Preprint Open Access

Minimal Genome Design Algorithms Using Whole-Cell Models

Rees-Garbutt, Joshua; Chalkley, Oliver; Grierson, Claire; Marucci, Lucia


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20210530022046.0</controlfield>
  <controlfield tag="001">4836082</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">3 Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK; 4 Bristol Centre for Complexity Science, Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK</subfield>
    <subfield code="a">Chalkley, Oliver</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">1 BrisSynBio, University of Bristol, Bristol BS8 1TQ, UK; 2 School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK</subfield>
    <subfield code="a">Grierson, Claire</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">1 BrisSynBio, University of Bristol, Bristol BS8 1TQ, UK; 3 Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK; 5 School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, UK.</subfield>
    <subfield code="a">Marucci, Lucia</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">721809</subfield>
    <subfield code="z">md5:d13d66fb514d4a18da976a6a35fc36c9</subfield>
    <subfield code="u">https://zenodo.org/record/4836082/files/Rees-Garbutt et al 2021 Computational Methods in Synthetic Biology.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-11-13</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-cosy-bio</subfield>
    <subfield code="o">oai:zenodo.org:4836082</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">1 BrisSynBio, University of Bristol, Bristol BS8 1TQ, UK; 2 School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK</subfield>
    <subfield code="a">Rees-Garbutt, Joshua</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Minimal Genome Design Algorithms Using Whole-Cell Models</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-cosy-bio</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">766840</subfield>
    <subfield code="a">Control Engineering of Biological Systems for Reliable Synthetic Biology Applications</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Abstract&lt;/p&gt;

&lt;p&gt;Synthetic biologists engineer cells and cellular functions using design-build-test cycles; when the task is to extensively engineer entire genomes, the lack of appropriate design tools and biological knowledge about each gene in a cell can lengthen the process, requiring time-consuming and expensive experimental iterations.&lt;/p&gt;

&lt;p&gt;Whole-cell models represent a new avenue for genome design; the bacteria&amp;nbsp;&lt;em&gt;Mycoplasma genitalium&lt;/em&gt;&amp;nbsp;has the first (and currently only published) whole-cell model which combines 28 cellular submodels and represents the integrated functions of every gene and molecule in a cell.&lt;/p&gt;

&lt;p&gt;We created two minimal genome design algorithms, GAMA and Minesweeper, that produced 1000s of in silico minimal genomes by running simulations on multiple supercomputers. Here we describe the steps to produce in silico cells with reduced genomes, combining minimisation algorithms with whole-cell model simulations.&lt;/p&gt;

&lt;p&gt;We foresee that the combination of similar algorithms and whole-cell models could later be used for a broad spectrum of genome design applications across cellular species when appropriate models become available.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="g">183-198</subfield>
    <subfield code="b">Humana</subfield>
    <subfield code="a">New York, NY.</subfield>
    <subfield code="z">978-1-0716-0821-0</subfield>
    <subfield code="t">Computational Methods in Synthetic Biology</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-1-0716-0822-7_14</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
  </datafield>
</record>
9
13
views
downloads
Views 9
Downloads 13
Data volume 9.4 MB
Unique views 9
Unique downloads 13

Share

Cite as