Conference paper Open Access

Characterization of Biologically Relevant Network Structures form Time-series Data

Tuza, Zoltan A.; Stan, Guy-Bart


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20210530022049.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This is a preprint of the conference paper published in "2018 IEEE Conference on Decision and Control (CDC)"</subfield>
  </datafield>
  <controlfield tag="001">4837513</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">17-19 Dec. 2018</subfield>
    <subfield code="a">2018 IEEE Conference on Decision and Control (CDC)</subfield>
    <subfield code="c">Miami, FL</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Bioengineering Department at Imperial College London, London, United Kingdom</subfield>
    <subfield code="a">Stan, Guy-Bart</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">259708</subfield>
    <subfield code="z">md5:08840ba9f0078f63660d87761232ae8b</subfield>
    <subfield code="u">https://zenodo.org/record/4837513/files/Characterization_of_Biologically_Relevant_Network_.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-01-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-cosy-bio</subfield>
    <subfield code="o">oai:zenodo.org:4837513</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Bioengineering Department at Imperial College London, London, United Kingdom</subfield>
    <subfield code="a">Tuza, Zoltan A.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Characterization of Biologically Relevant Network Structures form Time-series Data</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-cosy-bio</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">766840</subfield>
    <subfield code="a">Control Engineering of Biological Systems for Reliable Synthetic Biology Applications</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;High-throughput data acquisition in synthetic biology leads to an abundance of data that need to be processed and aggregated into useful biological models. Building dynamical models based on this wealth of data is of paramount importance to understand and optimize designs of synthetic biology constructs. However, building models manually for each data set is inconvenient and might become infeasible for highly complex synthetic systems. In this paper, we present state-of-the-art system identification techniques and combine them with chemical reaction network theory (CRNT) to generate dynamic models automatically. On the system identification side, Sparse Bayesian Learning offers methods to learn from data the sparsest set of dictionary functions necessary to capture the dynamics of the system into ODE models; on the CRNT side, building on such sparse ODE models, all possible network structures within a given parameter uncertainty region can be computed. Additionally, the system identification process can be complemented with constraints on the parameters to, for example, enforce stability or non-negativity-thus offering relevant physical constraints over the possible network structures. In this way, the wealth of data can be translated into biologically relevant network structures, which then steers the data acquisition, thereby providing a vital step for closed-loop system identification.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/CDC.2018.8619360</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
3
4
views
downloads
Views 3
Downloads 4
Data volume 1.0 MB
Unique views 3
Unique downloads 4

Share

Cite as