Dataset Open Access

Robust Chest CT Image Segmentation of COVID-19 Lung Infection based on limited data

Dominik Müller; Iñaki Soto Rey; Frank Kramer


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">COVID-19</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">segmentation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">computed tomography</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">deep learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">artificial intelligence</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">clinical decision support</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">medical image analysis</subfield>
  </datafield>
  <controlfield tag="005">20210531134812.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Code: https://github.com/frankkramer-lab/covid19.MIScnn</subfield>
  </datafield>
  <controlfield tag="001">4875738</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IT-Infrastructure for Translational Medical Research, Faculty of Applied Computer Science, Faculty of Medicine, University of Augsburg, Germany</subfield>
    <subfield code="0">(orcid)0000-0003-3061-5818</subfield>
    <subfield code="a">Iñaki Soto Rey</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IT-Infrastructure for Translational Medical Research, Faculty of Applied Computer Science, Faculty of Medicine, University of Augsburg, Germany</subfield>
    <subfield code="0">(orcid)0000-0002-2857-7122</subfield>
    <subfield code="a">Frank Kramer</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">662048089</subfield>
    <subfield code="z">md5:74c65427c595986c41d74ed5b1ee9bfc</subfield>
    <subfield code="u">https://zenodo.org/record/4875738/files/evaluation.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2524272040</subfield>
    <subfield code="z">md5:20ac6f5186d7e98edbd54bc547d50ad6</subfield>
    <subfield code="u">https://zenodo.org/record/4875738/files/models.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">17639032</subfield>
    <subfield code="z">md5:3fb40f3f9c05f224ec22421a7b9ad450</subfield>
    <subfield code="u">https://zenodo.org/record/4875738/files/predictions.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4260382</subfield>
    <subfield code="z">md5:2a67cc8a134b7f89996e1321e4465402</subfield>
    <subfield code="u">https://zenodo.org/record/4875738/files/supplementary.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-05-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-covid-19</subfield>
    <subfield code="p">user-zenodo</subfield>
    <subfield code="o">oai:zenodo.org:4875738</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">IT-Infrastructure for Translational Medical Research, Faculty of Applied Computer Science, Faculty of Medicine, University of Augsburg, Germany</subfield>
    <subfield code="0">(orcid)0000-0003-0838-9885</subfield>
    <subfield code="a">Dominik Müller</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Robust Chest CT Image Segmentation of COVID-19 Lung Infection based on limited data</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-covid-19</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-zenodo</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Background:&lt;/strong&gt; The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare. For quantitative assessment and disease monitoring medical imaging like computed tomography offers great potential as alternative to RT-PCR methods. For this reason, automated image segmentation is highly desired as clinical decision support. However, publicly available COVID-19 imaging data is limited which leads to overfitting of traditional approaches.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Methods:&lt;/strong&gt; To address this problem, we propose an innovative automated segmentation pipeline for COVID-19 infected regions, which is able to handle small datasets by utilization as variant databases. Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods and exploiting extensive data augmentation. For further reduction of the overfitting risk, we implemented a standard 3D U-Net architecture instead of new or computational complex neural network architectures.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Results:&lt;/strong&gt; Through a k-fold cross-validation on 20 CT scans as training and validation of COVID-19, we were able to develop a highly accurate as well as robust segmentation model for lungs and COVID-19 infected regions without overfitting on limited data. We performed an in-detail analysis and discussion on the robustness of our pipeline through a sensitivity analysis based on the cross-validation and impact on model generalizability of applied preprocessing techniques. Our method achieved Dice similarity coefficients for COVID-19 infection between predicted and annotated segmentation from radiologists of 0.804 on validation and 0.661 on a separate testing set consisting of 100 patients.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Conclusions:&lt;/strong&gt; We demonstrated that the proposed method outperforms related approaches, advances the state-of-the-art for COVID-19 segmentation and improves robust medical image analysis based on limited data.&lt;/p&gt;

&lt;p&gt;The code and model are available under the following link:&lt;br&gt;
https://github.com/frankkramer-lab/covid19.MIScnn&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isSupplementTo</subfield>
    <subfield code="a">https://github.com/frankkramer-lab/covid19.MIScnn</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3902292</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4875738</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
3,684
724
views
downloads
All versions This version
Views 3,684687
Downloads 72427
Data volume 927.9 GB19.4 GB
Unique views 3,166565
Unique downloads 35321

Share

Cite as