just use the pairwise mappings you have
○ Cons: more indirection, and mappings may not compose well

○ Star topology
○ Pros: mappings compose well, and all paths are short
○ Cons: need to define/identify a central data model (the “dragon”)



Transforming schemas and data

○ Schema-level mappings
○ Transformations on data types

○ Data-level mappings
○ Transformations on instances of data types

○ Schema and data-level mappings must be consistent
○ a :: A ⇒ F(a) :: F(A)

○ Use common intermediate representations



Dragon

○ Framework for data and schema migration
○ Developed for Uber’s Data Standardization

○ Dragon data model
○ Extension of Algebraic Property Graphs
○ Covers the majority of schemas at Uber

○ Sources and targets
○ RPC / interface languages: Protocol Buffers, Apache Thrift, Apache Avro
○ RDF-based languages: SHACL, OWL
○ “Schemaless” formats: YAML, JSON
○ Programming languages: Haskell, Java, Scala

○ Implementations in Haskell and Java
○ Dragon generates over half of its own source code (from YAML)



$ dragon transform -i Protobuf -o SHACL $SCHEMAS -d maps /tmp/shacl
               ______.    \______/    .______
Dragon 0.3.4     ----___   O .. O   ___----
---------------------vvv----vvvv----vvv---------------------
Loading configuration from dragon.yaml
Reading from Protobuf starting at maps in base directory /Users/joshsh/projects/uber/example/idl
Found 3 *.proto sources in /Users/joshsh/projects/uber/example/idl/maps
Visiting 3 files (total of 0 so far):
    /Users/joshsh/projects/uber/example/idl/maps/coordinates.proto
    /Users/joshsh/projects/uber/example/idl/maps/geometry.proto
    /Users/joshsh/projects/uber/example/idl/maps/position.proto
Visiting 3 files (total of 3 so far):
    /Users/joshsh/projects/uber/example/idl/physics/units.proto
    /Users/joshsh/projects/uber/example/idl/time/duration.proto
    /Users/joshsh/projects/uber/example/idl/time/epoch.proto
Instantiated a graph of 12 schemas
Note 1 alert:
    info: unsigned integers not supported for RDF targets. Using signed integers
Writing 12 SHACL artifacts to /tmp/shacl



Use cases



JSON-to-Graph

○ Graph data formats are used nowhere in the enterprise
○ RDF serialization formats, GraphML, etc. are a hard sell

○ JSON and YAML are used everywhere
○ Give the JSON or YAML a schema, then treat it like a serialized graph
○ E.g. Databook1 snapshots to RDF

[1] https://eng.uber.com/metadata-insights-databook

https://eng.uber.com/metadata-insights-databook


gRPC-to-Graph

○ Don’t let developers write individual edges / triples to the graph
○ Schema constraints are harder to enforce, errors are harder to understand

○ Transform graph schemas into developer-facing schemas
○ Use familiar schema languages and protocols like Protobuf + gRPC

○ Transform payload messages into graph data
○ Schema and data transformations guarantee constraint satisfaction



Enriching domain schemas

○ Need a little more than “just Protobuf” / “just Thrift” to build a big graph
○ E.g. entity / identifier types need to be widely re-used

○ Start with a graph schema (e.g. in YAML)
○ Propagate logical data types into domain schema languages

○ At Uber: Protobuf, Thrift, Avro

○ Re-use the logical types in many domain schemas
○ Incentivize re-use, and use schema transformations for metrics

○ Now, graph-friendly types are everywhere



Toward TinkerPop 4



○ Alibaba Graph Database
○ Amazon Neptune
○ ArangoDB
○ Bitsy
○ Blazegraph
○ CosmosDB
○ ChronoGraph
○ DSEGraph
○ GRAKN.AI
○ Hadoop (Spark)
○ HGraphDB
○ Huawei Graph Engine Service

○ IBM Graph
○ JanusGraph
○ Neo4j

○ neo4j-gremlin-bolt
○ OrientDB
○ Apache S2Graph
○ Sqlg
○ Stardog
○ TinkerGraph
○ Titan
○ Titan + Tupl
○ Unipop

Dozens of graph systems



○ Clojure: ogre
○ Cypher: cypher-for-gremlin
○ Elixir: gremlex
○ Go: grammes, gremgo
○ Haskell: greskell, gremlin-haskell
○ Java: Ferma, gremlin-objects, 

Peapod, spring-data-gremlin, 
gremlin-driver

○ JavaScript: gremlin-javascript, 
gremlin-orm, 
gremlin-template-string

○ Kotlin: kotlin-gremlin-ogm
○ .NET: Gremlin.Net, Gremlinq

○ PHP: gremlin-php
○ Python: Goblin, gremlin-python, 

gremlin-py, ipython-gremlin, 
gremlinclient, gremlin-python, JUGRI, 
gremlinrestclient, python-gremlin-rest

○ Ruby: gremlin_client
○ Rust: gremlin-rs
○ Scala: gremlin-scala, 

reactive-gremlin, 
scalajs-gremlin-client

○ SPARQL: sparql-gremlin
○ SQL: sql-gremlin
○ Typescript: ts-tinkerpop

Dozens of programming languages



Interoperability via mappings

○ We need parity across languages and systems
○ Make it easier to create new Gremlin language variants in a consistent way
○ “Escape from the JVM”
○ Code generation can help

○ Generate graph APIs consistently into many programming languages
○ Generate grammars for parsing/validation



A unifying schema language

○ A few vendor-specific schema languages exist
○ Weak and disconnected from each other
○ Also note TinkerPop’s Graph.Features

○ Need a real, vendor-neutral schema language
○ Facilitate composability of data and queries
○ Enable inference for type safety and optimizations
○ Propagate logical schemas into multiple graph back-ends
○ Build vendor-agnostic tools for data migration



Serialization formats for graphs

○ Currently serialization options are limited
○ GraphML (XML), GraphSON (JSON), GraphBinary, Gryo (Kryo)

○ Generic JSON and YAML are straightforward
○ What about common RPC formats?

○ Protobuf, Thrift, Avro, etc.

○ What about RDF serialization formats?
○ N-Triples, Turtle, JSON-LD, etc.

○ Others?
○ Parquet? CBOR? FlatBuffers? MessagePack? Etc.



Stay tuned

○ “How to Build a Dragon”
○ https://www.meetup.com/Category-Theory

○ Release Dragon!
○ http://bit.ly/release_dragon

○ Gremlin-users
○ https://groups.google.com/g/gremlin-users

@KGConference

linkedin.com/company/the-knowldge-graph-conference/

youtube.com/playlist?list=PLAiy7NYe9U2Gjg-600CTV1HGypiF95d_D

@joshsh

https://www.meetup.com/Category-Theory
http://bit.ly/release_dragon
https://groups.google.com/g/gremlin-users
https://www.linkedin.com/company/the-knowldge-graph-conference/
https://www.youtube.com/playlist?list=PLAiy7NYe9U2Gjg-600CTV1HGypiF95d_D


 

Proprietary © 2021 Uber Technologies, Inc. All rights reserved. No part of this document may be reproduced or utilized in any 

form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 

systems, without permission in writing from Uber. This document is intended only for the use of the individual or entity to 

whom it is addressed and contains information that is privileged, confidential or otherwise exempt from disclosure under 

applicable law. All recipients of this document are notified that the information contained herein includes proprietary and 

confidential information of Uber, and recipient may not make use of, disseminate, or in any way disclose this document or any 

of the enclosed information to any person other than employees of addressee to the extent necessary for consultations with 

authorized personnel of Uber.


