Preprint Open Access

Approximations of Countably Infinite Linear Programs over Bounded Measure Spaces

Kuntz, Juan; Thomas, Philipp; Stan, Guy-Bart; Barahona, Mauricio


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20210530022049.0</controlfield>
  <controlfield tag="001">4836001</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom</subfield>
    <subfield code="0">(orcid)0000-0003-4919-8452</subfield>
    <subfield code="a">Thomas, Philipp</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom</subfield>
    <subfield code="0">(orcid)0000-0002-5560-902X</subfield>
    <subfield code="a">Stan, Guy-Bart</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom</subfield>
    <subfield code="0">(orcid)0000-0002-1089-5675</subfield>
    <subfield code="a">Barahona, Mauricio</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">273443</subfield>
    <subfield code="z">md5:264c79446ab2e416125600625df8479d</subfield>
    <subfield code="u">https://zenodo.org/record/4836001/files/Kuntz et al 2020 SIAM.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-02-18</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-cosy-bio</subfield>
    <subfield code="o">oai:zenodo.org:4836001</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">604–625</subfield>
    <subfield code="n">1</subfield>
    <subfield code="p">SIAM Journal on Optimization</subfield>
    <subfield code="v">31</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematics and Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.</subfield>
    <subfield code="0">(orcid)0000-0002-5855-6074</subfield>
    <subfield code="a">Kuntz, Juan</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Approximations of Countably Infinite Linear Programs over Bounded Measure Spaces</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-cosy-bio</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">766840</subfield>
    <subfield code="a">Control Engineering of Biological Systems for Reliable Synthetic Biology Applications</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;We study a class of countably infinite linear programs (CILPs) whose feasible sets are bounded subsets of appropriately defined spaces of measures. The optimal value, optimal points, and minimal points of these CILPs can be approximated by solving finite-dimensional linear programs. We show how to construct finite-dimensional programs that lead to approximations with easy-to-evaluate error bounds, and we prove that the errors converge to zero as the size of the finite-dimensional programs approaches that of the original problem. We discuss the use of our methods in the computation of the stationary distributions, occupation measures, and exit distributions of Markov chains.&lt;br&gt;
&lt;br&gt;
&lt;br&gt;
Read More:&amp;nbsp;&lt;a href="https://epubs.siam.org/doi/10.1137/19M1268847"&gt;https://epubs.siam.org/doi/10.1137/19M1268847&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1137/19M1268847</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
  </datafield>
</record>
2
3
views
downloads
Views 2
Downloads 3
Data volume 820.3 kB
Unique views 2
Unique downloads 3

Share

Cite as