Preprint Open Access

A finite state projection method for steady-state sensitivity analysis of stochastic reaction networks

Dürrenberger, Patrik; Gupta, Ankit; Khammash, Mustafa


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/fa809d70-8e7e-4d27-8027-2d6011e44952/Duerrenberger%20et%20al%202018.pdf"
      }, 
      "checksum": "md5:a42fa945e003656a0f8bfbc794fe21f9", 
      "bucket": "fa809d70-8e7e-4d27-8027-2d6011e44952", 
      "key": "Duerrenberger et al 2018.pdf", 
      "type": "pdf", 
      "size": 960582
    }
  ], 
  "owners": [
    44090
  ], 
  "doi": "10.1063/1.5085271", 
  "stats": {
    "version_unique_downloads": 4.0, 
    "unique_views": 3.0, 
    "views": 3.0, 
    "version_views": 3.0, 
    "unique_downloads": 4.0, 
    "version_unique_views": 3.0, 
    "volume": 3842328.0, 
    "version_downloads": 4.0, 
    "downloads": 4.0, 
    "version_volume": 3842328.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1063/1.5085271", 
    "latest_html": "https://zenodo.org/record/4839189", 
    "bucket": "https://zenodo.org/api/files/fa809d70-8e7e-4d27-8027-2d6011e44952", 
    "badge": "https://zenodo.org/badge/doi/10.1063/1.5085271.svg", 
    "html": "https://zenodo.org/record/4839189", 
    "latest": "https://zenodo.org/api/records/4839189"
  }, 
  "created": "2021-05-28T22:05:06.205174+00:00", 
  "updated": "2021-05-30T02:20:46.462140+00:00", 
  "conceptrecid": "4839188", 
  "revision": 3, 
  "id": 4839189, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1063/1.5085271", 
    "description": "<p><strong>Abstract</strong></p>\n\n<p>Consider the standard stochastic reaction network model where the dynamics is given by a continuous-time Markov chain over a discrete lattice. For such models, estimation of parameter sensitivities is an important problem, but the existing computational approaches to solve this problem usually require time-consuming Monte Carlo simulations of the reaction dynamics. Therefore, these simulation-based approaches can only be expected to work over finite time-intervals, while it is often of interest in applications to examine the sensitivity values at the steady-state after the Markov chain has relaxed to its stationary distribution. The aim of this paper is to present a computational method for the estimation of steady-state parameter sensitivities, which instead of using simulations relies on the recently developed&nbsp;<em>stationary finite state projection</em>algorithm [Gupta&nbsp;<em>et al.</em>, J. Chem. Phys.&nbsp;<strong>147</strong>, 154101 (2017)] that provides an accurate estimate of the stationary distribution at a fixed set of parameters. We show that sensitivity values at these parameters can be estimated from the solution of a Poisson equation associated with the infinitesimal generator of the Markov chain. We develop an approach to numerically solve the Poisson equation, and this yields an efficient estimator for steady-state parameter sensitivities. We illustrate this method using several examples.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "A finite state projection method for steady-state sensitivity analysis of stochastic reaction networks", 
    "journal": {
      "volume": "150", 
      "issue": "13", 
      "title": "The Journal of Chemical Physics"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4839188"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4839189"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "743269", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::743269"
        }, 
        "title": "Cybergenetics: Theory and Design Tools for Biomolecular Control Systems", 
        "acronym": "CyberGenetics", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "766840", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::766840"
        }, 
        "title": "Control Engineering of Biological Systems for Reliable Synthetic Biology Applications", 
        "acronym": "COSY-BIO", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "communities": [
      {
        "id": "cosy-bio"
      }
    ], 
    "publication_date": "2021-03-01", 
    "creators": [
      {
        "affiliation": "Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland", 
        "name": "D\u00fcrrenberger, Patrik"
      }, 
      {
        "affiliation": "Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland", 
        "name": "Gupta, Ankit"
      }, 
      {
        "affiliation": "Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland", 
        "name": "Khammash, Mustafa"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "preprint", 
      "type": "publication", 
      "title": "Preprint"
    }
  }
}
3
4
views
downloads
Views 3
Downloads 4
Data volume 3.8 MB
Unique views 3
Unique downloads 4

Share

Cite as