Preprint Open Access

Optimally designed vs intuition-driven inputs: the study case of promoter activity modelling

Bandiera, L.; Kothamachu, V.; Balsa-Canto, E.; Swain, P. S.; Menolascina, F.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20210530022046.0</controlfield>
  <controlfield tag="001">4836024</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">17-19 Dec. 2018</subfield>
    <subfield code="a">2018 IEEE Conference on Decision and Control (CDC)</subfield>
    <subfield code="c">Miami, FL, USA</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of Engineering, The University of Edinburgh, Edinburgh, UK</subfield>
    <subfield code="a">Kothamachu, V.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IIM-CSIC Spanish National Research Council, (Bio)Process Engineering Group, Vigo, Spain</subfield>
    <subfield code="a">Balsa-Canto, E.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">SynthSys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh</subfield>
    <subfield code="a">Swain, P. S.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">SynthSys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh</subfield>
    <subfield code="a">Menolascina, F.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">814152</subfield>
    <subfield code="z">md5:485cf4fb0d2a8e7003f3a3fa0e6ad7aa</subfield>
    <subfield code="u">https://zenodo.org/record/4836024/files/Bandiera et al 2018 IEEE.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-01-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-cosy-bio</subfield>
    <subfield code="o">oai:zenodo.org:4836024</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">SynthSys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh</subfield>
    <subfield code="a">Bandiera, L.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Optimally designed vs intuition-driven inputs: the study case of promoter activity modelling</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-cosy-bio</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">766840</subfield>
    <subfield code="a">Control Engineering of Biological Systems for Reliable Synthetic Biology Applications</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Synthetic biology is an emerging engineering discipline that aims at synthesising logical circuits into cells to accomplish new functions. Despite a thriving community and some notable successes, the basic task of assembling predictable gene circuits is still a key challenge. Mathematical models are uniquely suited to help solve this issue. Yet in biology they are perceived as expensive and laborious to obtain because low-information experiments have often been used to infer model parameters. How much additional information can be gained using optimally designed experiments? To tackle this question we consider a building block in Synthetic Biology, an inducible promoter in yeast S. cerevisiae. Using in vivo data we re-fit a mathematical model for such a system; we then compare in silico the quality of the parameter estimates when model calibration is done using typical (e.g, step inputs) and optimally designed experiments. We find that Optimal Experimental Design leads to ~70% improvement in the predictive ability of the inferred models. We conclude providing suggestions on how optimally designed experiments can be implemented in vivo.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/CDC.2018.8618920</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
  </datafield>
</record>
6
8
views
downloads
Views 6
Downloads 8
Data volume 6.5 MB
Unique views 6
Unique downloads 8

Share

Cite as