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Abstract

For years, RNAs were thought to have only two broad functions in cells,

transmitting information between DNA and protein as messenger RNA

(mRNA), and playing structural, catalytic, information decoding roles in

protein synthesis as ribosomal RNA (rRNA) and transfer RNA (tRNA).

However, the discovery of RNA interference (RNAi) changed this picture.

RNAi is a regulatory process that uses small non-coding RNAs (ncRNAs)

to suppress gene expression at the post-transcriptional level. This discov-

ery led to identification of many classes of functional ncRNAs. MicroRNA

(miRNA) is a class of such ncRNAs with ∼22 nucleotides that are abundant

and found in most eukaryotic cells. This thesis focuses on revealing regula-

tory roles and characteristics of miRNAs through bioinformatics approaches

by addressing three research questions.

The first research question is whether we can enhance miRNAs target pre-

diction in animals by considering multiple target sites. Many algorithms

exist for miRNA target predictions, but most algorithms do not consider

multiple target sites. Predicting accurate miRNA target genes is important

to infer miRNA regulatory roles since annotations of miRNA regulations

are still poor. To solve this possible fault, we developed a two step support

vector machine (SVM) model. Benchmark tests showed that our two step

model outperformed other existing miRNA target prediction algorithms.

The second research question is whether there are factors to explain differ-

ences between different miRNA high-throughput experiments. There are

several high-throughput technologies widely used for miRNA experiments,

such as microarray and quantitative proteomics, but the results from these

technologies are often inconsistent. By statistically analyzing several such



high-throughput miRNA experiments, we revealed the characteristic of dif-

ferent technologies and also identified several factors that cause the differ-

ences.

The third research question is whether miRNAs interact with other classes

of ncRNAs. There are strong evidences that some miRNAs are involved in

transcription by interacting with other ncRNAs. We investigated ncRNAs

in complex loci to find potential miRNA:ncRNA interactions. A complex

locus is a locus that contains multiple genes that interact between them-

selves. We found evidence that some miRNAs are involved in transcriptional

regulation with ncRNAs in complex loci.

In summary, this thesis provides solutions for these research questions, and

it contributes to a better understanding of several important aspects of

miRNA characteristics and regulations. It also shows effective bioinformat-

ics approaches to develop a robust machine learning model and analyze

different miRNA high-throughput experiments.
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Glossary

3′ UTR Three prime untranslated region;

non-coding regions of mRNA on the

3′ end

5′ UTR Five prime untranslated region; non-

coding regions of mRNA on the 5′

end

k-NN k-nearest neighbor; a type of ma-

chine learning algorithm

C. elegans Caenorhabditis elegans; transparent

roundworm about 1 mm in length

A Adenine; a purine nucleobase paired

with thymine in DNA and uracil in

RNA

ACC Accuracy; (TP + TN) / (P + N) in

a binary classification model

ADTree Alternating decision tree; a ma-

chine learning algorithm that com-

bines more than one decision tree

Agile Agile software development; a type

of RAD methodology

Ago Argonaut protein; a key component

of the RISC complex

ANN Artificial neural network; a machine

learning method that mimics biolog-

ical neural networks

ANOVA Analysis of variance; a statistical

method to infer differences among

multiple groups

AU rich Adenine:Uracil rich; nucleotide se-

quences with many adenines and

uracils

AUC Area under the ROC curve; a perfor-

mance measure to evaluate the ROC

curves

bp Base pair; a unit for nucleotide

length with a base pair as a Watson

and Crick pair

C Cytosine; a pyrimidine nucleobase

paired with guanine

CAR Chromatin associated RNA; experi-

mentally validated non-coding RNAs

that are associated with chromatin

cDNA Complementary DNA; DNA synthe-

sized from mRNA by reverse tran-

scriptase

CDS Coding sequence; coding region of

mRNA

cis-NAT Cis-natural antisense transcript; a

pair of sense and anti-sense tran-

script that overlap each other in the

same locus

CLIP Cross-linking and immunoprecipita-

tion; a technique used to pull down

RNA-protein complexes

CNS Central nervous system; the central

part of the nervous system in the

brain

CROC concentrated ROC; a version of ROC

for evaluating early retrieval perfor-

mance

Cy3 Cyanine 3; a green fluorescent dye

used in the microarray assay

Cy5 Cyanine 5; a red fluorescent dye used

in the microarray assay

DGCR8 DiGeorge syndrome critical region

gene 8; a protein that recognizes a

miRNA stem loop in pri-miRNA

xiii



GLOSSARY

DNA Deoxyribonucleic acid; a nucleic acid

that contains genetic information

dsRNA Double-stranded RNA; RNA with

two complementary strands

EBI European bioinformatics institute; a

center for research and services in

bioinformatics in Europe

ERR Error rate; (FP + FN) / (P + N) in

a binary classification model

EST Expressed sequence tag; a short sub-

sequence of a cDNA sequence

FDR False discovery rate; FP / (FP + TN)

FLcDNA Full-length cDNA; full-length cDNA

used by the Sanger sequencing

method

FN False negative; prediction outcome is

false while the actual value is true

FP False positive; prediction outcome is

true while the actual value is false

G Guanine; a purine nucleobase paired

with cytosine

G:U wobble Guanine:Uracil wobble; guanine

and uracil wobble paring

Gb Giga base pair; 1,000,000,000 bp

GEO Gene expression omnibus; a public

repository for microarray data

GFF General feature format; a text file

format for genomic positional infor-

mation

GPMDB Global Proteome Machine database;

a public repository for proteomics

data

GTP Guanosine triphosphate; a purine nu-

cleotide that is used for energy trans-

fer within the cell

HITS High throughput sequencing; the

next generation sequencing

INSDC International nucleotide sequence

database collaboration; a group that

organizes SRA repositories

iTRAQ Isotope tags for relative and absolute

quantification; a non-gel-based tech-

nique for quantifying proteins

K-S test Kolmogorov-Smirnov test; a non-

parametric statistical method

LC-MS/MS Liquid chromatography-tandem

mass spectrometry; MS/MS with

liquid chromatography. Liquid

chromatography separates ions or

molecules dissolved in a solvent

MAF Multiple alignment format; a text file

format for multiple alignments

MIAME Minimum information about a mi-

croarray experiment; a standard for

reporting microarray experiments

miRISCs miRNA RISC; RISC loaded with

miRNA

miRNA Micro RNA; a class of small ncRNA

that regulates protein expression

ML Machine learning; a class of compu-

tational algorithms that can imitate

learning

MS Mass-spectrometry; a technique that

measures the mass-to-charge ratio of

charged particles

MS/MS Tandem mass spectrometry; a tech-

nique that involves multiple steps of

mass spectrometry

N Negative; actual negative values in a

binary classification model

NB Naive Bayes; a type of statistical

learning algorithm that uses Bayes’

theorem

NCBI National center for biotechnology in-

formation; U.S. government-funded

national resource for molecular biol-

ogy information

xiv



GLOSSARY

ncRNA Non-protein-coding RNA; functional

RNA that is not translated into pro-

tein

NPV Negative predictive value; TN / (TN

+ FN) in a binary classification

model

OOP Object-oriented programming; a

computer programming paradigm

P Positive; actual positive values in a

binary classification model

PCR Polymerase chain reaction; a tech-

nique used to amplify DNA se-

quences

piRNA Piwi-interacting RNA; siRNA/miRNA

like ncRNAs found in germline cells

Pol II RNA polymerase II; an enzyme that

synthesizes several types of RNAs

Pol III RNA polymerase III; an enzyme that

synthesizes rRNA, tRNA and other

small RNAs

PPV Positive predictive value; TP / (TP

+ FP) in a binary classification

model

PRC Precision; equivalent to PPV or Pos-

itive predictive value

pre-miRNA precursor miRNA; miRNA pre-

cursor with a hairpin stem loop, that

is exported into cytoplasm

pri-miRNA primary miRNA; a RNA molecule

that contains one or more miRNA

stem loops

PRIDE Proteomics identifications database;

a public repository for proteomics

data

QP Quadratic programming; A class of

optimization algorithms to maximize

a quadratic function subject to linear

constrains

RAD Rapid application development; a

software development methodology

Ran Ras-related nuclear protein; a GTP

binding protein that is involved in

transport between nucleus and cyto-

plasm

RBF Radial basis function; a real-valued

function whose value depends only on

the distance from the origin

RDB Relational database; a computa-

tional data storage method. Data are

stored in tables with a collection of

relations

RIP Ribonucleoprotein immunoprecipita-

tion; a technique used to pull down

RNA-protein complexes

RISC RNA-induced silencing complex; a

key multiprotein complex in RNAi

RITS RNA-induced initiation of transcrip-

tional gene-silencing; a complex in-

volved in regulation of chromatin

structure

RNA Ribonucleic acid; a nucleic acid

that catalyzes with many biological

molecules

RNAi RNA interference; a regulatory pro-

cess that suppresses gene expression

at the post-transcriptional level with

small RNAs

RNase Ribonuclease; an enzyme that de-

grades RNAs into smaller compo-

nents

ROC Receiver operating characteristics; a

graph that shows true positive rate

versus false positive rate

rRNA Ribosomal RNA; RNA components

of the ribosome

RT-qPCR Reverse transcription quantitative

PCR; a variant of PCR that can be
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GLOSSARY

used to measure RNA expression lev-

els

SAGE Serial Analysis of Gene Expression; a

sequencing technique that uses short

tags generated from 3′ ends of mRNA

transcripts

SILAC Stable isotope labeling with amino

acids in cell culture; a technique for

in vivo incorporation of a label into

proteins

siRISC siRNA RISC; RISC loaded with

siRNA

siRNA Small interfering RNA; small ncR-

NAs involved in RNAi for gene si-

lencing

SN Sensitivity; TP / P in a binary clas-

sification model

SNP Single-nucleotide polymorphism;

DNA polymorphism with a single

nucleotide difference between mem-

bers of a species

SP Specificity; TN / N in a binary clas-

sification model

SQL Structured query language; a lan-

guage used with RDB

SRA Sequence read archive; data reposi-

tory for next generation sequencing

data

SRM Structural Risk Minimization; a ma-

chine learning principle

ssRNA Single-stranded RNA; RNA with one

strand

SVM Support vector machine; a machine

learning algorithm that guarantees

the maximum margin between deci-

sion boundaries

SVR Support vector regression; a version

of SVM for regression

TDD Test-driven development; a type of

RAD methodology

TN True negative; prediction outcome is

false while the actual value is false

TNR True negative rate; equivalent to SP

or Specificity

TP True positive; prediction outcome is

true while the actual value is true

TPR True positive rate; equivalent to SN

or Sensitivity

tRNA Transfer RNA; transfer a specific

amino acid for protein synthesis

U Uracil; a pyrimidine nucleobase

paired with adenine in RNA

UV Ultraviolet; electromagnetic radia-

tion with shorter wavelength than

visible light

VC dimension Vapnik Chervonenkis dimen-

sion; a measure of capacity for the

data point separation by hyperplanes

WTSS Whole transcriptome shotgun se-

quencing; high throughput technique

at the whole transcriptome level with

next generation sequencing

XP Extreme programming; a type of

RAD methodology
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1

Introduction

1.1 Challenges

In the 1980s, most non-protein-coding regions in the genome were thought to be ’junk’

DNA with no functional purpose (1). Nonetheless, during the last two decades, new

classes of non-coding RNAs (ncRNAs) that have gene regulatory roles have been dis-

covered within these ’junk’ regions (2). MicroRNAs (miRNAs) are one such new class

of ncRNAs that have many important regulatory roles on a genome-wide scale (3). Be-

cause of their importance, research on miRNAs has gained popularity in recent years

(Fig. 1.1). Although many research efforts have revealed basic miRNA characteristic

and regulation (3, 4), there are still many challenges to identify the comprehensive

characteristics and precise regulatory mechanism of miRNAs. This thesis covers three

such challenges related to miRNA studies.

The first challenge is to identify accurate miRNA targets in animals. It is im-

portant to understand miRNA contributions to the genome-wide gene regulation, but

there are several known obstacles related to indentifying miRNA targets in animals.

Firstly, miRNAs are quite abundant (3), and one miRNA can potentially regulate many

protein-coding genes (5). In some cases, miRNAs bind their target mRNAs by base-

pairing with only six nucleotides (5), which results in thousands of potential candidate

genes influenced by one miRNA at a genome-wide level. Secondly, since miRNAs are

expressed in a cell- or tissue-specific manner (6), one true positive miRNA target can

be a false positive in a different cell or tissue type. Thirdly, the precise mechanism of

miRNA binding process on its target mRNA is unknown (4). Therefore, combinations

1



1. INTRODUCTION
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Figure 1.1: PubMed query - Two figures show the trend of miRNA related papers as

(A) the number of papers, and (B) the ratio to all papers in PubMed.

of miRNA features are usually used to predict miRNA targets, but the combined effects

of these features on miRNA targeting are unclear.

The second challenge is to interpret miRNA high-throughput data appropriately

with high accuracy. Microarray, next generation sequencing, and quantitative pro-

teomics are three major high-throughput technologies widely used for miRNA studies.

Nonetheless, analyses of the data from these high-throughput technologies often give

different interpretations regarding miRNA characteristics and regulation (7, 8, 9). A

major obstacle is that there are many factors involved in these analyses, but the main

factors that cause these differences are unknown.

The third challenge is to indentify potential miRNA interactions with other ncR-

NAs. Although most miRNAs regulate genes at the post-transcriptional level, some

miRNAs can also regulate transcription itself (10, 11, 12). This transcriptional regula-

tion seems to involve ncRNAs overlapping or interacting with the target gene promoters

(13, 14, 15, 16, 17). Many aspects of this miRNA regulation at the transcription level

are poorly understood. Moreover, few experimental data are available for this miRNA

regulation at the transcription level.

2



1.2 Goals

1.2 Goals

The main goal of this thesis is to reveal the characteristics and regulations of miRNAs

by analyzing several different types of high-throughput data through bioinformatics

approaches. To achieve this goal, I defined three sub-goals to solve the three challenges

of miRNA studies described in the previous section.

The first sub-goal is to develop a miRNA target prediction algorithm with high

accuracy. Most existing prediction algorithms focus on identifying individual target

sites without considering multiple target sites. They do not include multiple target

sites that possibly contribute to miRNA regulation. Moreover, most algorithms use

strict filtering, such as filtering with evolutional conservation. Filtering can reduce

false positive miRNA targets, but it potentially removes many true positive targets

at the same time. Therefore, the aim of this sub-goal is to develop a model that can

predict unbiased miRNA targets by considering multiple targets without filtering.

The second sub-goal is to analyze several different types of miRNA high-throughput

technologies. The aim of this sub-goal is to reveal the characteristics of each technology

and identify strong factors that cause inconsistent results between different types of

experiments by statistical approaches.

The third sub-goal is to infer potential miRNA regulations outside of 3′ untranslated

regions (UTRs) in general and interactions between miRNAs and ncRNAs in complex

loci in particular. A complex locus is a region of DNA that contains multiple genes

that have interactions between them or share common regulatory mechanisms (18).

Our hypothesis is that some miRNAs interact with ncRNA:mRNA pairs in complex

loci. The aim of this sub-goal is to investigate this hypothesis of miRNA involvement in

complex loci together with miRNA regulations outside of 3′ UTRs by computationally

analyzing the data from high-throughput experiments.

In this thesis, these sub-goals are referred to in italic to clarify the relationship

between parts of the text and their corresponding sub-goals if necessary.

• First sub-goal: miRNA target prediction

• Second sub-goal: miRNA high-throughput experiments

• Third sub-goal: miRNA and other ncRNAs

3



1. INTRODUCTION

1.3 Thesis structure

This thesis consists of eight chapters followed by five papers.

Chapter Two: Papers and their corresponding sub-goals. This chapter

summarizes the five papers included in this thesis. It also relates them to each sub-

goal.

Chapter Three: MicroRNAs and other non-coding RNAs. This chapter

introduces the history, characteristics, and biological functions of miRNAs as well as

some additional information about other ncRNAs.

Chapter Four: High-throughput biological experiments. This chapter fo-

cuses on three high-throughput technologies used in our research: microarray, next

generation sequencing, and quantitative proteomics.

Chapter Five: Statistical tests and methods. This chapter starts with ex-

plaining basic statistical tests followed by applied statistical approaches used through-

out in our research, such as non-parametric tests, resampling, and multiple comparison

tests.

Chapter Six: Machine learning theory and Support vector machine. Sup-

port vector machine (SVM) is the main method used in the first sub-goal: miRNA target

prediction. This chapter explains the theoretical background of SVM, data preparation

and evaluation methods for SVM, as well as some other machine learning methods for

comparison.

Chapter Seven: Computational implementation. Any state-of-the-art model

or algorithm is ineffective without appropriate computational implementation. This

chapter focuses on the computation implementations used in our research.

Chapter Eight: Future perspective. This chapter describes potential improve-

ments of each sub-goal as future perspectives.

4



2

Papers and their corresponding

sub-goals

This thesis includes five papers, and each paper has a corresponding sub-goal (Table

2.1). This chapter gives a brief description of paper in context of each sub-goal.

Table 2.1: Papers and corresponding sub-goals of our research

Sub-goal Paper

miRNA target Paper 1 MicroRNAs - targeting and target prediction

prediction Paper 2 A two step site and mRNA-level model for pre-

dicting microRNA targets

Paper 5 Inferring causative variants in microRNA target

sites

miRNA high-throughput

experiments

Paper 3 Target gene expression levels and competition

between transfected and endogenous microR-

NAs are strong confounding factors in mi-

croRNA high-throughput experiments

miRNA and other ncR-

NAs

Paper 4 MicroRNAs affect gene expression by targeting

cis-transcribed non-coding RNAs
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2. PAPERS AND THEIR CORRESPONDING SUB-GOALS

2.1 Three papers for the first sub-goal: miRNA target

prediction

Paper 1: MicroRNAs - targeting and target prediction. This review paper

outlines the features associated with animal miRNA targeting. It summarizes the

characteristics of the features in six different categories: miRNA:mRNA paring, Site

location, Conservation, Site accessibility, Multiple sites, and Expression profiles. It also

contains a list of 30 different miRNA target prediction tools with information of feature

coverage in context of the six categories.

Paper 2: A two step site and mRNA-level model for predicting mi-

croRNA targets. This paper presents a miRNA target prediction model that rec-

ognizes both the individual characteristics of functional binding sites and the global

characteristics of miRNA-targeted mRNAs. Our novel two-step SVM model trains site

level features at the first step, and, subsequently, it trains mRNA level features at

the second step. Benchmark experiments showed that our two-step SVM model had a

higher overall performance than other established miRNA target prediction tools.

Paper 5: Inferring causative variants in microRNA target sites. This paper

shows an example that miRNA predictions from our two-step SVM model performs

better than the other prediction algorithms when the predictions are used by other

tools. Laurent F. Thomas was the main contributor to this study, and he developed a

tool that can help identifying Single-nucleotide polymorphisms (SNPs) associated with

diseases by focusing on SNPs affecting miRNA regulation. The tool uses miRNA target

predictions to check the influence of SNPs that affect miRNA targeting. It can use any

miRNA prediction tools that generate scores of miRNA target predictions. The paper

showed that the tool had the best performance when our two-step SVM model was

used.

2.2 One paper for the second sub-goal: miRNA high-

throughput experiments

Paper 3: Target gene expression levels and competition between transfected

and endogenous microRNAs are strong confounding factors in microRNA

high-throughput experiments. This paper shows characteristics of different miRNA
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2.3 One paper for the third sub-goal: miRNA and other ncRNAs

high-throughput experiments. Analysis on these high-throughput experiment data

sometimes show inconsistent miRNA regulation factors, for example, one experiment

shows 3′ UTR length is one of the most important factors, whereas other experiment

shows it is least important. We investigated several factors that might affect this in-

consistence, and we revealed that competition between endogenous miRNAs and the

ectopically expressed miRNAs significantly contributed to the differences among differ-

ent miRNA high-throughput experiments. We also found that this competition effect

affected other factors, such as mRNA expression level and 3′ UTR length, in terms of

miRNA targeting.

2.3 One paper for the third sub-goal: miRNA and other

ncRNAs

Paper 4: MicroRNAs affect gene expression by targeting cis-transcribed

non-coding RNAs. This paper shows potential miRNA regulation on two types of

complex loci: cis-natural antisense transcripts (cis-NATs) and chromatin associated

RNAs (CARs). We used several different types of data from high-throughput miRNA

experiments to infer potential miRNA regulation on such loci. Our statistical analyses

revealed that complex loci containing non-coding cis-NATs or CARs appeared to be

under strong regulation, although this type of miRNA targeting is less prevalent than

miRNA targeting of 3′ UTRs.
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3

MicroRNAs and other

non-coding RNAs

Since our main goal is to reveal the miRNA regulation and characteristics, this chapter

introduces several different aspects of miRNAs, such as the history of miRNA discovery,

miRNA biogenesis, and mechanism of miRNA regulation. In addition to miRNAs, it

also describes several other classes of ncRNAs and their potential interactions with

miRNAs. Specifically, analysis on such ncRNAs is the main objective of the third

sub-goal: miRNA and other ncRNAs.

3.1 Thousands of miRNAs have been identified since the

first miRNA discovery of lin-4 in 1993

In 1993, Lee et al. found that lin-4, a gene involved in development timing in C. elegans,

produces a small ncRNA instead of a messenger RNA (mRNA) (19). lin-4 was known

to regulate lin-14, but the protein product of lin-4 had been undetected. The result

of an alignment analysis indicated that lin-4 has multiple complementary sites on the

3′ UTR of lin-14 (19). Further experiment revealed that this small ncRNA produced

by lin-4 can directly suppress the expression of lin-14 by base-paring on the 3′ UTR.

This was the first discovery of this functional ncRNA with about 22 nucleotides that

regulates specific protein expression by base-paring on the 3′ UTR of its target mRNA

(3). However, there were no other lin-4 -like small ncRNAs identified, and this peculiar

regulation of lin-4 was recognized as a rare case (3).
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3. MICRORNAS AND OTHER NON-CODING RNAS

Meanwhile, Fire et al. reported that they observed a gene silencing effect after

injecting double-stranded RNAs (dsRNAs) into C. elegans (20) in 1998. They coined

the term, RNA interference (RNAi), to describe this gene-silencing mechanism. Soon

thereafter, RNAi was found to silence genes at the post-transcriptional level with small

RNA molecules with 20-25 nucleotides, called small interfering RNAs (siRNAs) (21,

22, 23).

Then, nearly seven years after the discovery of lin-4, Reinhart et al. identified a

lin-4 -like small ncRNA, let-7, in C. elegans in 2000 (24). They revealed that let-7 is

also an ncRNA with about 22 nucleotides that regulates specific protein expression by

base-paring on the 3′ UTR. Since let-7 has homologs in various species, this discovery

led to identification of many other let-7 - and lin-4 -like small ncRNAs in other animals,

including human and Drosophila (25). The term microRNA (miRNA) was coined to

refer to these small ncRNAs of about 22 nucleotide length (26, 27, 28). Moreover,

like siRNAs, miRNAs appeared to use the RNAi pathway to regulated genes at the

post-transcriptional level (3).

Today, miRNAs are recognized as a very common class of ncRNAs that can regu-

late protein expression (3, 26, 27, 28). For instance, miRBase (29, 30, 31, 32), which

is the main database for miRNA annotations, contains 15172 entries in 142 species as

of release 16, 2010. They are abundant and found mostly in eukaryotes as well as in

some viruses. MicroRNAs are known to play many important regulatory roles in eu-

karyotes (3), whereas some viruses encode viral miRNA genes that potentially regulate

fundamental cellular processes both in the viruses and in their host cells (33, 34).

3.2 MicroRNA biogenesis involves multiple steps

Although the precise mechanism of miRNA biogenesis is unknown, Figure 3.1 shows the

most widely accepted view of the miRNA biogenesis to date. The biogenesis involves

multiple processes both in the nucleus and the cytoplasm.

First, RNA polymerase II (Pol II) transcribes a miRNA gene on the chromosome

from DNA to single-stranded RNA (ssRNA) with 5′ cap and poly-A tail (35). This

ssRNA called primary miRNA (pri-miRNA) can be several hundreds or thousands

nucleotides long, and it may contain one or more hairpin loops (36). An enzyme

called DiGeorge Syndrome Critical Region 8 (DGCR8) recognizes the hairpin loop
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3.2 MicroRNA biogenesis involves multiple steps

Cytoplasm

Nucleus

DNA

Pri-miRNA

Pre-miRNA

Pre-miRNA

miRNA duplex

RISC complex

Pol II

Dicer

Argonaute

Drosha
 DGCR8

Ran-GTP
Exportin 5

Ran-GTP
Exportin 5

Figure 3.1: MicroRNA biogenesis - The figure shows the overview of miRNA biogen-

esis. Pol II transcribes ssRNA from DNA. The ssRNA forms pri-miRNA, that is further

processed to a hairpin loop structure called pre-miRNA by DGCR8 and Drosha. Exportin 5

together with Ran-GTP exports pre-miRNA into the cytoplasm. Dicer cleaves pre-miRNA

to form miRNA duplex. Only one strand of the miRNA duplex is usually bound to the

Argonaute protein and loaded into the RISC complex.
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3. MICRORNAS AND OTHER NON-CODING RNAS

in pri-miRNA, and a DGCR8 associated enzyme, called Drosha, cleaves the hairpin

from the pri-miRNA (37, 38, 39, 40, 41). This cleavage results in a hairpin structure

with approximately 60 nucleotides called precursor miRNA (pre-miRNA) (37, 42, 43,

44). Exportin 5 together with Ran-GTP exports pre-miRNAs from the nucleus to the

cytoplasm (45, 46).

In the cytoplasm, a Ribonuclease (RNase) III enzyme, called Dicer, cleaves the

loop of pre-miRNA and produces a miRNA:miRNA* duplex with approximately 22

nucleotides (37). Only one strand of this duplex usually becomes a mature miRNA as

a guide to the target mRNA, and the other strand, defined as miRNA star-strand or

miRNA* (27), is eventually degraded (3). The mechanism of the strand selection is

unclear, but a strand that is less thermodynamically stable at its 5′ end appears to be

favored in some cases (47, 48). Argonaute (Ago) proteins are key proteins for miRNA

targeting (49). Ago2, which is one of the Ago clade proteins, is mainly associated with

mature miRNAs in mammals (50). A protein complex called RNA-Induced Silencing

Complex (RISC) (51) that incorporates Ago2, uses the mature miRNA as a guide to

bind and then catalyze specific target mRNAs (50).

Moreover, there are several known alternative pathways for miRNA biogenesis. For

instance, some intronic miRNAs bypass Drosha processing by directly forming a pre-

miRNA-like hairpin structure. These intronic miRNAs are defined as mitrons (52, 53)

first identified in Drosophila and C. elegans (53), and also found in mammals (54).

Another example of alternative miRNA pathways is that RNA polymerase III (Pol

III) instead of Pol II transcribes some miRNAs (3), especially those residing upstream

of Alu sequences (55). Alu sequences or Alu elements are abundant mobile elements

especially found in the primate genomes (56).

3.3 RNA interference is the central mechanism for gene

regulation by miRNAs and small interfering RNA

MicroRNAs and siRNA regulate and control gene expression through RNAi (23, 50).

Although siRNAs have biochemically indistinguishable mature forms of ssRNAs from

those of miRNAs, the siRNA biogenesis pathway to its mature form is different from

that of miRNA (3). Dicer processes siRNA precursors, such as long dsRNAs or small
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3.4 MicroRNAs have various regulatory roles that are associated with
important physiological and pathological processes

hairpin RNAs (shRNAs), and cleaves them into a ∼22 nt dsRNA with 2-nt 3′ over-

hangs (3, 50, 57). This dsRNA form of siRNA is essentially equivalent with the

miRNA:miRNA* duplex.

Major functionalities of siRNAs and miRNAs are that siRNAs are defenders against

foreign or invasive nucleic acid molecules such as viruses, transposons, and transgenes

(23), whereas miRNAs are regulators of endogenous protein-coding genes (50). More-

over, exogenous siRNAs are widely used in gene knockdown experiments, and they are

potentially useful for gene therapy. Exogenous siRNAs are directly introduced into the

cytoplasm or taken up from the environment (23, 50).

The central mechanism of RNAi is that si/miRNAs loaded in RISC act like guides

to bind the sites of their target mRNAs. The RISCs loaded with miRNAs are called

miRISCs, whereas the RISCs with siRNAs are called siRISCs (50). RNAi has several

different gene silencing modes (Fig. 3.2). The common gene silencing mode for siRNAs

and plant miRNAs is cleaving mRNAs that have near-perfect complementary sites with

the si/miRNAs (Fig. 3.2) (3). Two known gene silencing modes for animal miRNAs are

transcriptional repression and mRNA degradation (Fig. 3.2). In either mode, miRNAs

mainly target mRNAs that have partial complementary sites on their 3′ UTRs (3).

Although translational repression was initially thought as the major regulatory model

of animal miRNAs, a recent study used ribosome profiling assay and reported that most

target genes of animal miRNAs were actually degraded (58). The precise mechanism

of this degradation is still unclear, but it is possibly associated with deadenylation,

decapping, and exonucleolytic digestion of the mRNA (59, 60, 61).

Moreover, exogenous siRNAs are known to act like miRNAs and down-regulate nu-

merous unintended mRNAs in the same way as miRNA gene silencing. This unintended

effect is called siRNA off-targeting (62). Considering this siRNA off-targeting is very

important to design effective exogenous siRNAs.

3.4 MicroRNAs have various regulatory roles that are as-

sociated with important physiological and pathologi-

cal processes

Many miRNAs play important regulatory roles by negatively controlling the expression

level of mRNAs (3), and current estimates indicate that at least 60% of human protein-
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3. MICRORNAS AND OTHER NON-CODING RNAS

partial homology on 3'UTR
» mRNA degradation

partial homology on 3'UTR
» Translational repression

perfect homology
» mRNA cleavage

animal miRNAs animal miRNAs plant miRNAs & siRNAs

Ribosome

siRISC
miRISC miRISC

Peptide

AAA...

CDS5'UTR 3'UTR
mRNA

Figure 3.2: miRNA target - The figure shows three examples of RNAi regulation by

miRISC and siRISC. The long curved line represents mRNA that is separated into three

regions, 5′ UTR, CDS, and 3′ UTR. Ribosomes synthesize peptides while moving through

the mRNA from 5′ to 3′ direction. One siRISC binds on the CDS and two miRISCs bind

on the 3′ UTR of mRNA, in this example. Plant miRNA and siRNA have nearly perfect

complementary which results in mRNA cleavage. Animal miRNAs require only partial

complementary, and they either repress translation or contribute to mRNA degradation.
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3.5 Multiple properties of miRNA target recognition may enhance target
efficacy in animal

coding genes are under some influence of miRNAs (5). Many miRNAs, like lin-4 and

let-7, are involved in cell development processes (63). Other experimentally validated

miRNA regulatory roles can be found in many cellular processes, such as growth con-

trol, differentiation, stem cell and germline proliferation, and apoptosis (64). However,

annotations of many miRNA regulations are still poor, therefore, predicting accurate

miRNA target genes is important to infer miRNA regulatory roles.

MicroRNAs are also associated with human diseases because of their wide range of

gene regulatory roles (64). Several studies revealed miRNA involved diseases, such as

cancer (65, 66), heart disease (67, 68), DiGeorge syndrome (64), Alzheimer’s disease,

and central nerve system (CNS) disorders (69). Moreover, some viruses encode viral

miRNA genes (33). These viral miRNAs potentially regulate fundamental cellular

processes both in the viruses and in their host cells (34).

3.5 Multiple properties of miRNA target recognition may

enhance target efficacy in animal

Since most animal miRNAs have only partial complementary to their target mRNAs

(4), miRNA targeting usually requires additional features for better target recognition.

The most important feature is the seed type, which is the region for the partial com-

plementary. The seed site contains six nucleotides from position 2 to 7 of the miRNA

(4, 70, 71), as the position begins with 1 at the 5′ end of the miRNA. Even though

the definition of the seed site is ubiquitous, the definition of the seed types is different

among different studies. Figure 3.3 shows nine common seed types that are widely

accepted in many studies. Seed types consist of stringent and non-stringent groups.

Three seed types, 7mer-A1, 7mer-m8, and 8mer, belong to the stringent group (Fig.

3.3). These seed types have perfect Watson-Crick paring in their seed sites, and they

are usually stronger than those in the non-stringent groups in terms of miRNA target

recognition (4). 7mer-A1 has an adenine (A) at position 1 of the target mRNA. An

adenine at position 1 of the mRNA is known to enhance miRNA target recognition

(72). 7mer-m8 has paring at position 8. 8mer has an adenine at position 1 and paring

at position 8. The non-stringent group consists of 6mer, two G:U wobble, one loop,

and two bulge types (Fig. 3.3) (73). They are less effective than the stringent group,

but they are still functional since miRISC can tolerate some mismatches (74). 6mer
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3. MICRORNAS AND OTHER NON-CODING RNAS

has perfect seed paring, whereas the other types are equivalent to 8mers except one

mismatch or wobble paring. LP has a loop in the seed site. GUM has a G:U wobble

site on the miRNA whereas GUT has a wobble site on the target mRNA. Similarly,

BM has a bulge on the miRNA whereas BT has a bulge on the target mRNA.

...NNNNNNNA...
87654321

ORF

..NNNNNNNN-5'
|||||||

8mer

...NNNNNNNA...
87654321

ORF

..NNNNNNNN-5'
||||||

7mer-A1

...NNNNNNNNN...
87654321

ORF

..NNNNNNNNN-5'
|||||||

7mer-m8

...NNNNNNNN...
87654321

ORF

..NNNNNNNN-5'
||||||

6mer

...NNNNGNNNA...
87654321

ORF

..NNNNUNNNN-5'
|||:|||

GUM

...NNNNNNUNA...
87654321

ORF

..NNNNNNGNN-5'
|||||:|

GUT

...NNNNNNNNA...
87654321

ORF

..NNNNNNNNN-5'
| |||||

LP

87654321
ORF

..NNNNNNNNN-5'
||| |||

BM

...NNNNNNNNA...
87654321

ORF

..NNN-NNNNN-5'
|| ||||

BT

...NNNN-NNNA...

Stringent

Non-stringent

Figure 3.3: miRNA seed types - Examples of three stringent seed types (8mer, 7mer-

A1, and 7mer-m8), and six non-stringent seed types (6mer, GUM, GUT, LP, BM, and

MT). The strand on the top of each seed type represents position 1-8/9 of miRNA, and

the bottom strand represents target mRNAs.

Additional paring at the 3′ part of miRNAs can increase the efficacy of miRNA

repression, and it can also compensate for a seed mismatch to create a functional

site (4). Three to four matches at position 13-16 for stringent seeds, and four to five

matches at position 13-19 for non-stringent seeds are known as 3′ supplementary and

3′ compensatory paring, respectively (4, 75).

Many target sites are well conserved among closely related species (5). However,

there are many approaches to define “well conserved” targets. For instance, some use

perfect seed matches among several species (76, 77, 78), whereas others use pre-defined

conservation scores calculated by global phylogenetic analysis (79, 80). Moreover, even

though many targets are well conserved, some targets are also species-specific. For

instance, one study predicted that about 30% of all experimentally validated targets

are poorly conserved (81).
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3.5 Multiple properties of miRNA target recognition may enhance target
efficacy in animal

The site accessibility of miRISC can be measured by computing the secondary struc-

ture of target sites through minimum free energy approaches. The site accessibility is

potentially a very strong feature to predict true miRNA target sites because it is directly

linked to target recognition. However, the precise mechanism of miRISC access on its

targets is unknown, and developing a precise prediction model with mRNA secondary

structure calculation usually requires huge computational power. Some models used

elaborate two step approaches with the first step as initial forming of miRNA:mRNA

complex, and the second step as hybrid elongation to form the complete miRNA:mRNA

complex (80, 82). An alternative feature to site accessibility is to measure the occur-

rence of AU rich elements both upstream and downstream of the seed site (75). Ther-

modynamic stabilities of AU base pairs are much lower than that of GC base pairs, and

it can be a reason that sites surrounded by AU-rich context has better site accessibility

for miRISCs. Moreover, this AU rich approach is computationally inexpensive with a

good prediction performance (75). Scoring AU context is a more reliable measurement

of target accessibility than any other currently available models with mRNA secondary

structure calculation (4).

Multiple target sites enhance miRNA target efficacy (83). Although the general

effect of multiple sites is additive, the effect can be synergistic when two miRNA targets

are within optimal distance. One reported such optimal distance is defined as two seed

sites separated by between 13 and 35 nt (84). For example, a gene with two 7mers within

optimal distance is more down-regulated than a gene with a single 8mer. However, the

effect is not apparent when two 7mers are not within optimal distance. In this case, a

gene with 8mer is more down-regulated than a gene with two 7mers (4).

To summarize miRNA target recognition and efficacy, most animal miRNAs bind

on the 3′ region of their target mRNAs by base paring. The seed site, which is located

at position 2 to 7 of the miRNA, is usually used for this base paring, and the seed type

tends to be one of the most important features. There are also other additional features

that can contribute to target recognition and efficacy, such as 3′ additional paring, site

conservation, site accessibility, and cooperability of multiple target sites.
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3. MICRORNAS AND OTHER NON-CODING RNAS

3.6 MicroRNA binding also occurs outside of the 3′ UTR

Although the precise regulatory mechanism of miRISC’s binding on the 3′ UTR is

unclear, it may cause deadenylation, decapping, and exonucleolytic digestion of the

mRNA (59, 60, 61). Moreover, miRISCs bind other regions that reside outside of 3′

UTRs, such as CDS (85), 5′ UTR (85, 86), and promoter regions (10, 11).

Many miRNAs bind CDS regions; however, most of the sites are likely non-functional

because ribosomes seem to detach miRISCs from their binding site while moving along

the CDS region for translation (3). Nonetheless, there are several evidences that some

miRNA target sites in CDS are functional. One example is that rare codons in CDS

regions tend to make ribosomes stalled, and miRNA target sites right after these codons

can be functional (87). Moreover, some target sites experimentally validated in CDS

tend to have one very strong site (88, 89), or multiple sites within optimal distance

(90, 91).

Some miRNAs also target 5′ UTR regions, though it is much less common than 3′

UTR and CDS regions (4). One intriguing class of miRNA targets involved in 5′ UTR

is miBridge targets (86). The miBridge target is a miRNA target site that has a normal

seed site on the 3′ UTR and a 5′ portion paring on the 5′ UTR simultaneously. One

possible explanation for the regulation of miBridge is that miBridge is involved in the

translational initiation by preventing ribosome scanning through the 5′ UTR (86).

MicroRNA regulation can also occur inside the nucleus despite that miRNA’s major

regulatory roles are in the cytoplasm (92, 93). The miRNA regulation in the nucleus

is likely at the transcriptional level rather than the translational level. Several studies

reported that miRNAs cause transcriptional silencing by targeting promoter regions

(10, 11).

3.7 Some of coding and non-coding pairs of cis-NATs po-

tentially may have regulatory interactions with miR-

NAs

A complex locus is a locus that contains several genes that interact among each other

(18). Two major classes of complex loci are cis-natural antisense transcripts (cis-NATs)
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3.7 Some of coding and non-coding pairs of cis-NATs potentially may have
regulatory interactions with miRNAs

and bi-directionally promoters (Fig. 3.4) (18). Many complex loci have important

regulatory roles, even though the precise mechanism is unknown (94, 95).

5'

3'

3'

5'

5'

3'

3'

5'

5'

3'

3'

5'

5'

3'

3'

5'

Head to Head: 5' to 5' overlap 

Tail to Tail: 3' to 3' overlap 

Full overlap 

cis-natural antisense transcript

Bidirectional promoters

Common promoter region

Figure 3.4: Complex loci - Complex loci consist of multiple genes that interact among

each other. Two major classes of complex loci are cis-NATs and bi-directional promoters.

Cis-NATs can be divided into three categories depending on the directions of the overlaps.

“Head to Head” is that sense and antisense transcripts are partially overlapped on their

5′ ends. “Tail to Tail” is that sense and antisense transcripts are partially overlapped

on their 3′ ends. “Full overlap” is that one transcript is fully overlapped with the other

transcript. Bi-directional promoters reside between two genes arranged head-to-head on

opposite strands with less than 1000 base pairs separating their transcription start sites

(96)

Cis-NATs is a sense-antisense pair of transcripts that are partially overlapping in

the same locus (97). Cis-NATs are relatively common in many species, and they are

quite abundant in human (18, 98, 99). Three major classes, or orientations, of cis-NATs

are “head to head”, “tail to tail”, and “full overlap” (Fig. 3.4) (100). Although the

molecular mechanism of cis-NAT regulation is poorly understood, three models may
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3. MICRORNAS AND OTHER NON-CODING RNAS

explain the potential cis-NAT regulation (100). The first model is the transcriptional

collision model (100), which can be the main mechanism for “head to head” cis-NATs.

The second model is the dsRNA formation model of sense and antisense transcripts

(100). One study showed that an endogenous ncRNA derived from a cis-NAT pair

regulates its anti-sense transcript of a protein coding gene in plants (101). The third

model is that cis-NATs are involved in epigenetic regulation. This model is based on

the evidence that some ncRNAs are involved in the modification of chromatin structure

and DNA methylation in the promoter region (102, 103).

Bi-directional promoters reside between two genes arranged head-to-head on op-

posite strands with less than 1000 base pairs separating their transcription start sites

(96). Many pairs from bi-directional promoters are co-expressed, but some are an-

tiregulated (96). Bi-directional promoters are abundant; for instance, they represent

approximately 10% of all the genes in human (96).

The main objective of the third sub-goal: miRNA and other ncRNAs is to investi-

gate potential miRNA interactions with other ncRNAs. Of these classes of complex loci,

some miRNAs potentially interact with ncRNA:mRNA pairs of cis-NATs. In this case,

miRNAs indirectly regulate the expression of the mRNAs in cis-NATs through directly

regulating their paired ncRNAs (Fig. 3.5). Bi-directional promoters may also have

ncRNA:mRNA pairs that potentially involve miRNAs regulation. Annotated data of

bi-directional promoters are available for mRNA:mRNA pairs (18), but there are few

reliable data for ncRNA:mRNA pairs of bi-directional promoters. Therefore, we ex-

cluded bi-directional promoters and focused on cis-NATs, especially on ncRNA:mRNA

pairs of cis-NATs, in the third sub-goal: miRNA and other ncRNAs

3.8 Chromatin associated RNAs are potentially associ-

ated with the modification of chromatin structure

Chromatin associated RNAs (CARs) are experimentally validated non-coding RNAs

that can bind a part of the chromatin directly (104). Since CARs affect their host and

neighboring genes (104), CARs can be seen as a class of complex loci. CARs are likely

involved in the regulation of chromatin structure by recruiting chromatin-modifying

complexes (Fig. 3.6). This scenario is supported by the evidence that long ncRNAs

regulate chromatin modification by guiding chromatin remodeling complexes to specific
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modification of chromatin structure

mRNA

ncRNA

miRNA

miRNA Direct miRNA regulation
miRNA -> coding

Indirect miRNA regulation
miRNA -> non-coding -> coding

Figure 3.5: miRNA regulation on cis-NAT - The figure illustrates two different

potential modes of miRNA regulation on cis-NATs. Direct miRNA regulation is a normal

regulatory mode of miRNAs, in which miRNA binds on the 3′ UTR of mRNA. Indirect

mode is that miRNA regulates the protein coding mRNA in cis-NAT indirectly through

binding the non-coding transcript.

genome loci (105, 106). In addition to long ncRNAs, RNAi is also known to have roles

in the regulation of chromatin structure. For instance, in fission yeast, CARs serve

as assembly platform to the RNA-induced initiation of transcriptional gene-silencing

(RITS) complex. In this case of fission yeast, siRNAs associate with AGO1 and guide

the RITS complex to CARs (103).

Similar to ncRNA:mRNA pairs of cis-NATs, CARs potentially have interactions

with miRNAs, though there is currently no strong evidence to support this. Therefore,

we chose cis-NATs and CARs to investigate their potential interactions with miRNAs

in the third sub-goal: miRNA and other ncRNAs.
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CAR

Protein complex

Protein complex guided by CAR

Chromatin

Figure 3.6: CARs - Upper panel shows a protein complex, a CAR, and nucleosomes.

The complementary DNA region to the CAR is indicated in red. Lower panel shows one

example of the CAR regulation to the chromatin. The CAR acts as a guide for the protein

complex that can modify the chromatin structure.
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4

High-throughput biological

experiments

Emerging high-throughput technologies have enabled genome-wide analyses of various

biological data, such as different cell lines, tissues, and species, under different con-

ditions. This chapter explains several high-throughput technologies for transcriptomic

and proteomic analyses used in our research. We used both microarray and quantitative

proteomics data to achieve all three sub-goals, but we used next generation sequence

data only for the second and third sub-goals: miRNA high-throughput experiments, and

miRNA and other ncRNAs.

4.1 One microarray experiment can detect thousands of

gene expressions simultaneously

Microarrays can capture the expression levels of many genes in a single set of ex-

periments. The microarray technology enables a high-throughput transcriptome-wide

analysis, which is hard to achieve with other techniques for gene expression analyses,

such as Northern blot (107) or reverse transcription quantitative polymerase chain re-

action (RT-qPCR) (108, 109). The Northern blot is a qualitative but low-throughput

technique that requires the use of electrophoresis and large amounts of the input RNA

(110). RT-qPCR can achieve higher throughput levels with less amount of the input

RNA than Northern blot, but the throughput remains on the order of hundreds of

known transcripts at a time (110, 111).
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Although several types of microarray technologies exist, the DNA microarray is

usually used for the transcriptome analysis. One microarray chip usually consists of

thousands of spots, and each spot contains DNA oligonucleotides of a specific sequence

(112). These DNA oligonucleotides are suitable for hybridization with DNA or RNA

isolated from cells. Isolated RNAs are chemically labeled before hybridization. These

labels, such as fluorescence dyes, are used to detect signal intensities of spots and

determine the relative mRNA abundance among samples. One of the major DNA mi-

croarray applications is to measure the relative difference of mRNA abundance between

two samples. For example, Figure 4.1 shows the procedure of a two-color microarray

system (112). Another popular microarray design is one-color microarray system, and

data quality is essentially equivalent between one- and two-color approaches (113).

Cy3

Cy5

Sample RNA

Reference RNA

Fluorescent
labeling

Combine
and

Hybridization

Figure 4.1: Microarray procedure - Two samples are compared by a two-color DNA

microarray. Sample RNA represents a sample of interest, whereas Reference RNA repre-

sents a control sample for comparison. Sample RNA is dyed red by Cy5, and Reference

RNA is dyed green by Cy3. These two samples are combined and hybridized with DNA

oligonucleotides on the chip. Color intensity is measured to estimate relative RNA expres-

sion levels of the two samples.

After measuring the intensity levels, the raw data usually go through normalization

and transformation (114), and this whole process is usually called the pre-processing of

microarray data. The pre-processing of the raw data is very important to reduce the

noise in each sample at the local level and among multiple samples at the global level.

In addition to detecting relative RNA expression levels, the DNA microarray can be
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used for other applications, such as the detection of single-nucleotide polymorphisms

(SNPs), and alternative splicing events (110, 115).

Two major drawbacks of microarray technologies are the limited ability to detect

novel transcripts and noisy data even after pre-processing (110). Nonetheless, the

microarray technology is still widely used for many transcriptomics analyses because of

the ability to measure the expression of thousands of genes simultaneously at relatively

low cost.

4.2 The next generation sequencing methods are faster

and more cost-effective than Sanger sequencing

As an alternative approach to the microarray technology, DNA sequencing approaches

are also widely used for transcriptome analysis. The advantage of these sequencing

methods is the ability to identify new transcripts and measure the abundance of tran-

scripts directly (110). First generation sequencing methods relied on the Sanger method

(116). Since the original Sanger method uses the full-length complementary DNA

(FLcDNA), it involves a complex in vivo cloning step that usually results in very high

cost. Therefore, the original Sanger method is normally limited only to novel transcript

discovery and annotation (110).

Two examples of Sanger method applications are expressed sequence tag (EST)

(117) and Serial Analysis of Gene Expression (SAGE) (118). Both approaches use

shorter tags, which are short sub-sequences of the cDNA sequence, rather than the

FLcDNAs. ESTs are short tags generated from either 3′ or 5′ end of a cDNA clone.

Even though the sequencing cost is reduced by ESTs compared with FLcDNAs, it is

still too expensive for the whole transcriptome analysis (110). SAGE is a method that

uses short tags generated from 3′ ends of mRNA transcripts. SAGE is suitable for

estimating transcript abundance due to high redundancy of sequencing reads (110).

However, SAGE is still costly for the transcriptome analysis because it still relies on

labor intensive in vivo cloning procedures (110).

The next generation, or the second generation, sequencing methods have substan-

tially improved upon the Sanger method. They produce millions of short reads in a rel-

atively short period of time (119) depending on several criteria, such as read length, se-

quence coverage, and the size of the genome of interest (Table 4.1). The reads are assem-
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bled computationally afterwards if necessary. The major contribution to this enhance-

ment is to parallelize the sequencing process (120), though other features, such as the

usage of PCR-based amplification instead of costly and labor intensive in vivo cloning,

also contribute (110). Three popular commercially available next generation sequencing

technologies are, Roche 454 (http://454.com), Illumina (http://www.illumina.com),

and Applied Biosystems SOLiD (http://www.appliedbiosystems.com) (Table 4.1).

The second generation sequencing can be used for all the applications that are based

on the Sanger method, including EST and SAGE. Some applications that are based on

the second generation sequencing are explained in the next section.

Table 4.1: Next generation sequencing technologies - The table shows three exam-

ples of commercially available next generation sequencing technologies with specifications

obtained from their corresponding web sites as of March 2011. “bp” and “Gb” represent

base pairs and giga base pairs respectively. The product type with the best specification is

selected for each technology. Both 2 × n and n × m represent the read length of the pair

end approach where n and m are read lengths in base pairs.

Roche 454 Illumina SOLiD

Product type GS FLX Titanium HiSeq 2000 5500xl

Read length 400 bp 1 × 35 bp 75 bp

2 × 50 bp 75 bp × 35 bp

2 × 100 bp 60 bp × 60 bp

Run time 10 hours 1.5 days (1 × 35) 1 day (75)

4 days (2 × 50) 7 days (75 × 35)

8 days (2 × 100) 7 days (60 × 60)

Throughput per day 1 Gb 25 Gb 20-30 Gb

Third generation sequencing techniques will be available in the near future. The

main feature of the third generation is the ability to sequence the whole single molecule

instead of breaking down the molecule into short reads, therefore the read lengths

should be much longer than those of the second generation sequencing technologies.

Several strong candidates that may lead the third generation sequencing are Pacific Bio-

science SMRT Sequencing (http://www.pacificbiosciences.com), Oxford Nanopore
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technologies (http://www.nanoporetech.com/), and Life technologies Single Molecule

Sequencing (http://www.lifetechnologies.com).

4.3 The second generation sequencing technologies can

cover a wide range of applications

The second generation sequencing can be used in many different applications because of

its high-throughput and cost effectiveness. For example, the applications can be tran-

script rearrangement discovery, single-nucleotide variation profiling, and non-coding

RNA discovery (110). Two such applications, RNA-Seq and CLIP (Cross-Linking and

ImmunoPrecipitation)-Seq, are very powerful and useful for transcriptomic analyses.

RNA-Seq or the whole transcriptome shotgun sequencing (WTSS) is a technique

that uses the second generation sequencing technology to produce sequence reads at

the whole transcriptome level (121, 122). Since the second generation sequencing tech-

nology can yield sufficient sequencing depth, which represents the total number of

sequence reads generated from a sequencing library (110), RNA-Seq can be used for

gene expression profiling with high accuracy.

CLIP-Seq (123), also called HITS-CLIP (High throughput sequencing CLIP) (124),

is a technique that employs three important steps, cross-linking, immunoprecipitation,

and next generation sequencing. It can be used to tag and pull-down RNA-interacting

proteins of interest and infer the interactions between RNAs and RNA-binding pro-

teins. Firstly, RNA binding proteins and their target RNA regions are cross-linked by

ultraviolet (UV) light, and the antibodies for the proteins are used for immunoprecip-

itation (125). Subsequently, the RNA transcripts pulled down with the proteins go

through the second generation sequencing procedure (123). RIP (Ribonucleoprotein

ImmunoPrecipitation)-Seq is similar to CLIP-Seq (126), but it uses chemical cross-

linkers such as formaldehyde instead of UV cross-linking (127, 128). This cross-linking

is reversible, and it is subject to potential reassociation between RNAs and RNA-

binding proteins after cell lysis in some cases (129).
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4.4 Liquid chromatography-tandem mass spectrometry is

a powerful tool to analyze quantitative proteomics

In recent years, several new technologies for the identification and quantification of

proteins have emerged. Most of them are based on mass-spectrometry (MS), which is

a technique that ionizes molecules and measures the mass-to-charge ratio by detecting

them in an electromagnetic field (130). Although there are many variants of MS-

based technologies (131), the Liquid chromatography-tandem mass spectrometry (LC-

MS/MS) with stable isotope labeling with amino acids in cell culture (SILAC) (132)

approach is widely used in detecting protein expression profiles.

LC-MS/MS uses high-performance liquid chromatography that can separate a mix-

ture of molecules with very small particles and a high pressure before the MS/MS phase.

MS/MS, or tandem mass spectrometry, involves two steps of MS selections. The first

MS can be used for the quantification of peptides, and the second MS can be used for

the identification of the peptides (131).

LC-MS/MS is usually combined with either labeling or labeling-free methods for

a quantification approach. For example, SILAC tends to be used for small changes

(10%-50%), and isotope tags for relative and absolute quantification (iTRAQ), which

is another labeling method, tends to be used for moderate changes (50%-200%) (131).

Moreover, a labeling-free method using spectrum counts can be used for large changes

(>100%) (131). Among them, SILAC is a simple but very powerful method for quan-

titative proteomics (133). The SILAC procedure uses two different stable amino acid

isotopes, as “light” and “heavy” labels. The relative abundance of proteins can be

detected by comparing the intensities of isotope clusters (131, 133).

The coverage of protein identification in the genome is usually less than 10% for

higher organisms (134) due to enormous molecular complexity and the dynamic nature

of proteins, such as post-translational modifications and protein stability (131). How-

ever, the protein coverage of quantification is even lower than the protein identification.

One possible explanation for this low coverage is that protein quantification requires

much higher data quality, in terms of information content, than protein identification

(134).
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4.5 Most preprocessed and raw data sets from high-throughput

experiments are publicly available

Two major repositories for microarray experiment data are ArrayExpress (http://

www.ebi.ac.uk/arrayexpress) (135) at European Bioinformatics Institute (EBI), and

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) (136) at Na-

tional Center for Biotechnology Information (NCBI). Both repositories encourage sub-

mitters to supply Minimum Information About a Microarray Experiment (MIAME)

(137) compliant data. MIAME is a standard for the microarray data formats.

The major repository for the next generation sequencing data is the Sequence Read

Archive (SRA), which is operated by the International Nucleotide Sequence Database

Collaboration (INSDC) (138). However, due to a rapid growth of next generation

sequencing data and budget constrains, NCBI, which is the main member of INSDS,

currently accepts limited types and forms of the next generation sequencing data.

There are no central repositories for quantitative proteomics data, but many small

and medium scale public repositories are available instead. Some of the examples of

such repositories (139) are Proteomics IDEntifications database (PRIDE) (140), the

Global Proteome Machine database (GPMDB) (141), and PeptideAtlas (142).
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5

Statistical tests and methods

This chapter describes various statistical methods used in our research. We used basic

statistical methods, such as parametric tests and correlation, to achieve all three sub-

goals of our research, but we used multiple non-parametric tests only for the second

and third sub-goals: miRNA high-throughput experiments, and miRNA and other ncR-

NAs. Moreover, we mainly used the resampling approach to achieve the third sub-goal:

miRNA and other ncRNAs.

5.1 Parametric statistics: Parameters and Hypothesis test-

ing

Statistics tests play important roles in biology to analyze different kinds of data from

biological experiments. Most analyses in biology use parametric statistics, which can

be used only when the data are likely from a known distribution with parameters.

The most commonly used parametric distribution is the normal distribution, which has

two parameters: µ (mean) and σ2 (variance). Mean is a measure of central tendency,

whereas variance is a measure of spread. Standard deviation (σ), which is the square

root of variance, is also a measure of spread. The normal distribution is defined by its

probability density function (143) as:

f(x) =
1√
2π
e−

1
2
x2
. (5.1)

The parametric statistics offers various analysis methods, but the most common

method is hypothesis testing. Hypothesis testing is that the null hypothesis, denoted
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by H0, is tested to infer whether the alternative hypothesis, denoted by H1, is true or

false. The alternative hypothesis contradicts the null hypothesis in some sense (143),

therefore, if H0 is rejected, H1 is inferred as “True”, whereas if H0 is accepted, H1 is

inferred as “False”.

The p-value is the probability of incorrectly rejecting the null hypothesis when it is

true. For example, the p-value 0.05 means that there is 5% chance of rejecting the null

hypothesis when it is true. Two significance levels, 0.05 and 0.01, are commonly used

as statistically “significant” or “highly significant”. Moreover, two types of errors may

occur when the null hypothesis is either accepted or rejected (Table 5.1). Type I error

is the error of rejecting the null hypothesis when it is true, whereas Type II error is the

error of accepting the null hypothesis when it is false. Type I error is more important

for hypothesis testing because the p-value is equivalent to the probability of Type I

error.

Table 5.1: Four possible outcomes of hypothesis testing - The table shows the four

possible outcomes of hypothesis testing with two error types.

H0 is true H1 is true

Accept H0 True Negative False Negative

(Type II error)

Reject H0 False Positive True Positive

(Type I error)

For analysis of biological data, one of the most common methods for hypothesis

testing is two sample inference. For example, when two samples, x1 and x2, are normally

distributed with equal variance, the test statistic t (143) is:

t =
x1 − x2

S

√
1

n1
+

1

n2

, (5.2)

where S =

√
(n1−1)s21+(n2−1)s22)

n1+n2−2 , n1 and n2 are sample size of x1 and x2, and s1 and

s2 are standard deviation of x1 and x2. The test statistics enables to determine the

sampling distribution under the null hypothesis, hence the p-value can be calculated

from the test statistics. The calculation method of the test statistics varies depending
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on the type of distributions and the properties of the samples. In the example above,

the test statistic t follows Student’s t distribution. This test is called two sample

Student’s t-test, and it is used when the variances need to be calculated directly from

the samples.

5.2 Non-parametric statistical methods: Wilcoxon rank-

sum and Kolmogorov-Smirnov tests

The parametric statistical methods are valid only when the samples of interest follow

known distributions with parameters. However, the original distributions of samples

are quite often unknown, therefore, non-parametric statistical methods should be used

in these cases. Non-parametric methods tend to be more robust, and their applica-

bility is much wider than corresponding parametric methods because they need fewer

assumptions. However, they require a larger sample size to draw the same conclusion

of their corresponding parametric methods because they usually have less statistical

power.

One of the most commonly used non-parametric statistical methods is the Wilcoxon

rank-sum test (144, 145), which is a two sample non-parametric test when the samples

are independent. It uses a ranking procedure, in which individual values are ordered

and ranked. There are two approaches, the Mann-Whitney U-test and the normal

approximation, to calculate the test statistics for the Wilcoxon rank-sum test. (i) The

Mann-Whitney U-test (144) is used to test whether two samples are drawn from the

same distribution. The U value for the U-test is calculated from the sum of the ranks

and the sample size. For example, the U value for sample x, denoted as Ux, is calculated

as Ux = Rx−nx(nx + 1)/2 where Rx is the sum of the ranks of x, and nx is the sample

size of x. (ii) The normal approximation can be used instead of the U-test when the

sample size is large enough (>10) for both samples (143). The test statistics T for two

independent samples, x and y, is:

T =

[∣∣∣∣R1 −
n1(n1 + n2 + 1)

2

∣∣∣∣− 1

2

]
√(n1n2

12

)
(n1 + n2 + 1))

, (5.3)

where Rx is the sum of the ranks of x, and nx and ny are the sample size of x and y.
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The Kolmogorov-Smirnov test (K-S test) is a non-parametric statistical method

that does not use ranking procedures. For instance, the two sample K-S test is used

to infer whether two continuous distributions differ. The K-S test requires two contin-

uous distribution functions, F (x) and G(y) where the two distributions are defined as

X1 . . . Xm with the size m, and Y1 . . . Yn with the size n. In this case, however, both

distributions are unknown. Therefore, empirical distribution functions, F̂ (x) and Ĝ(y),

are used instead. An empirical distribution function is a step function defined as (146):

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x), (5.4)

where I(Xi ≤ x) is the indicator function, and is equal to 1 if Xi ≤ x and 0 otherwise.

The test statistics D for the K-S test (147) is:

D = max
x
|F̂ (x)− Ĝ(x)|, (5.5)

for the hypothesis of this test:

H0 : F (x) = G(x) for all x,
H1 : F (x) 6= G(x) for some x.

H0 is rejected at level α when D is too large as in:

mn

m+ n
D > Kα, (5.6)

where the critical value of the Kolmogorov distribution, Kα, is found from P (K ≤
Kα) = 1− α (148).

5.3 Resampling: Bootstrap and Permutation test

In statistics, resampling methods treat an observed sample as a finite population (149)

and reuse the data of the observed sample. Resampling approaches have gained pop-

ularity in recent years because sufficient computational power has become available

to make enough random samples to achieve robust statistical analysis (150). Three

major applications of resampling are (i) the bootstrapping method as estimating the

characteristics of the sample, (ii) the permutation test as exchanging labels to perform

significant tests, and (iii) the cross validation approach as validating models by using

random subsets. This section briefly explains two such applications, bootstrapping and

34



5.4 Multiple comparison tests: Analysis of variance, Bonferroni correction,
and False discovery rate

permutation tests. Cross-validation is explained in the next chapter as an evaluation

method for machine learning.

Bootstrapping (151) is a resampling method that generates random samples from an

observed sample with replacement. Sampling with replacement means that a randomly

drawn observation should put back in the original sample before drawing the next one

(150). Bootstrap is mainly used for estimating population characteristics by collecting

the statistics from many resamples.

Permutation tests are non-parametric procedures based on resampling. The tests

randomly rearrange the data without replacement to create the sampling distribution

of the test statistics under the null hypothesis (150). To illustrate the basic idea of a

permutation test, suppose we have two samples x with size m and y with size n. We

first pool all the data points from x and y, and randomly draw a point from this pooled

set without replacement to make resample controls with size m and n. We then iterate

this resampling to make a permutation distribution. The number of resamples depends

on a required statistical power, but 1000 is widely used. The p-value is calculated by

comparing the parameter of the original observation with the permutation distribution

of the parameter (150). For instance, if 14 cases of 999 resamples are larger than the

parameter of the original sample, the p-value of one-sided test can be calculated as:

14 + 1

999 + 1
=

15

1000
= 0.015. (5.7)

Adding one to both numerator and denominator of Eq. (5.7) improves the estimate of

the p-value. Moreover, Fisher’s exact test (152) is a special case of permutation test

that is used in the analysis of categorical data, especially for contingency tables with

small sample size. For instance, when the Fisher’s exact test is used for a 2×2 table, it

calculates the exact probability by considering all possible values under the assumption

that the margins of the table are fixed (150).

5.4 Multiple comparison tests: Analysis of variance, Bon-

ferroni correction, and False discovery rate

In addition to one and two sample inferences, multisample inference is also important

in many biological analyses. Two major approaches for multisample inference are the

analysis of variance (ANOVA) and multiple comparison tests.
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The ANOVA test concerns the means of several groups, and its hypothesis is:

H0 : all means are equal,
H1 : not all means are equal.

The F test can be used when each group follows a normal distribution, and the test

statistics F is:

F =
Between Mean Square

Within Mean Square
. (5.8)

“Between Mean Square” measures the mean among the groups, whereas “Within Mean

Square” measures the mean among individuals within the same group (150).

As for the non-parametric approach, the Kruskal-Wallis test (153) can be used if

some group has no specific distribution. It is a non-parametric ANOVA test, and it

uses ranking procedures as calculating the sums of the ranks for the groups (150).

Multiple comparisons procedures enable to detect the groups that differ from the

others. The most common approach of multiple comparisons is to simply compare all

possible pairs by two sample inference, followed by p-value adjustment. The p-value

adjustment is critical for multiple comparisons because some differences likely occur

just by chance if there is a large number of groups, and every pair of groups should

be compared (150). Many p-value correction methods have been developed for various

cases, and most of them either change the significance level of the test, α, or consider the

false discovery rate (FDR), which is (False Positive) / (False Positive + True Negative).

The Bonferroni correction computes an alternative significance level, α∗, defined as

(143):

α∗ =
α(
k
2

) , (5.9)

where k is the number of groups. For example, there are 45 possible pairs when k = 10,

therefore α∗ = α/45. One critical problem of the Bonferroni correction is to control the

overall experimental-wise type I error rate, hence, no significant pairs may be found

when k is very large.

The FDR control, or the Benjamini and Hochberg correction (154), is to mod-

ify p-values without controlling the overall experimental-wise type I error rate. The

FDR aims to control the proportion of false-positive results (143), therefore, several

significant pairs will be expected to be found.
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5.5 Correlation: Pearson’s and Spearman’s correlation

coefficients

In statistics, the correlation indicates the statistical relationships between two or more

samples. The correlation coefficient, which ranges from -1 to 1, represents the degree of

correlation. Samples are positively correlated, negatively correlated, and uncorrelated

when the coefficient is greater than 0, less than 0, and exactly 0, respectively (143).

It is also important to test the significance of correlation by determining whether an

observed correlation coefficient is significantly different from zero or not.

Pearson’s correlation coefficient, usually denoted as r, indicates the linear relation-

ships between two samples that follow normal distribution. For example, two samples,

X and Y, have individual observations represented as xi and yi where i = 1, 2, ..., n.

The Pearson’s correlation coefficient, rxy, is (143):

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
. (5.10)

This is equivalent to:

rxy =
sxy
sxsy

=
sample covariance between x and y

(sample standard deviation of x)(sample standard deviation of y)
.

Spearman’s correlation coefficient, denoted as ρ, is a non-parametric method. Hence,

it can be used when the distributions are unknown. The calculation of ρ is similar to

that of r, but the ranks are used instead of the actual observation values (143).

5.6 Regression analysis: Multivariate linear regression

Regression analysis is an important statistical method with biological data because

it identifies the characteristics and relationships among multiple factors (155). Many

types of regression analysis exist depending on different criteria such as univariate

versus multivariate, or linear versus non-linear, for instance.

Multivariate linear regression can be performed to study the effect of multiple vari-

ables and their linear relationships in the data. The linear regression model relating y

to x1, ..., xk, is (143):

y = α+

k∑
j=1

βjxj + e, (5.11)
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where e is an error term that is normally distributed with mean 0 and variance σ2. The

main goal of the regression analysis is to minimize e and estimate the best α and β to

fit this model.

The goodness of fit for a regression model indicates how well the observed data fit

the predicted model. One of the approaches to measure the goodness of fit for multiple

regression models is to perform residual analysis (143). Moreover, many procedures of

regression analysis overlap with those of machine learning. Therefore, several machine

learning evaluation methods are also useful to evaluate regression models. Some of

these evaluation methods for machine learning are explained in the next chapter.
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Support vector machine

The support vector machine (SVM) is a machine learning technique that has been

applied in numerous bioinformatics domains successfully in recent years (156). We

used SVM as a machine learning model to achieve the first sub-goal of our research:

miRNA target prediction. We built a binary classification model with both linear and

non-linear approaches. Binary classification predicts only two class labels, positive/true

or negative/false. This chapter describes the theoretical background for SVM, and data

preparation and evaluation methods mainly for binary classification, followed by other

machine learning algorithms for comparison.

6.1 Machine learning: Supervised and Unsupervised

Machine learning (ML) techniques have two major paradigms, supervised and unsu-

pervised learning. Supervised learning is used for discriminant analysis and regression

analysis (157), and it requires a training process. The training data consists of multi-

ple feature vectors and the class labels. The main purpose of the training process is

to make a classifier that can predict appropriate class labels from the feature vectors

of the test data. The test data consists of the same feature vectors as in the training

data, but it has no class labels. Unsupervised learning requires no training process,

and it categorizes unlabeled data. The main application of unsupervised learning is

clustering. The aim of clustering is to divide the data into groups (clusters) using some
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measures of similarity (157).

6.2 SVM: Theory

SVM is a state-of-the-art supervised machine learning method introduced by Boser,

Guyon, and Vapnik in 1992 (158). SVM is a linear binary classification method based

on the Structural Risk Minimization (SRM) principle (159). Two essential ideas of

SRM are the bound on the generalization performance of a learning machine and the

Vapnik Chervonenkis (VC) dimension (160).

The aim of SRM is to find a hypothesis h that has the guaranteed lowest probability

of error Err(h) from a hypothesis space H (161). In other words, SRM finds the best

machine learning model, α, that has lowest test error rate, R(α), where R(α) is equiv-

alent with Err(h). The upper bound of the test error can guarantee the performance

of a learning machine, and the bound holds with a probability of at least 1 − η for a

given training sample with n examples (162):

R(α) ≤ Remp(α) +

√
d(log(2n/d) + 1)− log(η)

4
, (6.1)

where Remp(α) is a training error rate, and d is a VC dimension.

The VC dimension is a measure of capacity for the data point separation by hyper-

planes, and this separation is called shattering. A hyperplane in Euclidean space can

separate the space into two half spaces, and it is a subset of n − 1 dimension for an

n-dimensional space. For example, a straight line is a hyperplane of a two-dimensional

Euclidean space, whereas a flat-plane is a hyperplane of a three-dimensional Euclidean

space. The VC dimension varies depending on the selection of a machine learning

model. For example, the VC dimension of the set of oriented hyperplanes in Rn is

n+ 1 for a simple linear binary classifier, such as perceptron. Accordingly, Eq. 6.1 re-

flects a trade-off between the training error, Remp(α), and the complexity of hypothesis

space estimated by the VC-dimension of a learning machine (161).

SVMs solve this trade-off problem by keeping the VC-dimension low through max-

imizing the margin of boundaries. A SVM can be defined as a linear binary classifier:

f(x) = sign(wTx + b) =

{
+1 if wTx + b > 0
−1 else

, (6.2)
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where w is a weight vector and b is a threshold. The margin of this classifier, δ, is a

length between a boundary hyperplanes, either wTx + b = +1 or wTx + b = −1, and

the optimal hyperplane, wTx + b = 0. The margin is calculated as:

δ =
1

||w||
. (6.3)

Vapnik proved that the VC dimension d for such a classifier defined in Eq. (6.2) is

bounded by (159):

d ≤ min

([
R2

δ2

]
, N

)
+ 1, (6.4)

when this classifier is in an N dimensional space, and all example vectors, x1, · · · ,xn,

are inside a ball of diameter R. It indicates that a SVM classifier keeps the VC-

dimension lower by maximizing the margin of the boundaries between two hyperplanes.

This is the mathematical background to guarantee that SVM has an upper bound of

the test error rate even with very large feature vectors since the number of feature

vectors has very small influence on the VC-dimension with SVM.

6.3 SVM: Linear SVM

The aim of SRM is to find an optimal hyperplane than can maximize the right term of

Eq. (6.1). SVM is based on SRM, and its solution is to make a classifier as Eq. (6.2)

with the maximum margin of Eq. (6.3). In other words, from many boundaries that

can separate two classes (Fig. 6.1A), the SVM finds the optimal hyperplane where the

margin of the boundary between two hyperplanes, wTx + b = +1 and wTx + b = −1

becomes the maximum (Fig. 6.1B). Because it is difficult to solve this maximum margin

problem directly, this problem is usually translated into the quadratic optimization

problem (161). Quadratic programming (QP) is a class of optimization algorithms to

either minimize or maximize a quadratic function subject to linear constrains. For

SVM, finding a solution in the prime form of QP defined in Eq. (6.5) is equivalent to

finding the optimal hyperplane with the maximum margin. The training data of this

SVM are (xi, yi) for ∀i where xi is a feature vector with N dimensions as xi ∈ RN ,

and yi is a class label as yi ∈ {−1,+1}.

minimize
w,b

1

2
||w||2

subject to : yi(w
Txi + b) ≥ 1,∀i.

(6.5)
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Figure 6.1: SVM hyperplanes and maximum margin - The figure shows the re-

lationship between hyperplanes and the maximum margin of SVM. Red circle and blue

square dots represent data points with negative and positive labels. (A) Many hyperplanes

can separate two classes. (B) Three lines represent hyperplanes with the optimal hyper-

plane in the middle. The margin is a distance between two hyperplanes, wTx + b = +1

and wTx + b = −1. w is a weight vector.
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6.4 SVM: Non-linear SVM

However, this prime form of QP (Eq. 6.5) is still numerically difficult to handle

(161), therefore, it can be further transformed into the dual form:

maximize
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

subject to :
n∑
i=1

yiαi = 0, 0 ≤ αi
(6.6)

Support vectors are vectors such that their corresponding α values are non-zero in this

dual form. SVMs only use these support vectors when classifying the test data. The dot

product of xT
i xj can be used for the kernel trick that enables SVMs to solve non-linear

problems (163).

In many cases, SVMs can find no hyperplanes that separate two classes, therefore,

the slack variables, ξ, are introduced to allow some misclassified data points (161). The

SVM with ξi is called a soft-margin SVM (164), and its prime form is:

minimize
w,b

1

2
||w||2 + C

n∑
i=1

ξi

subject to : yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, ∀i,

(6.7)

where C is the cost factor that controls the training error rate. Small C allows many

misclassified points (Fig. 6.2A), whereas large C allows few misclassified points between

the boundaries (Fig. 6.2B).

6.4 SVM: Non-linear SVM

SVMs can use a kernel function to solve non-linear problems. When the feature vec-

tors are mapped to a high dimensional (>d) feature space, H, from the original d-

dimensional feature space, Rd, a non-linear separation in Rd becomes a linear separa-

tion in H (Fig. 6.3) (165). The non-linear mapping function is defined as:

Φ : Rd 7→ H. (6.8)

The dot product, xT
i xj , in Eq. (6.6) can be replaced by a kernel function defined as:

K(xi,xj) = Φ(xT
i ) · Φ(xj). (6.9)
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Figure 6.2: Linear kernel with soft margin - The figure shows two examples of

different soft margin constants. Red circle and blue square dots represent data points

with negative and positive labels, respectively. Three lines represent hyperplanes with the

optimal hyperplane in the middle. The gray scale in the background indicates discriminant

values. The darker indicates the smaller in negative values, whereas the lighter indicates

the greater in positive values. (A) C = 1. (B) C = 250. In this example, SVM(A), the

SVM in panel A, misclassifies one point, whereas SVM(B), the SVM in panel B, classifies

all points correctly. However, SVM(A) found a better hyperplane between the overall

trends in circle and square classes than SVM(B). SVM(B) has a much smaller margin to

the circle class than SVM(A).
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6.5 Classifier evaluation: Confusion matrix and Receiver operating
characteristics

Two commonly used non-linear kernel functions (157) are Gaussian Radial Basis

Function (RBF):

K(xi,xj) = exp(−γ||xi − xj ||2), (6.10)

and Polynomial:

K(xi,xj) = (xT
i · xj + 1)d. (6.11)

These functions are applicable as SVM kernel functions because they can be cast in

terms of dot products in Eq. (6.9) (166). Gaussian RBF has a parameter, gamma

γ, and Polynomial has a parameter, degree d. These parameters are called kernel

parameters, and their optimal values are usually unknown. A common practice to find

optimal values for the kernel parameters is to use k-fold cross validation.

Figure 6.3 shows four examples of both Gaussian RBF and Polynomial in two-

dimensional space. The gamma parameter in Gaussian RBF represents an RBF width,

which is sometimes referred to as 1/2σ2, and a larger value means a smaller radius.

For example, Figure 6.3A has gamma 0.5, and it is less specific and has a larger radius

than Figure 6.3B with gamma 4.0. The degree parameter d in Polynomial is a degree

in a polynomial function, as in f(x) = adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0. Figure

6.3C and D show Polynomial kernels with degree 2 and 3, respectively.

6.5 Classifier evaluation: Confusion matrix and Receiver

operating characteristics

A binary classification is a type of classifications that predicts two class labels. To

evaluate the performance of a binary classification model, one approach is to use the

performance measures derived from the 2×2 confusion matrix that shows four possible

outcomes with actual and predicted values (Table 6.1) (167). Another approach is

to use Receiver operating characteristics (ROC) (168). The confusion matrix requires

only outcome labels as True or False, whereas ROC requires both outcome labels and

discriminant values.

Standard performance measures that are derived from the confusion matrix are Ac-

curacy (ACC), Error rate (ERR), Sensitivity (SN), Specificity (SP), Positive predictive

value (PPV), and Negative predictive value (NPV), and their equations are summa-

rized in Table 6.2. SN, SP, and PPV are also equivalent to True positive rate (TPR),

True negative rate (TNR), and Precision (PRC), respectively.
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Figure 6.3: Non-linear kernels - The figure shows four examples of two different non-

linear kernel functions in two-dimensional space. Each kernel has two plots with different

parameter values. Red circle and blue square dots represent data points with negative and

positive labels, respectively. Three lines represent hyperplanes with the optimal hyperplane

in the middle. The gray scale in the background indicates discriminant values. The darker

indicates the smaller in negative values, whereas the lighter indicates the greater in positive

values. The cost factor C is 10 for all four kernels. (A) Gaussian RBF with γ = 0.5. (B)

Gaussian RBF with γ = 4.0. (C) Polynomial with d = 2. (D) Polynomial with d = 3.
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6.5 Classifier evaluation: Confusion matrix and Receiver operating
characteristics

Table 6.1: Confusion matrix - The table shows four possible outcomes of binary clas-

sification.

Actual value

Positive (P) Negative (N)

Prediction Positive True Positive (TP) False Positive (FP)

outcome Negative False Negative (FN) True Negative (TN)

Table 6.2: Performance measures from confusion matrix - The table shows the

term and equation of six performance measures from the confusion matrix.

Performance measure Equation

Accuracy (ACC) (TP + TN) / (P + N)

Error rate (ERR) (FP + FN) / (P + N)

Sensitivity (SN) TP / P

Specificity (SP) TN / N

Positive predictive value (PPV) TP / (TP + FP)

Negative predictive value (NPV) TN / (TN + FN)
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A ROC graph is a plot that shows False Positive Rate (FPR) or 1 - SP on the x

axis and TPR on the y axis (Fig. 6.4). Many classifiers produce scores or discriminant

values that can be used to adjust TPR and FPR. A ROC graph uses these adjusted

TPR and FRP to draw curves by changing the threshold values of the scores. A single

ROC point is drawn if a classifier has no such adjustment mechanism. A ROC graph

contains all information in the confusion metrics, since FN is the complement of TP,

and TN is the complement of FP (168). The area under the ROC curve (AUC) is

a performance measure to evaluate the ROC curves. The AUC indicates a perfect

prediction and a random prediction when it is 1.0 and 0.5, respectively (Fig. 6.4A). In

many cases, the ROC with AUC is a more adequate method to evaluate the classifier

performance than single-number measures, such as Accuracy (ACC) (169, 170).

It is also important to evaluate the trend of ROC curves. For instance, Figure

6.4B shows two classifiers, Classifier1 and Classifier2, that yield the same AUC scores.

Classifier1 is a better classifier despite the same AUC values, because it has a better

early retrieval performance, which means it has higher TPR when its SP is also high.

The area marked orange in Figure 6.4B is the important region to estimate the early

retrieval performance. Two variants of ROC, ROC50 (171) and concentrated ROC

(CROC) (172) are especially useful when measuring the early retrieval performance.

They are similar to evaluating the ROC curves in the high SP area as in Figure 6.4B,

however, the AUC values of ROC50 and CROC can directly indicate the early retrieval

performance.

6.6 Training and Test data: Single dataset hold-out and

k-fold cross validation

Supervised learning requires a test dataset for performance evaluation. A common

problem in machine learning is overfitting, where the model overfits the training data,

and it is generalized poorly to unseen data. Therefore, elaborate test procedures are

important to maximize the performance and avoid overfitting simultaneously. Two

major approaches to separate the test data set from the training data set are single

dataset hold-out and k-fold cross validation.

The single dataset hold-out testing is the simplest and most intuitive way to make

a test dataset. The sample Sn is divided randomly into two parts, Sl for training and

48



6.6 Training and Test data: Single dataset hold-out and k-fold cross
validation
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Figure 6.4: ROC curves and AUC scores - The figures show six ROC curves with

corresponding AUC scores and an example ROC plot with two classifiers. (A) The best

AUC score is 1, and the worst score is 0. The random guess would yield the AUC score 0.5,

and the predictions are opposite to expected when the AUC score is between 0 and 0.5.

Six ROC curves have different AUC scores between 0.5 and 1.0 to show different prediction

performances. (B) Two classifiers, Classifier1 and Classifier2 have the same AUC scores.

The orange area in the left part of the plot indicates the critical area on evaluating ROC

curves in terms of the early retrieval performance.
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Sk for testing, where the sample size n is equal to l + k (161). Sk is treated as an

independent testset, and it should never be used for training. Selecting values of l and

k is a trade off, because larger l results in smaller bias of the classifier, and smaller k

increases the variance for the evaluation (161).

Cross validation is the most popular method because the whole dataset is trained

and tested. There are several versions of the cross validation approach. Leave-one-out

is a good performance estimator in many cases, but it demands very high computational

power and it is also sensitive to the data structure. With leave one-out, one data point

is removed from the training dataset for testing, and the test procedure continues until

each data point is tested. To reduce the computational time, k-fold cross validation is

commonly used instead of the leave-one-out approach. In k-fold cross validation, the

training set is partitioned into k folds. One fold from the k folds is used as the test

dataset, where the remaining dataset with k-1 folds is used for training (161). 10-fold

cross validation with k = 10 is widely used for the performance evaluations of classifiers.

Analyzing unbalanced datasets is very common in bioinformatics. For example,

some datasets are dominated by negative records with very few positive records, there-

fore the positive:negative ratio is unbalanced. Unbalanced datasets can present a chal-

lenge for any machine learning algorithm to achieve good performance (173, 174). SVM

can deal with unbalanced data by assigning different soft-margin constants to each class

label (175). However, it is important to consider this imbalance when making training

and test datasets. One approach to solve this imbalance is to use stratification. For

example, a stratified k-fold cross validation selects k-fold datasets by sampling data

from each subpopulation (stratum), which is a subset of the data with the same class

label, independently.

6.7 SVM: Data pre-processing

It is important to process data before training and testing. Two common approaches

that may improve the SVM performance are categorical data conversion and scaling.

SVM requires numerical feature vectors, therefore, categorical data need to be

transformed. SVM usually achieves better performance when using m feature vector

components to represent an m-category feature instead of a single component (176).

50



6.8 SVM: Model selection

For example, a feature for a single RNA nucleotide {A,C,G,U} can be represented as

(0,0,0,1), (0,0,1,0), (0,1,0,0) and (1,0,0,0).

Scaling is very important for various machine learning algorithms including SVM

(177). Two common ways of scaling are linear scaling (176) and standardizing (175).

With the linear scaling, all vector components are linearly transferred into the same

range, for example, [-1, +1] or [0, 1], whereas with the standardizing, they are normal-

ized by their mean and standard deviation.

6.8 SVM: Model selection

The optimization of a classifier is an important phase to maximize the classifier perfor-

mance. A common practice of model selection with SVM is to evaluate the classifier

performance with different kernels and their corresponding parameters. The linear ker-

nel has only one parameter, the soft-margin C, but non-linear kernels tend to have more

parameters. The standard method of parameter optimization with two parameters is

via grid-search (178). For example, the Gaussian kernel has two parameters (C, γ), and

the grid-search is performed by gradually changing the values of both parameters.

6.9 SVM: Multiclass and Regression

In some cases, classifications involve more than two classes. Although some machine

learning algorithms are strictly limited to binary classification, there are several SVM

approaches that can handle multi-class problems (179). One example of such SVM

multi-class approaches is a one-against-the-rest strategy (161). This strategy decom-

poses a multi-class problem into multiple independent binary classifications (179).

A version of SVM for regression is called Support Vector Regression (SVR) (163).

The major difference between SVM and SVR is that the labels are real numbers for

SVR rather than categorical data. The optimization problem of SVR is very similar to

that of SVM with the prime form as:

minimize
w,b

1

2
||w||2

subject to :

{
wTxi + b− yi ≤ ε
yi −wTxi − b ≤ ε

,
(6.12)
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where ε is used to control the errors. SVR can also be transformed to the dual form

and handle soft-margin and kernel functions (163).

6.10 Other supervised learning algorithms: Decision tree,

Artificial neural network, Naive Bayesian, and k-

nearest neighbor

Some popular and widely used supervised learning algorithms are Decision tree (180),

Artificial Neural Network (ANN) (181), Naive Bayes (NB) (182), and k-nearest neigh-

bor (k-NN) (183). These four algorithms are often used for comparisons with SVM,

and they are also introduced as supervised learning algorithms together with SVM

(157, 161, 165, 184, 185).

Decision tree learning uses a tree-like hierarchical graph with multiple nodes. Three

different types of nodes are the root as the first node, internal nodes, and the leaves

as terminal nodes. A predicted class label can be obtained when the decision mak-

ing process reaches a leaf, because each leaf contains a probability distribution over

the class labels as the results of training (186). Some learning algorithms, such as

Random Forests (187), can combine multiple decision trees. The Random Forests al-

gorithm makes many different decision trees randomly, and it predicts the class labels

by combing the outputs of these decision trees (186).

ANN is a machine learning method that is inspired by the structure and functional-

ities of biological neural networks in the brain (165, 188). The central nervous system

(CNS) in the brain has interconnected networks of neurons that communicate among

each other by sending electric pulses through axons, synapses and dendrites. ANN

consists of nodes, or “neurons”, that are connected together to form a network that

mimics the network in the CNS. The single layered perceptron, which is the simplest

form of ANN, is a simple feedforward network (189). The single layered perceptron

can only solve linearly separable problems (188). The multi-layered perceptron has

been developed to solve non-linear problems (181), and it has an input layer, an output

layer, and one or more hidden layers in-between. The multi-layered perceptron with the

error back-propagation method (190), which is an algorithm that aims at optimizing

the weight values by minimizing the errors from the output layer to the hidden layers,

enables fairly complex neural networks to solve non-linear problem (181).
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6.10 Other supervised learning algorithms: Decision tree, Artificial neural
network, Naive Bayesian, and k-nearest neighbor

The NB classifier is a type of statistical learning algorithm. To obtain the proba-

bility model of a class variable C, NB uses Bayes’ theorem:

p(C|X1, ..., Xn) =
p(C)p(X1, ..., Xn|C)

p(X1, ..., Xn)
, (6.13)

and it assumes that all feature variables, X1, ..., Xn are independent. The numerator

of Eq. (6.13) is equivalent to the joint probability model, p(C,X1, ..., Xn), which can

be expressed as p(C)
∏n
i=1 p(Xi|C) by the definition of conditionally probability when

X1, ..., Xn are independent. Since the denominator of Eq. (6.13) can be considered as

constant, the probability model for a classifier is p(C|X1, ..., Xn) ∝ p(C)
∏n
i=1 p(Xi|C).

It is easy to calculate the probabilities for the classes from training with this model

especially when it is log transformed. The assumption of independence of feature

variables is almost always wrong, therefore NB classifiers are usually considered as less

accurate (165). Nonetheless, despite its naive and over simplified assumptions, NB

classifiers outperform other sophisticated learning algorithms in some cases (184, 191).

k-NN is an instance-based learning algorithm, which delays the induction or gen-

eralization process until the classification phase (165). When a data point needs to be

classified, the distances of the data point from all the training data points are calcu-

lated. Subsequently, all the training points are sorted by the calculated distance, and

the label that is the most frequent in top k points is selected as output (157). k-NN

is very simple, and it can use any type of distance metrics, such as Euclidean, Man-

hattan, and Minkowsky (165). However, it is computationally inefficient in some cases

especially when the data size is large because k-NN requires to calculate the lengths at

each time of classification.

Both SVM and ANN tend to perform better on data with multi-dimensions and

continuous features, but they require large sample size to achieve high accuracy. NB

works well with relatively small sample size, but it requires strong (naive) independence

assumptions. Decision tree learning performs well with classifying categorical data

(165). It is usually based on a heuristic algorithm, and it fails to find optimal solutions

in some cases. k-NN is very simple to understand and interpret, but it is sensitive to

irrelevant features (165).
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7

Computational implementation

This chapter gives an overview of the computational implementation approaches used

in our research. We mainly used Python for general programming, and R for statistical

programming and analysis. This chapter also briefly gives additional information about

software development methodologies and data storage.

7.1 Software development methodologies: Rapid applica-

tion development and Test-driven development

Many conventional software development methodologies, such as variants of the wa-

terfall method (192), require strict documentation at the design phase, and full imple-

mentation rather than prototyping in the implementation phase. A waterfall method

is a sequential design process flowing steadily downwards through the phases of the

software development life cycle. These strict and non-flexible software development

phases of conventional methodologies led to many failed system development projects

in the 1980s and early 1990s, especially in large-scale projects. Rapid application de-

velopment (RAD) (193) is a relatively new software development methodology, which

aims to decrease the complexity of implementation and increase the speed of applica-

tion development. There are many types of RADs, such as Scrum (194), Agile software

development (Agile) (195), and Extreme Programming (XP) (196). Most of them focus

on simplifying each phase and reducing the duration of the software development cycle.

One of the most suitable RADs for small or mid-size bioinformatics projects is Test-

driven development (TDD) (197), which is equivalent to the test-first programming
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concepts of XP. TDD enforces the creation of unit tests before actual coding. Al-

though full compliance to TDD is not necessary, making as many unit tests as possible

with mock data can ensure high reliability of the application.

7.2 Programming languages: Object-oriented program-

ming and Python

The most popular programming paradigm today is object-oriented programming (OOP).

OOP uses “objects” defined by corresponding “classes”. Objects are actual data with

data structure and procedures, whereas classes are definitions or templates to make

objects. Many programming languages currently support full or partial OOP, and

some of the popular ones are C++, Java, Perl, and Python. All of these programming

languages are freely available (Table 7.1), and they are widely used in bioinformatics

analysis. Table 7.1 also shows two additional languages Haskell and Go, as exam-

ples of functional programming and concurrent programming paradigms, though these

paradigms are less common than OOP in general.

Table 7.1: Programming languages - The table shows a list of freely available pro-

gramming languages. “program”, “type”, and “URL for software environment” represent

the name of programming language, the name of programming paradigm, and the URL

for downloading software environment, respectively. OOP, Func, Conc in the “type” col-

umn represents three different programming paradigms: object-oriented, functional, and

concurrent programming, respectively.

Program Type URL for software environment

C++ (GNU) OOP http://gcc.gnu.org

Java (Oracle) OOP http://www.oracle.com/technetwork/java

Perl OOP http://www.perl.org

Python OOP http://www.python.org

Haskell Func http://www.haskell.org

Go Conc http://golang.org

Among them, Python has emerged as one of the most popular languages in bioin-

formatics. Python requires no static type checking, which enhances the productivity

with the RAD approach. It also offers multiple programming paradigms, therefore,
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7.3 Statistical programming languages: R and other statistical computing
languages

it can use both object-oriented and functional programming in the same module, for

instance. Moreover, Python offers two very powerful libraries for scientific comput-

ing: NumPy (http://numpy.scipy.org) and SciPy (http://www.scipy.org). BioPy-

thon (http://biopython.org) provides a set of libraries for biological computation to

Python. A machine learning package for Python called PyML provides useful functions

to build and test a SVM model (175). We mainly used PyML to build our two-step

SVM model for miRNA target prediction.

7.3 Statistical programming languages: R and other sta-

tistical computing languages

Some programming languages are specialized for statistical computing and graph-

ics. For instance, SAS, SPSS, STATA, and R support software environments for sta-

tistical computing, whereas MATLAB and Mathematica are languages that provide

statistical features. Among them, only R is open source software and freely avail-

able (Table 7.2). Moreover, R provides many additional libraries and also a com-

prehensive framework for high-throughput genome data analysis, called Bioconductor

(http://www.bioconductor.org), hence, it is the most popular statistical computing

language for bioinformatics today.

Table 7.2: Programming languages for statistical analysis - The table shows a list

of programming languages that can be used for statistical analysis. “program”, license”,

and “URL” represent the name of programming language, the type of license, and the URL

for organizations or institutes that provide the software, respectively.

Program License URL

SAS proprietary http://www.sas.com

SPSS proprietary http://www.spss.com

STATA proprietary http://www.stata.com

R open source http://www.r-project.org

MATLAB proprietary http://www.mathworks.com/products/matlab

Mathematica proprietary http://www.wolfram.com/mathematica
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7.4 Data storage: Text files and MySQL

Handling the large size data from experiments with high-throughput technologies usu-

ally requires a method for effective data retrieval and manipulation. The easiest ap-

proach is using a text file with user-defined or pre-defined format. Some examples of

popular pre-defined formats in bioinformatics are FASTA for nucleotide and peptide

sequences, GFF (general feature format) for positional information with additional

features in genome, and MAF (multiple alignment format) for multiple alignments.

A relational database (RDB) (198) management system offers more elaborate data

storage mechanisms than simple text files. In RDB, data are usually accessed through

the structured query language (SQL), and all data are stored in multiple tables. MySQL

is the most popular freely available RDB used by bioinformatics projects, but other

free RDBs, such as PostgreSQL or Postgres, and SQLite, are also widely used (Table

7.3).

Table 7.3: Relational databases - The table shows a list of relational and NoSQL

databases. 1PostgreSQL Global Development Group. 2SQLite Consortium. 3Google App

Engine provides BigTable accessibility.

Name Type Provider URL

MySQL RDB Oracle http://www.mysql.com

PostgreSQL RDB PGDG1 http://www.postgresql.org

SQLite RDB SQLite Cons2 http://www.sqlite.org

MongoDB NoSQL 10gen http://www.mongodb.org

BigTable NoSQL Google http://code.google.com/appengine3

SimpleDB NoSQL Amazon http://aws.amazon.com/simpledb

In RDB, the data in multiple tables are “joined” when retrieving them together.

All RDB management systems have very poor performance with joining tables at tera-

or peta- byte level. Therefore, NoSQL database management systems have emerged to

control data even at peta byte level. NoSQL usually avoids SQL usage and relational

tables. Many NoSQL systems are available today, and some popular NoSQLs are

MongoDB, Google BigTable (199), and Amazon SimpleDB (Table 7.3).

Even though handling data at tera byte level is important as more sequence data
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7.4 Data storage: Text files and MySQL

from the next generation sequencing become available, many programming languages

currently lack easy-to-use libraries to access NoSQL management systems. Therefore,

using both text files and RDBs rather than NoSQL is still a major practice in bioin-

formatics.
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Future perspectives

This chapter gives potential improvements in context of the three sub-goals of our

research. Many further perspectives are covered in the papers, therefore, this section

covers only additional perspectives that are not discussed in the papers.

Firstly, for miRNA target prediction, it is important to improve the computational

speed of our two-step SVM model at the classification phase. A current computational

limitation of our model at classification is mainly caused due to its usage of non-

linear kernel at the second or global level. Therefore, optimizing the second level

classifier with a linear kernel is a simple solution to improve the computational speed

at the classification phase. Moreover, training a SVM model with AGO pull-down

data is simple, but it can be a very effective approach. However, existing AGO pull-

down experiments provide no information regarding difference of miRNA binding sites

between controls and transfected samples, therefore some scores, such as log-ratio values

in microarray, need to be calculated for SVM training.

Secondly, the results from our study in miRNA high-throughput experiments can

potentially improve other studies in both miRNA target prediction and miRNA and

other ncRNAs because they mainly rely on the data from microarray, proteomics, and

next generation sequencing for their model building and statistical analysis. Further

interesting work can be an expansion of the analysis with different types of data, such

as expression profiles of NCI-60 microarray data sets or time points data.

Thirdly, understanding of ncRNAs characteristics and their interactions with miR-

NAs becomes more important because ncRNA:ncRNA interactions are likely involved
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8. FUTURE PERSPECTIVES

in many gene regulations. In addition to cis-NATs and CARs, it is interesting to expand

the same approach to other types of ncRNAs, such as long ncRNAs.

In conclusion, using data from next generation sequencing as well as considering

the results from miRNA high-throughput experiments is most likely to enhance other

studies in both miRNA target prediction and miRNA and other ncRNAs.
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