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Abstract

Proportional-Integral-Derivative (PID) feedback controllers have been the most widely used controllers in the
industry for almost a century. This is mainly due to their simplicity and intuitive operation. Recently, moti-
vated by their success in various engineering disciplines, PID controllers found their way into molecular biology.
In this paper, we consider the mathematical realization of (nonlinear) PID controllers via biomolecular inter-
actions in both the deterministic and stochastic settings. We propose several simple biomolecular PID control
architectures that take into consideration the biological implementation aspect. We verify the underlying PID
control structures by performing a linear perturbation analysis and examine their effects on the (deterministic
and stochastic) performance and stability. In fact, we demonstrate that different proportional controllers exhibit
different capabilities of enhancing the dynamics and reducing variance (cell-to-cell variability). Furthermore,
we propose a simple derivative controller that is mathematically realized by cascading the antithetic integral
controller with an incoherent feedforward loop without adding any additional species. We demonstrate that
the derivative component is capable of enhancing the transient dynamics at the cost of boosting the variance,
which agrees with the well known vulnerability of the derivative controller to noise. We also show that this can
be mitigated by carefully designing the inhibition pathway of the incoherent feedforward loop. Throughout the
paper, the stochastic analysis is carried out based on a tailored moment-closure technique and is also backed
up by simulations.

1 Introduction

One of the most salient features of biological systems is their ability to adapt to their noisy environments. For
example, cells often regulate gene expression to counteract all sorts of intrinsic and extrinsic noise in order to
maintain a desirable behavior in a precise and timely fashion. This resilience toward undesired disturbances is
often achieved via feedback control that has proved to be ubiquitous in both natural (e.g. [1–3]) and engineered
systems (e.g. [4, 5]). In fact, synthetically engineering biomolecular controllers is gaining a wide attention from
biologists and engineers (e.g. [6–14]).

A standard general setup for feedback controllers is depicted as a block diagram (refer to Box 1: A Primer
on Block Diagrams) in Panel A of Figure 1. The “Plant” block represents the process to be controlled. It can
be actuated through its input, denoted here by u, to dynamically manipulate its output of interest, denoted
here by y. The objective of such control systems is to design a feedback controller that automatically actuates
the plant in a smart autonomous fashion and guarantees that the output y meets certain performance goals
despite the presence of disturbances in the plant. These performance goals include (but are not limited to)

• Robust Perfect Adaptation (RPA): This property is the biological analogue of the notion of Robust
Steady-State Tracking (RSST) that is well known in control theory [15]. A controller achieves RPA (or
equivalently RSST) if it drives the steady state of the plant output y to a constant value – prescribed
by the user as a set point or reference (denoted by r in Figure 1)– which does not depend on the initial
conditions and/or plant uncertainties. Furthermore, the steady state of the output has to be immune to
constant disturbances in the plant. If the controller does not possess the RPA feature, a steady-state error
emerges when exogenous disturbances strike the plant (refer to Panel B of Figure 1).

• Stability Enhancement: The plant might be unstable when operating in a certain regime, that is
the output y does not converge to a fixed steady-state value. An example of such instabilities is a
divergent response where y grows unboundedly. Another example is when the output y exhibits a sustained
oscillation and never converges to the desired set point r (refer to Panel B of Figure 1). A typical

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.03.21.436342doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.21.436342


performance objective of the controller is to enhance the stability of the system, that is, shrink the
operating regimes where the dynamics are unstable.

Box 1. A Primer on Block Diagrams

In classical control theory, block diagrams are used to visually represent (deterministic) dynamical sys-
tems with inputs and outputs. In a fairly general setting, a dynamical system M can be written as a
set of differential equations coupled with another set of algebraic equations given by

M :

{
ẋ = f(x, u); x(0) = x0

y = g(x, u),

where x is called the state variable with initial condition x0, u is the input, and y is the output. Note
that, for simplicity, x, u and y are all considered to be scalar functions of time (scalar signals); however,
the extension to vector-valued signals is straightforward. One can think of M as a dynamical mapping
that maps the input signal u to the output signal y. In the rest of this box, we set the initial condition
to zero for simplicity (and without loss of generality). This dynamical system M can be represented as
a block diagram depicted in Panel A. This block takes u as an input indicated by the inward arrow, and
yields y as the output indicated by the outward arrow. Note that inputs to a block are not affected by
the block itself, only outputs are affected. Outputs can serve as inputs to other blocks, and inputs can
be incoming as feedback from the output of other blocks (see Panel A of Figure 1 for example). As a
result, one of the nice features of a block diagram is to decompose the overall dynamics into multiple
modularized sub-dynamical systems, each having a specialized operation.
Block diagrams are especially useful for linear dynamical systems such as the system to the left in Panel
B. In this system, the input-output relationship, in the time domain, is given by a linear differential
(and algebraic) equation, where ωc is a constant. This relationship can be equivalently expressed in the
Laplace domain, by taking the Laplace transforms. With slight abuse of notation, let x(s), u(s) and y(s)
denote the Laplace transforms of x(t), u(t) and y(t), respectively, with s being the Laplace variable. Note
that we drop t and s when the considered domain (time/Laplace) is clear. Then it is straightforward
to show that the input-output relationship in the Laplace domain reduces to a multiplication operation
y(s) = M(s)u(s), where M(s) := ωc

s+ωc
is called the transfer function of the block. Hence, for linear

dynamical systems, the output of a block in the Laplace domain is simply the product between the
block’s transfer function and its input. This example block operates as a low pass filter that filters out
high frequencies, particularly those higher than the cutoff frequency ωc [16, Figure 8.15]. Note that in
the limit, as ωc →∞, this block becomes the identity operator: y = u.
Panel C shows other commonly used blocks representing four linear dynamical systems: (1) a summation
junction that sums (and/or subtracts) its inputs, (2) an integral block which integrates the input in time
and is equivalent to dividing by s in the Laplace domain, (3) a proportional block which multiplies its
input by a constant, and (4) a derivative block which differentiates its input in time and is equivalent
to multiplying by s in the Laplace domain. The transfer functions of the integral, proportional and
derivative blocks are thus KI/s,KP and KDs, respectively, as depicted in Panel C.

A Nonlinear Dynamical System

u yẋ = f(x, u)

y = g(x, u)

B Linear Dynamical System: Low Pass Filter

Time Domain Laplace Domain

u y u yẋ = −ωcx+ u
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• Desirable Transient Response: Building a controller that achieves RPA is perhaps the most basic and
essential requirement; however, a high performance controller has to fulfill additional requirements that are
equally as important. For example, even though a controller is designed to ensure RPA (and stability), the
transient dynamics might still be very slow to reach the desired (robust) steady state. This undesirable
sluggish response, in some situations, can practically destroy the theoretically guaranteed RPA. Other
examples of undesirable transient dynamical responses include overshoots and damped oscillations (refer
to Panel B of Figure 1). A typical performance objective is to design a controller that yields a smooth
transient response which is fast enough but doesn’t overshoot or oscillate too much.

• Variance Reduction: This is a performance objective that is less common in classical control theory.
When the dynamics are stochastic, it is common to study the time evolution of the output probability
distribution and its moments such as the mean and variance. A natural performance objective is to design
a controller that tightens the probability distribution around the mean, e.g. reduce the variance. This
could be particularly useful in biology for reducing cell-to-cell variability.

Control theory developed a wide set of tools to design feedback controllers that meet certain performance
objectives. For instance, it is well known in control theory (internal model principle [17]) that a controller should
involve an Integral (I) action to be able to achieve RSST (or equivalently RPA). Furthermore, Proportional-
Integral-Derivative (PID) feedback controllers – first rigorously introduced by Nicolas Minorsky [18] around
a hundred years ago – adds a Proportional (P) and Derivative (D) action to the Integrator (I) to be able to
tune the transient dynamics and enhance stability while preserving RPA. Interestingly, after almost a century,
PID controllers are still the most widely used controllers in industrial applications spanning a broad range of
engineering disciplines such as mechanical and electrical engineering ( [19–21]).

Originally, PID feedback controllers were designed to control mechanical (later, electrical) systems such as
automatic ship steering (later, telephone engineering systems) [22]. Such control systems involve controlling
quantities that can take both negative and positive values such as angles, velocities, electric currents, voltages,
etc... Furthermore, traditional PID controllers possess linear dynamics since all three operations of a PID are
linear. Two classes of linear PID controllers, adopted from [16, Chapter 10], are shown in Panels C and D of
Figure 1. In the first architecture shown in Panel C, the error signal e(t) := r − y(t) is fed into the three (P, I,
and D) components. The outputs of the three components are summed up to yield the control action u which
serves as the actuation input to the plant as demonstrated in Panel A. In the second architecture shown in Panel
D, the controller has two degrees of freedom since both the error e and the output y are used separately and
simultaneously. Particularly, the error is fed into the integrator, while the output is fed into the proportional
and derivative components. Observe that both architectures require that the integrator operates on the error
(and not the output). This is necessary to achieve RSST and can be easily seen using a very simple argument
explained next. Let uI(t) denote the output of the integrator, that is

uI(t) := KI

t∫

0

e(τ)dτ =⇒ u̇I(t) = KIe(t). (1)

Assuming that the dynamics are stable (that is, converge to a fixed point), then at steady state we have
lim
t→∞

u̇I(t) = 0. This implies that, at steady state (assuming stability), the error e := r − y has to be zero, and

thus lim
t→∞

y(t) = r, hence achieving the steady-state tracking property. Observe that this argument does not

depend on the plant, hence achieving the robustness property.
For mechanical and electrical systems, the linearity of the PID controllers is convenient because of the avail-

ability of basic physical parts (e.g. dampers, springs, RLC circuits, op-amps, etc...) that are capable of realizing
these linear dynamics. However, this realization quickly becomes challenging when designing biomolecular con-
trollers. This difficulty arises because (a) biomolecular controllers have to respect the structure of BioChemical
Reaction Networks (BCRN), and (b) the quantities to be controlled (protein copy numbers or concentrations)
cannot be negative (see [23] for positive integral control). Furthermore, the dynamics of biochemical reactions
are inherently nonlinear. To achieve RPA, BCRN realizations of standalone Integral (I) controllers initially
received the widest attention [24–29]. In previous work [26], the Antithetic Integral Feedback (AIF) controller
was introduced to realize integral action that ensures RPA. In fact, more recently, it was shown in [9] that
the antithetic motif is necessary to achieve RPA in arbitrary intracellular networks with noisy dynamics. A
detailed mathematical analysis of the performance tradeoffs that may arise in the AIF controller is presented
in [30,31], and optimal tuning is treated in [32]. Furthermore, practical design aspects, particularly the dilution
effect of controller species, are addressed in [28,29]. Biological implementations of various biomolecular integral
controllers appeared in bacteria in vivo [6, 8, 9] and in vitro [13], and more recently in mammalian cells [14].

In the pursue of designing high performance controllers while maintaining the RPA property, BCRN re-
alizations of PI and PID controllers started receiving more focused attention [33–38]. Particularly in [33], a

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.03.21.436342doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.21.436342


A General Setup for Feedback Controllers
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Figure 1: Feedback Controller Design and Performance. (A) The output to be controlled is fed back into the controller via
some sensing mechanism. The controller exploits the set point, that is typically “dialed in” by the user and computes the suitable
control action to be applied to the plant (or process) via some actuation mechanism. The goal of the control action is to steer the
output to the desired set point despite external (or even internal) disturbances. (B) A demonstration of various performance goals
that are typically targeted when designing the controller. (C), (D), and (E) Various PID control architectures. The classical
designs in (C) and (D) involve separate linear P, I and D operations that are added together to yield the control action u. The
difference between (C) and (D) is in the controller input: in (C) the error signal is the only input, while in (D) the error signal is
fed into the I component whereas the output signal is fed intro the P and D components . In this paper, we propose PID control
architectures that fit in the more general class depicted in (E) where the PID components are nonlinear and inseparable. This gives
more design flexibility for biomolecular controllers.

proportional component is separately appended to the antithetic integral motif via a repressing hill-type func-
tion to tune the transient dynamics and reduce the variance. The resulting PI controller follows the concept
of Panel D where error and output feedback are used to build separate (but nonlinear) P and I components.
Several successful attempts were carried out to realize a BCRN capable of approximating derivatives [39–42].
However, the first focused work on BCRN realizations of a full PID controller was done in [35], where the authors
introduce more controller species for the derivative component to follow the concept of Panel C in Figure 1. The
resulting PID controller uses error feedback to build separate nonlinear P, I, and D components and successfully
improves the dynamic performance in the deterministic setting. Using a different approach, [37] and [38] exploit
the dual-rail representation from [24], where additional species are introduced to overcome the non-negativity
challenge of the realized PID controller. The authors demonstrate the resulting improvement of the performance
in the deterministic setting. On a different note, [36] analyzed the effects of separate proportional and derivative
controllers on (bursty) gene expression models in the stochastic setting.

Interestingly, all previous research in this direction have two intimately related aspects in common. Firstly,
the P, I, and D components are realized separately such that they enter the dynamics additively. This aspect
is motivated by traditional PID controllers where the controller dynamics are constrained to be linear, and
thus the three components has to be added up (rather than multiplied for example). However, since feedback
mechanisms in BCRNs are inherently nonlinear, there is no reason to restrict the controller to have linear
dynamics and/or additive components. Secondly, the proposed derivative control designs introduce additional
species to realize the controller, and thus making the biological implementation more difficult. To this end,
we consider in this paper (more general) nonlinear PID controllers that do not have to be explicitly separable
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into their three (P, I and D) components. This allows controllers to involve P, I , and D architectures in one
(inseparable) block as depicted in Panel E of Figure 1 where both, error and output, feedbacks are allowed.
The nonlinearity and inseparability features of the proposed PI and PID controllers provide more flexibility
in the BCRN design and allows simpler architectures that do not require introducing additional species to
the standalone integral controller. Note that, one can convert such inseparable PIDs with output and error
feedbacks to only error feedback by introducing a single additional controller species (similar to [35]). However,
in this paper, we use both error and output feedback to keep the controller designs as simple as possible and to
maintain the two degrees of freedom in the actuation.

The paper is organized as follows. A general framework for biomolecular feedback controllers is introduced in
the subsequent section. Then, in Section 3, several Proportional-Integral (PI) Feedback controllers are proposed
and analyzed in both the deterministic and stochastic settings. Next, a simple Derivative (D) component is
appended to the PI controller in Section 4. Simulations are carried out to assess the performance and is also
validated by a theoretical analysis. Finally, we conclude in Section 5.

2 General Framework for Biomolecular Feedback Controllers

The framework for feedback control systems is traditionally described through block diagrams (e.g. Panel A
of Figure 1). In this section, we lay down a general framework for feedback control systems where both the
plant and the controller are represented by Biochemical Reaction Networks (BCRN). With this framework,
the controller can either represent an actual biomolecular circuit or it can be implemented as a mathematical
algorithm in silico [43–45] to regulate a biological circuit (through light for example [46]).

2.1 Open Loop Description: an Arbitrary Plant

Consider a general plant, depicted in Figure 2, comprised of L species X := {X1, X2, · · · , XL} that react
with each other through K reaction channels labeled as R := {R1,R2, · · · ,RK}. Each reaction Rk (k =
1, 2, · · · ,K) has a stoichiometry vector denoted by ζk ∈ ZL and a propensity function λk : NL0 → R+

∗ . Let

S :=
[
ζ1 ζ2 · · · ζK

]
∈ ZL×K denote the stoichiometry matrix and let λ :=

[
λ1 λ2 · · · λK

]T
denote

the (vector-valued) propensity function. Then, the plant constitutes a BCRN that is fully characterized by the
triplet Nol := (X, S, λ) which we shall call the “open-loop” system.

Plant

Controller

X1 XL

Z1 Z2

Actuating Sensing

Nol := (X, S, λ)

Nc :=





X1

XL

Z


 ,




S1

SL

Sc


 , λc




Ncl := Nol ∪Nc = ({X,Z}, Scl, λcl)

Scl =




R︷ ︸︸ ︷
R1 R2 · · · RK

S

Rc︷ ︸︸ ︷
R1

c R2
c · · · RKc

c

S1

0

SL

X1

X2

...

XL−1

XL





X

0 Sc

Z1

Z2



Z




λcl(x, z) =
[

λ(x) λc(x1, xL, z)
]T

N /Nc Plant/Controller Network

R/Rc Plant/Controller Reactions

S/Sc Plant/Controller Stoichiometry Matrix

λ/λc Plant/Controller Propensity Function

X/Z Plant/Controller Species

X1/XL Input/Output Species

S1/SL Actuation/Sensing Stoichiometry Vector

Figure 2: A Framework for Feedback Control of (Bio)chemical Reaction Networks. An arbitrary plant is comprised
of L species {X1, X2, ..., XL} reacting with each other. Species XL, by definition, is the output of interest to be controller, while
X1 is assumed to be the only accessible input species that can be “actuated” by the controller network. The closed-loop system,
with stiochiometry matrix Scl and propensity function λcl, denotes the overall feedback interconnection between the plant and
controller networks.
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2.2 Feedback Controller & Closed Loop Description

The goal of this work is to design a controller network, denoted by Nc, that is connected in feedback with the
plant network Nol, as illustrated in Figure 2, to meet certain performance objectives such as those mentioned
in the Section 1. To keep the controller simple, the number of controller species is restricted to only two, that
is Z := {Z1, Z2}. We assume that all the plant species are inaccessible by the controller except for species X1

and XL. Particularly, the controller “senses” the plant output species XL, then “processes” the sensed signal
via the controller species Z1 and Z2, and finally “actuates” the plant input species X1. The controller species
are allowed to react with each other and with the plant input/output species through Kc reaction channels

labeled as Rc := {R1
c ,R2

c , · · · ,RKcc }. Let S̄c ∈ Z4×Kc and λc : N4
0 → (R+

∗ )
Kc denote the stoichiometry matrix

and propensity function of the controller, respectively.
Since the controller reactions Rc involve the controller species Z and the plant input/output species X1/XL,

the stoichiometry matrix S̄c can be partitioned as

S̄c :=




S1

SL
Sc


 ,

where S1 and SL ∈ Z1×Kc encrypt the stoichiometry coefficients of the plant input and output species X1

and XL, respectively, among the controller reaction channels Rc. Furthermore, Sc ∈ Z2×Kc encrypts the
stoichiometry coefficients of the controller species Z1 and Z2. Hence, to design a controller network Nc for a
particular plant, it is sufficient to specify S1, SL, Sc and λc.

Finally, the closed-loop system constitutes the open-loop network appended by the controller network so
that it includes all the plant and controller species Xcl := {X, Z} and reactions Rcl := {R,Rc}. Thus, the
closed loop network, Ncl := Nol ∪ Nc, can be fully represented by the closed-loop stoichiometry matrix Scl
and propensity function λcl shown in Figure 2. We close this section, by noting that although we restrict
the controller to involve only two species communicating with two other species in the plant, this framework
can be easily generalized to more species. The major flavor of this paper is to maintain the simplicity of the
biomolecular controller design which motivates our restriction to only two controller species Z1 and Z2.

3 Antithetic Proportional-Integral Feedback (APIF) Controllers

Equipped with the BCRN framework for feedback control systems, we are now ready to propose several PI
feedback controllers that are capable of achieving various performance objectives. All of the proposed controllers
involve the antithetic integral motif introduced in [26] to ensure RPA. However, other additional motifs are
appended to the antithetic motif to realize a proportional (P) control action.

3.1 Network Description

Consider the closed-loop network, depicted in Figure 3, where an arbitrary plant is connected in feedback with a
class of controllers that we shall call APIF controllers. Observe that there are three different inhibition actions
color coded as orange, purple and green. Each inhibition action gives rise to a single class of the proposed APIF
controllers. Particularly, when no inhibition is present, we obtain the standalone AIF controller of [26] whose
reactions are summarized in the first table of Figure 3. Whereas, APIF of Class 1 (resp. Class 2) involves the
inhibition of X1 by XL (resp. Z2), and APIF of Class 3 involves the inhibition of Z1 by XL. Furthermore,
each APIF class encompasses various types of controllers depending on the inhibition mechanisms that enter the
controller network as actuation reactions. We consider three types of biologically-relevant inhibition mechanisms.

• Additive Inhibition: In this mechanism, the inhibitor species produces the inhibited species separately
at a decreasing hill-type rate. For instance, in the case of APIF Class 1 with additive inhibition (second row
of the orange table in Figure 3), both Z1 and XL produce X1 separately, but Z1 acts as an activator while
XL acts as a repressor. This separate inhibition can be captured by modeling the production of X1 (that
is the positive actuation reaction R+

a ) with an additive hill-type propensity given by h+(z1, xL) = kz1 +
α

1+(xL/κ)n , where n, α and κ denote the hill coefficient, maximal production rate and repression coefficient,

respectively. The first term gives the integral (I) action, and the second term gives the proportional (P)
action. In fact, this APIF is the closest control architecture to [33] and [35], since the P and I components
are additive and separable (see Figure 1, Panels (C) and (D)).

• Multiplicative Inhibition: In this mechanism, the inhibitor competes with an activator over a produc-
tion reaction. For instance, in the case of APIF Class 1 with multiplicative inhibition (third row of the
orange table in Figure 3), XL inhibits the production of X1 by Z1. This can be captured by modeling
the production of X1 with a multiplicative hill-type propensity given by h+(z1, xL) = kz1 × 1

1+(xL/κ)n .
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Observe that in this scenario, the proportional (P) and integral (I) control actions cannot be separated;
instead, this actuation reaction R+

a encodes both PI actions in one shot.

• Degradation Inhibition: In this mechanism, the inhibitor invokes a negative actuation reaction that
degrades the inhibited species. For instance, in the case of APIF Class 1 with degradation inhibition
(fourth row of the orange table in Figure 3), Z1 produces X1 (positive actuation reaction R+

a ) and XL

degrades X1 (negative actuation reaction R−a ). For generality, if the degradation is assumed to be n-
cooperative, the dynamics can be captured by using a positive actuation with propensity h+(z1) = kz1

and a negative actuation with propensity h−(x1, xL) = δx1x
n
L. Hence the overall actuation propensity is

defined as h(z1, x1, xL) := h+(z1)− h−(x1, xL).

Considering all three APIF classes with the various inhibition mechanisms, Figure 3 proposes eight different
APIF control architectures. Note that, it can be shown that a degradation inhibition in the case of APIF Class
3 would destroy the RPA property and is thus omitted. All of these controllers are compactly represented by
one general closed loop stoichiometry matrix Scl and propensity function λcl shown in Figure 3. The various
architectures can be easily obtained by properly selecting the functions h := h+ − h− and g from the tables of
Figure 3. We shall call the function h (resp. g) as the actuation (resp. reference) propensity for reasons that
will be apparent in the subsequent section. In fact, the theoretical analysis that is carried out in the rest of the
section applies for any function h that is smooth and monotonically increasing (resp. decreasing) in z1 (resp.
z2, x1 and xL), and any function g that is smooth and monotonically increasing (resp. decreasing) in µ (resp.
xL).

X1 XL
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h(z1, z2, x1, xL)
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φ
µ−−→ Z1 Z1

k−−→ Z1 +X1 XL
θ−−→ XL + Z2 Z1 + Z2

η−−→ φ kz1 µ

A
P
IF

C
la
ss

1 Inhibition Type Actuation Rxns
Actuation

Propensity h

Additive R+
a : φ −−→ X1 kz1 +

α
1+(xL/κ)

n

Multiplicative R+
a : φ −−→ X1

kz1
1+(xL/κ)

n

Degradation
R+
a : Z1 −−→ Z1 +X1

R−
a : X1 + XL −−→ XL

kz1 − δx1xnL

A
P
IF

C
la
ss

2 Inhibition Type Actuation Rxns
Actuation

Propensity h

Additive R+
a : φ −−→ X1 kz1 +

α
1+(z2/κ)

n

Multiplicative R+
a : φ −−→ X1

kz1
1+(z2/κ)

n

Degradation
R+
a : Z1 −−→ Z1 +X1

R−
a : X1 + Z2 −−→ Z2

kz1 − δx1zn2

A
P
IF

C
la
ss

3

Inhibition Type Reference Rxn
Reference

Propensity g

Additive φ
g(µ, xL)−−−−−→ Z1 µ+ α

1+(xL/κ)
n

Multiplicative φ
g(µ, xL)−−−−−→ Z1

µ
1+(xL/κ)

n

Figure 3: Antithetic Proportional-Integral Feedback (APIF) Controllers. Three different classes of Proportional-
Integral controllers are proposed by appending the standalone antithetic integral feedback (AIF) controller with three (color-
coded) inhibitions. Different biologically-relevant inhibition mechanisms are described in the tables for each class. The inhibition
mechanisms include additive repression, competitive inhibition (multiplicative) and degradation. All eight controllers are compactly
represented by the closed-loop stoichiometry matrix Scl and propensity function λcl by choosing the suitable actuation propensity
function h from the tables.
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3.2 Deterministic Steady-State Analysis: Robust Perfect Adaptation

The deterministic dynamics of the closed loop systems, for all the APIF controllers given in Figure 3 can be
compactly written as a set of Ordinary Differential Equations (ODEs) given by





ẋ = f(x) + h(z1, z2, x1, xL)e1

ż1 = g(µ, xL)− ηz1z2

ż2 = θxL − ηz1z2,

(2)

where f(x) := Sλ(x) and e1 :=
[
1 0 · · · 0

]T ∈ RL. Note that the actuation and reference propensities h
and g take different forms for different APIF control architectures as depicted in Figure 3. The fixed point of
the closed loop dynamics cannot be calculated explicitly for a general plant; however, the output component
(xL) of the fixed point solves the following algebraic equation

g(µ, xL) = θxL, (3)

where over-bars denote steady-state values, that is xL := lim
t→∞

xL(t). Two observations can be made based on

(3). The first observation is that (3) has a unique nonnegative solution since g is a monotonically non-increasing
function in xL. The second observation is that (3) does not depend on the plant. As a result, if the closed loop
system is stable (i.e. the dynamics converge to a fixed point), then the output concentration converges to a
unique set-point that is independent of the plant. This property is valid for any initial condition, and is referred
to as Robust Perfect Adaptation (RPA). Particularly, for the AIF and APIF of Class 1 and 2, the reference
propensity is g(µ, xL) = µ, and thus xL = µ

θ . Furthermore, for the APIF of Class 3, xL solves a polynomial
equation of degree n+ 1 given by

Additive Inhibition: xn+1
L − µ

θ
xnL + κnxL − κn

µ+ α

θ
= 0

Multiplicative Inhibition: xn+1
L + κnxL − κn

µ

θ
= 0.

(4)

For example, for a hill coefficient n = 1, the unique non-negative steady state (assuming closed-loop stability)
of the output concentration is given by

Additive Inhibition: xL =

µ
θ − κ+

√(
κ+ µ

θ

)2
+ 4κµθ

2

Multiplicative Inhibition: xL =
κ

2

(√
1 +

4

κ

µ

θ
− 1

)
.

(5)

Clearly, xL depends only on controller parameters µ, θ, and κ, and is thus robust to constant disturbances in
plant parameters. In conclusion, all the proposed APIF controllers maintain the RPA property that is obtained
by the antithetic integral motif (assuming closed-loop stability), while additional control knobs are introduces
to enhance other performance objectives.

3.3 Verification of the Control Structure via Linear Perturbation Analysis

In this section, we verify analytically that all the proposed APIF controllers indeed involve Proportional (P)
and Integral (I) control actions. To do that, a linear perturbation analysis is carried out where we examine the

linearized dynamics around the fixed point. Let
[
x̃T z̃1 z̃2

]T
denote the perturbation from the fixed point[

xT z1 z2

]T
of (2). To carry out a linear perturbation analysis we assume that the reference signal µ is

allowed to slightly vary in time around a nominal constant reference µ. That is, we have

x̃(t) = x(t)− x; z̃1(t) = z1(t)− z1; z̃2(t) = z2(t)− z2; µ̃(t) = µ(t)− µ.

The linearized dynamics can thus be written as

˙̃x = Ax̃+ (σ1z̃1 − σ2z̃2 − σ3x̃1 − σ4x̃L) e1

˙̃z1 = σ5µ̃− σ6x̃L − ηz2z̃1 − ηz1z̃2

˙̃z2 = θx̃L − ηz2z̃1 − ηz1z̃2,

where A := ∂f(x), ∂h(z1, z2, x1, xL) =:
[
σ1 −σ2 −σ3 −σ4

]
, and ∂g(µ, xL) =:

[
σ5 −σ6

]
, such that

σ1, σ5 > 0 and σ2, σ3, σ4, σ6 ≥ 0.
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The underlying control structure is most easily uncovered and visualized by drawing the block diagram of
the linearized dynamics (refer to Box 1: A Primer on Block Diagrams). Taking the Laplace transforms yields

x̃L(s) = eTL
(
sI − Ā

)−1
e1ũ(s); where Ā := A− σ3e1e

T
1

ũ(s) = σ1z̃1(s)− σ2z̃2(s)− σ4x̃L(s)

z̃1(s) =
σ5µ̃(s)− σ6x̃L(s)− ηz1z̃2(s)

s+ ηz2

z̃2(s) =
θx̃L(s)− ηz2z̃1(s)

s+ ηz1
.

Next, we express z̃1(s) and z̃2(s) in terms of µ̃(s), x̃L(s) and the error defined as ẽ(s) := µ̃(s)−
(
θ+σ6

σ5

)
x̃L(s).

We have

z̃1(s) =

[
σ5µ̃(s)− σ6x̃L(s) +

ηz1σ5

s
ẽ(s)

]
1

s+ η (z1 + z2)

z̃2(s) =

[
θx̃L(s)− ηz2σ5

s
ẽ(s)

]
1

s+ η (z1 + z2)
.

Substituting for z̃1(s) and z̃2(s) in ũ(s) and collecting similar terms yield

ũ(s) =

[
σ1µ̃(s) +

η (σ1z1 + σ2z2)

s
ẽ(s)− σ2θ + σ1σ6

σ5
x̃L(s)

]
σ5

s+ η (z1 + z2)
− σ4x̃L(s).

This is the controller transfer function that relates the control action ũ to the reference signal µ̃, the error signal
ẽ and the plant output x̃L in the Laplace domain. Therefore, equipped with the controller and plant transfer
functions given by

Controller: ũ(s) =

[
KF µ̃(s) +

KI

s
ẽ(s)−KP2

x̃L(s)

]
ωc

s+ ωc
−KP1

x̃L(s)

Plant: x̃L(s) = P (s)ũ(s);

where:





KF =
σ1σ5

η(z1 + z2)
, KI = σ5

σ1z1 + σ2z2

z1 + z2
, KS =

θ + σ6

σ5
, KP1

= σ4,

KP2
=
σ2θ + σ1σ6

η(z1 + z2)
, ωc = η(z1 + z2), P (s) = eTL

(
sI − Ā

)−1
e1,

(6)

we can now draw the block diagram shown in Figure 4 which compactly encompasses all of the proposed APIF
architectures. In particular, for the standalone AIF controller, both proportional gains KP1

and KP2
are set to

zero. For the APIF controller of Class 1 (resp. Class 2 & 3), the proportional gain KP2 (resp. KP1) is set to
zero. The remaining gains KI ,KF , and KS are obtained by calculating the σis for the various APIF controllers
(Appendix A), and the results are shown the table of Figure 4. Observe that, for all the proposed architectures,
there is an Integral (I) and a Proportional (P) control action. In fact, since the controller acts on both the error
signal ẽ and the output signal x̃L, then the PI architecture (of the linearized dynamics) resembles the setting
given in Panel D of Figure 1. The main differences are two additional blocks:

• Feedforward Block: This block is a consequence of the positivity of the nonlinear dynamics. The
reference signal µ̃ “lifts” the dynamics towards the positive orthant, by adding the feedforward term to
the integrated error.

• Low Pass Filter: This block is a dynamical system that filters fast signals with frequencies higher than
the cutoff frequency ωc = η(z1 + z2). This block is a consequence of the time dynamics of the nonlinear
sequestration reaction.

As demonstrated in Figure 4, for the APIF controllers of Class 1 (KP1
> 0,KP2

= 0), the Proportional control
action KP1

x̃L is instantaneous since it is fed back to the plant as is and without any filtering (that involves time
dynamics). In contrast, for the APIF controllers of Class 2 and 3 (KP1

= 0,KP2
> 0), the Proportional control

action KP2 x̃L is not instantaneous since it is passed through a low pass filter before it is fed back to the plant.
This low pass filtering step arises because the output species does not actuate the input species immediately like
the APIF controllers of Class 1; instead, the output actuates the input via an intermediate controller species:
Z2 (for Class 2) and Z1 (for Class 3). This low pass filter typically delays the Proportional control action, and
as a result – depending on the performance objective and particular plant at hand – it can have a negative or
positive effect on the closed loop dynamics.
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Controller

+−
KI
s

Integrator

KF

Feedforward Gain

+−
ωc
s+ωc

Low Pass Filter

+− P (s)

Plant

KS
Sensing

Gain KP1

Proportional
Gain

(Class 1)

KP2

Proportional
Gain

(Class 2 & 3)

µ̃ ẽ x̃Lũ

Class Inhibition KI KS KP1
KP2

KF

A
IF None k z̄1

z̄1+z̄2
θ 0 0 k

η(z̄1+z̄2)

Additive k z̄1

z̄1+z̄2
θ α

κ
n(x̄L/κ)n−1

[1+(x̄L/κ)n]
2 0 k

η(z̄1+z̄2)

Multiplicative k
1+(x̄L/κ)n

z̄1

z̄1+z̄2
θ kz̄1

κ
n(x̄L/κ)n−1

[1+(x̄L/κ)n]
2 0 1

1+(x̄L/κ)n
k

η(z̄1+z̄2)

A
P
IF

C
la
ss

1

Degradation k z̄1

z̄1+z̄2
θ nδx̄1x̄

n−1
L 0 k

η(z̄1+z̄2)

Additive
(
kz̄1 + α (z̄2/κ)n

(1+(z̄2/κ)n)
2

)
1

z̄1+z̄2
θ 0 αθ

κη(z̄1+z̄2)
n(z̄2/κ)n−1

[1+(z̄2/κ)n]
2

k
η(z̄1+z̄2)

Multiplicative k z̄1

z̄1+z̄2

1+(n+1)(z̄2/κ)n

[1+(z̄2/κ)n]
2 θ 0 k z̄1

z̄1+z̄2

θ
κη

n(z̄2/κ)n−1

[1+(z̄2/κ)n]
2

1
1+(z̄2/κ)n

k
η(z̄1+z̄2)

A
P
IF

C
la
ss

2

Degradation kz̄1+nδx̄1z̄
n
2

z̄1+z̄2
θ 0 nδθx̄1z̄

n−1
2

η(z̄1+z̄2)
k

η(z̄1+z̄2)

Additive k z̄1

z̄1+z̄2
θ + α

κ
n(x̄L/κ)n−1

[1+(x̄L/κ)n]
2 0 kα

κη(z̄1+z̄2)
n(x̄L/κ)n−1

[1+(x̄L/κ)n]
2

k
η(z̄1+z̄2)

A
P
IF

C
la
ss

3

Multiplicative k
1+(x̄L/κ)n

z̄1

z̄1+z̄2
θ [1 + (x̄L/κ)n] + µ̄/κ n(x̄L/κ)n−1

[1+(x̄L/κ)n]2
0 kµ̄

κη(z̄1+z̄2)
n(x̄L/κ)n−1

[1+(x̄L/κ)n]
2

1
1+(x̄L/κ)n

k
η(z̄1+z̄2)

Figure 4: Block Diagram of the APIF controllers. This block diagram compactly represents the dynamics (in the
Laplace domain) of the linearized closed-loop systems obtained by all the APIF controllers proposed in Figure 3 . Particularly,
APIF controllers of Class 1 (resp. 2 and 3) give rise to the proportional gain KP1

(resp. KP2
). The low pass filter in between

demonstrates the instantaneous (resp. filtered) proportional control action of the APIF controllers of Class 1 (resp. 2 and 3). The
table shows the PI gains as a function of the various biological parameters.

Note that, if the sequestration reaction is fast enough (η is large), the effects of the feedforward block and
low pass filter become negligible. This can be observed by examining the asymptotic limit, as η → ∞, that
yields

lim
η→∞

KF = 0 and lim
η→∞

∣∣∣∣
ωc

s+ ωc

∣∣∣∣ = 1.

Consequently, as η →∞, the PI architecture of the linearized dynamics becomes exactly the same as that given
in Panel D of Figure 1.

Lastly, observe in the table of Figure 4 that the various PID gains may depend mutually on the same controller
parameters. As an example, for Class 1 with multiplicative inhibition, the controller parameter κ can tune both
the proportional gain KP1

and the integral gain KI simultaneously. This is a consequence of the inseparability
of the original nonlinear PID architecture. In contrast, for Class 1 with additive inhibition, the controller
parameter α can tune the proportional gain KP1 only. We will show next, that this simultaneous tuning of the
PID gains, with a single controller parameter, may yield better stability properties and performance.

3.4 Deterministic Stability Analysis & Performance Assessment

To compare the stability properties of the various proposed APIF controllers, we consider a particular plant,
depicted in Panel A of Figure 5, that is comprised of two species X1 and X2 (that is, L = 2). This plant may
represent a gene expression network where X1 is the mRNA that is translated to a protein X2 at a rate k1.
The degradation rates of X1 and X2 are denoted by γ1 and γ2, respectively. The closed-loop stoichiometry
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matrix and propensity function are also shown in Panel A. Using the Routh-Hurwitz stability criterion, one
can establish the exact conditions of (linear) stability of the fixed point (Equation (13) in Appendix A) for the
various proposed APIF controllers. These conditions, once satisfied, guarantee that the dynamics converge to
the fixed point when the trajectory is in the basin of attraction.

For the remainder of this section, we consider fast sequestration reactions, that is η is large. Under this
assumption, one can obtain simpler stability conditions that are calculated in Appendix A, and tabulated in
Panel B of Figure 5. The stability conditions are given as inequalities that has to be satisfied by the various
parameters of the closed-loop systems. A particularly significant lumped parameter is ρ := kk1θ

γ1γ2(γ1+γ2) that

depends only on the plant and standalone AIF controller parameters.
To study the stabilizing effect of the appended proportional (P) component, we fix all the parameters related

to the plant and standalone AIF controller (hence ρ is fixed), and investigate the effect of the other controller
parameters related to the appended proportional component. By examining the table in Panel B, one can see
that, compared to the standalone AIF, the APIF controller of Class 1 with multiplicative (resp. degradation)
inhibition enhances stability regardless of the exact values of κ (resp. δ) and n. This gives rise to a structural
stability property: adding these types of proportional components guarantees better stability without having
to fine-tune parameters.

In contrast, although the APIF controller of Class 1 with additive inhibition may enhance stability, special
care has to be taken when tuning α. In fact, if α is tuned to be larger than a threshold given by γ1γ2

k1
r [1 + (r/κ)n],

then stability is lost. Panel C of Figure 5 elaborates more on this type of APIF controller. Three cases arise
here. Firstly, if ρ < 1, that is the standalone AIF already stabilizes the closed-loop dynamics, then the (α, κ)-
parameter space is split into a stable and unstable region. In the latter (α is larger than the threshold), z2

grows to infinity, and the output x2 never reaches the desired set point r = µ/θ. Secondly, if 1 < ρ < 2,
that is the standalone AIF is unstable, then the (α, κ)-parameter space is split into three regions: (1) a stable
region, (2) an unstable region with divergent response similar to the previous scenario where ρ < 1, and (3)
another unstable region where persistent oscillations emerge as depicted in the bottom plot of Panel C. Note
that the closer ρ is to 2, the narrower the stability region is. Thirdly, for ρ > 2, the stable region disappears and
thus this APIF controller has no hope of stabilizing the dynamics without re-tuning the parameters related to
the standalone AIF controller (e.g. k and/or θ). Clearly, multiplicative and degradation inhibitions outperform
additive inhibition if stability is a critical objective. To this end, Panel D of Figure 5 shows how the settling time
and overshoot can be tuned by the controller parameters α, κ, and δ for additive, multiplicative, and degradation
inhibitions, respectively. It is shown that with multiplicative and degradation inhibition, one can simultaneously
suppress oscillations (settling time) and remove overshoots. In contrast, a proportional component with additive
inhibition can suppress oscillations but is not capable of removing overshoots as illustrated in the simulations of
Panel D to the right. Furthermore, one can lose stability if α is increased above a threshold as mentioned earlier.
Nevertheless, for multiplicative and degradation inhibitions, increasing the controller parameters (κ−1, δ) too
much can make the response slower but can never destroy stability.

The other two classes (2 and 3) are shown to be undesirable in enhancing stability. Observe that for Class 2,
the stability conditions are the same as the standalone AIF controller (in the limit as η →∞) with an exception
in the case of additive inhibition when α > γ1γ2

k1
r. Note that, in the latter, the inequality is structurally very

different from all other stability conditions. In fact, in this case, the actuation via Z2 dominates Z1, and hence
Z2 becomes responsible of the Integral (I) action. The detailed analysis of this network is not within the scope
of this paper, and is left for future work. Finally, APIF controllers of Class 3 deteriorates the stability margin,
since the right hand side of the inequalities are strictly less than one. However, this class of controllers can be
useful for slow plants if the objective is to speed up the response.

3.5 Stochastic Analysis: RPA & Stationary Variance

We now investigate the effect of the APIF controllers on the stationary (steady-state) behavior of the output
species XL in the stochastic setting. Particularly, we examine the stationary expectation Eπ [XL] and variance
Varπ [XL]. The evolution of the expectations of the various species in the closed-loop network of Figure 3
are simply given by the differential equation d

dtE [Xcl] = E [Sclλcl (Xcl)]. By substituting for the closed-loop
stoichiometry matrix Scl and propensity function λcl given in Figure 3, we obtain the following set of differential
equations that describe the evolution of the expectations for an arbitraty plant





d

dt
E [X] = E [Sλ(X)] + E [h(z1, z2, x1, xL)]

d

dt
E [Z1] = E [g(µ,XL)]− ηE [Z1Z2]

d

dt
E [Z2] = θE [XL]− ηE [Z1Z2] .

(7)
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Dummy

A Dummy

X1 X2

Z1 Z2

h(z1, z2, x1, x2)

g(µ, xL)

γ1 γ2
k1

φ

φ

φ φ

Scl =




R︷ ︸︸ ︷
R1 R2 R3

0 −1 0

1 0 −1

Rc︷ ︸︸ ︷
Rs Rq Rr R+

a R−a
0 0 0 1 −1
0 0 0 0 0

X1

X2



X

0 0 0

1 0 0

0 −1 1 0 0

1 −1 0 0 0

Z1

Z2



Z




λcl(x, z) =
[

R︷ ︸︸ ︷
R1 R2 R3

k1x1 γ1x1 γ2x2

Rc︷ ︸︸ ︷
Rs Rq Rr R+

a R−a
θx2 ηz1z2 g(µ, x2) h+(z1, z2, x2) h−(z2, x1, x2)

]T

Actuation Propensity: h(z1, z2, x1, x2) := h+(z1, z2, x2)− h−(z2, x1, x2)

B Stability Conditions for large η

ρ := kk1θ
γ1γ2(γ1+γ2)

Class Inhibition Stability Conditions (large η)

A
IF None ρ < 1

Additive





ρ < 1 +
k1α

γ1γ2κ

n(r/κ)n−1

[1 + (r/κ)n]2

α <
γ1γ2
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r [1 + (r/κ)n]

Multiplicative ρ < 1 + (n+ 1)(r/κ)n

A
P
IF

C
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1

Degradation ρ < 1 + δrn
[
γ1+(n+1)(γ1+γ2+δr

n)
γ1(γ1+γ2)

]
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k1
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ακk1
θ

>
γ1γ2
γ1 + γ2
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(
αk1
γ1γ2r

− 1

)n−1
n
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γ1γ2
k1

r
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P
IF
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ss

2
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κθ

n(r/κ)n−1

[1+(r/κ)n]2

A
P
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C
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3
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κθ
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C APIF Class 1 (Additive)

D APIF Class 1, Deterministic Performance

Additive
Multiplicative
Degradation

Settling Time
Overshoot

Standalone AIF
Additive
Multiplicative
Degradation

E APIF Class 1, Stochastic Performance

Additive
Multiplicative
Degradation

Exact
Approximate

Standalone AIF
Additive
Multiplicative
Degradation

Figure 5: See caption next page.
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Figure 5: Performance of APIF Controllers. (A) Gene Expression Network Controlled by APIF Controllers. (B)
Inequalities that need to be respected by the various controllers (when η is large enough) to guarantee closed-loop stability in
the deterministic setting. Multiplicative and degradation inhibition mechanisms exhibit superior stability properties. (C) APIF
controllers of class 1 with an additive inhibition mechanism, exhibit different stability properties for different ranges of the parameter
group ρ (that depends solely on the plant and the standalone AIF controller). In particular, for ρ < 2, proportional action can
stabilize the dynamics, while for ρ > 2, the proportional action cannot stabilize the dynamics without re-tuning the integral
action. (D) Settling time and overshoot for the output (X2) response as a function of controller parameters that are relevant
to the appended proportional components. Multiplicative and degradation inhibition mechanisms are capable of ameliorating the
performance without risking instability as opposed to the additive inhibition mechanism. (E) The degradation mechanism exhibits
superior stationary variance reduction. This is illustrated theoretically (see Table 1) and via simulations.

At stationarity, assuming that the closed-loop network is ergodic, the time derivatives are set to zero. Particu-
larly, we have

d

dt
(Eπ [Z1]− Eπ [Z2]) = 0 =⇒ Eπ [g(µ,XL)] = θEπ [XL] .

To achieve RPA at the population level (i.e. expectations), the stationary expectation Eπ [XL] of the output
species should not depend on the plant parameters. Clearly, this depends on the function g. In fact, if g is
nonlinear in XL, then there is no guarantee that RPA is achieved because the nonlinearity couples higher order
moments (that may depend on the plant parameters) with Eπ [XL]. As a result, RPA is not guaranteed for
the APIF controllers of Class 3 in the stochastic setting, although it is guaranteed in the deterministic setting.
Nonetheless if g is affine in XL, then RPA is guaranteed (once again, assuming ergodicity). In particular, for
the APIF controllers of Class 1 and 2, we have g(µ,XL) = µ and as a result Eπ [XL] = µ/θ. Clearly, for these
class of controllers, Eπ [XL] depends only on the control parameters µ and θ (like the deterministic setting),
and thus RPA is ensured as long as the closed-loop network is ergodic.

Next, we examine the variance of the output species XL. Unfortunately, a general analysis for an arbitrary
plant cannot be done. As a case study, we consider again the particular plant given in Panel A of Figure 5
in feedback with the APIF controller of Class 1. Even for this particular plant, one cannot derive an exact
expression for Varπ [X2]. This is a consequence of the moment closure problem that stems from the inherent
nonlinear nature of the antithetic motif (quadratic propensity: ηz1z2), and the proportional actuation (fractional
propensity: h(z1, z2, x1, x2)). However, a tailored moment closure technique was proposed in [33] to give an
approximate expression for Varπ [X2] in the case of the APIF controller of Class 1 with additive inhibition
and n = κ = 1. This approximate technique exploits the fact that Eπ [Z1Z2] = µ/η ≈ 0 for large η; and as
a result assumes that Z2 remains close to zero. Furthermore, a linearized approximation of the function h is
also exploited to circumvent the moment closure problem (see Appendix C for more details). Applying this
approximate technique to our more general controllers allows us to give a general (approximate) expression for
Varπ [X2] that encompasses all three types of inhibitions with an arbitrary hill coefficient n ≥ 1. The results
are summarized in Table 1, where a general formula is given for any choice of h. Recall that

h(z1, x1, x2) := h+(z1, x2)− h−(z1, x1, x2), ∂h(z1, x1, x2) =:
[
σ1 −σ3 −σ4

]
, σ1 > 0, σ3, σ4 ≥ 0.

Furthermore, recall from (6) that KP1
= σ4 and KI = σ5

σ1z1+σ2z2
z1+z2

. Since in the limit of large η, z2 ≈ 0 (refer
to Appendix C), and for Class 1 APIF controllers we have that σ5 = 1, then KI ≈ σ1 (for large η).

Stationary Variance Varπ [X2] ≈ r
[

(γ1+γ2+σ3)(γ1γ2+γ2σ3+σ1k1)+k1γ2(γ1+σ4)
(γ1+γ2+σ3)(γ1γ2+γ2σ3+k1σ4)−σ1k1θ

]

Controller h+(z1, x2) h−(x1, x2) σ1 = KI σ3 σ4 = KP1

AIF kz1 0 k 0 0

APIF Class 1 (Additive Inhibition) kz1 + α
1+(x2/κ)n 0 k 0 α

r
n(r/κ)n

[1+(r/κ)n]2

APIF Class 1 (Multiplicative Inhibition) kz1
1+(x2/κ)n 0 k

1+(r/κ)n 0 γ1γ2
k1

n(r/κ)n

1+(r/κn)

APIF Class 1 (Degradation Inhibition) kz1 δx1x
n
2 k δrn n δγ2k1 r

n

Table 1: Output Variance for the gene expression network regulated by the APIF controllers of Class 1.

Observe that the denominator of the variance expression is positive when the deterministic setting is stable
(see (14)). Hence this expression is only valid when the deterministic setting is stable; otherwise, this approxi-
mation is meaningless. One can easily see from the general expression in Table 1 that Varπ [X2] is monotonically
increasing in σ1 ≈ KI and monotonically decreasing in σ4 = KP1 . Therefore, this approximate formula for the
variance suggests that increasing the integral gain KI (resp. proportional gain KP ) increases (resp. decreases)
the stationary variance of the output species X2. This conclusion extends the results in [33] to more general
proportional actuations involving different mechanisms of inhibitions with cooperativity (n ≥ 1).
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Particularly, for the case of additive inhibition (which is similar to the previous works in [33] and [35] with
κ = n = 1), α tunes the proportional gain only. In fact increasing α increases σ4 = KP1

and thus decreases the
stationary variance as illustrated in Panel E of Figure 5 through both stochastic simulations and the approximate
formula. However, this inhibition mechanism has the disadvantage that α, similar to the deterministic setting,
cannot exceed a threshold where ergodicity is lost. Additionally, the accuracy of the approximate formula
deteriorates, as illustrated in Panel E, when α gets closer to the verge of losing stability. As a result, α has to
be tuned carefully. In contrast, for the case of multiplicative inhibition, tuning κ automatically tunes both the
proportional and integral gain in a beneficial manner. More precisely, decreasing κ enough (κ < r), increases
the proportional gain KP1

= σ4 and decreases the integral gain KI ≈ σ1, simultaneously. This has the effect
of decreasing the variance without risking loss of stability as illustrated in Panel E. Similarly, for the case of
degradation inhibition, increasing δ automatically increases the proportional gain and the degradation rate of the
input species X1 (through σ3). This also has the effect of decreasing the variance without risking loss of stability
as illustrated in Panel E. In fact, multiplicative and degradation inhibitions provide a structural property of
decreasing the stationary variance of the output species X2. That is, the relevant controller parameters (κ and
δ) doesn’t have to be fine tuned to decrease the variance and not risk loss of stability. Furthermore, it is clear
from Table 1 that increasing the hill coefficient n will boost the proportional gains σ4 = KP and thus ameliorate
the effectiveness of proportional component in decreasing the stationary variance.

4 Antithetic Proportional-Integral-Derivative Feedback Controllers

In this section, we append a Derivative (D) control action to the APIF (Class 1) controller of Figure 3. The
proposed motif, depicted in Panel A of Figure 6, yields a PID architecture whose P, I and D components are
inseparable as described in Panel E of Figure 1. The main advantage of the proposed APIDF controller is
its simplicity. Observe that, compared to the APIF (Class 1), no additional controller species are added, and
only one additional reaction is required to produce Z1 catalytically from XL at a rate β < θ. Intuitively,
the proposed motif involves an antithetic integral action cascaded with an incoherent feedforward loop. More
precisely, the output species XL directly inhibits X1 and simultaneously produces it via the intermediate species
Z1. This incoherent feedforward loop gives rise to a Proportional (P) and Derivative (D) action simultaneously
in an inseparable fashion as will be shown next. The closed loop network with the stoichiometry matrix and
propensity function are all shown in Figure 6.

The deterministic dynamics of the closed loop system are given by





ẋ = f(x) + h(z1, x1, xL)e1

ż1 = µ+ βxL − ηz1z2

ż2 = θxL − ηz1z2,

(8)

where f(x) = Sλ(x). Similar to the APIF controllers, the actuation propensity h can take different forms as
illustrated in the table of Figure 6, Panel A. The output component of the fixed point can be easily calculated
to be

xL =
µ

θ − β . (9)

Note that xL is positive and well defined under the imposed condition β < θ. This means that RPA is achieved,
and the parameters µ, θ and β serve as knobs for tuning the set point.

To analytically verify that the proposed architecture indeed involves a PID control action, we carry out a

linear perturbation analysis similar to that carried out for the APIF controllers. Once again, let
[
x̃T z̃1 z̃2

]T

denote the perturbation from the fixed point
[
xT z1 z2

]T
of (8). We also assume that the reference signal µ

is allowed to slightly vary in time around a nominal reference µ. That is, we have

x̃(t) = x(t)− x; z̃1(t) = z1(t)− z1; z̃2(t) = z2(t)− z2; µ̃(t) = µ(t)− µ.

The linearized dynamics can thus be written as

˙̃x = Ax̃+ (σ1z̃1 − σ3x̃1 − σ4x̃L) e1

˙̃z1 = µ̃+ βx̃L − ηz2z̃1 − ηz1z̃2

˙̃z2 = θx̃L − ηz2z̃1 − ηz1z̃2,

where A := ∂f(x), ∂h(z1, x1, xL) =:
[
σ1 −σ3 −σ4

]
such that σ1 > 0 and σ3, σ4 ≥ 0.
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X1 XL

Z1 Z2

h(z1, x1, xL)

µ+ βxL

φ

φ

Scl =




R︷ ︸︸ ︷
R1 R2 · · · RK

S

Rc︷ ︸︸ ︷
Rs Rq Rr R+

a R−a
0 0 0 1 −1

0

0 0 0 0 0

X1

X2

...

XL−1

XL





X

0
0 −1 1 0 0

1 −1 0 0 0

Z1

Z2



Z




λcl(x, z) =
[

R︷ ︸︸ ︷
R1 R2 · · · RK

λ(x)

Rc︷ ︸︸ ︷
Rs Rq Rr R+

a R−a
θxL ηz1z2 µ+ βxL h+(z1, xL) h−(x1, xL)

]T

Actuation Propensity: h(z1, x1, xL) := h+(z1, xL)− h−(x1, xL)

Reference Rxn: Rr Sensing Rxn: Rs Sequestration Rxn: Rq
φ

µ+ βxL−−−−−→ Z1 XL
θ−−→ XL + Z2 Z1 + Z2

η−−→ φ

Inhibition Type Actuation Rxns
Actuation

Propensity h

Additive R+
a : φ −−→ X1 kz1 +

α
1+(xL/κ)

n

Multiplicative R+
a : φ −−→ X1

kz1
1+(xL/κ)

n

Degradation
R+
a : Z1 −−→ Z1 +X1

R−
a : X1 + XL −−→ XL

kz1 − δx1xnL

B Controller

+−
KI
s

Integrator

KF

Feedforward Gain

+− −
ωc
s+ωc

Low Pass Filter

P (s)

Plant

KS
Sensing

Gain KDs Derivative
GainKP

Proportional
Gain

µ̃ ẽ x̃Lũ

Inhibition KI KP KD KF

Additive k z̄1
z̄1+z̄2

α
κ
n(x̄L/κ)n−1

[1+(x̄L/κ)n]
2 − β k

η(z̄1+z̄2)
α/κ

η(z̄1+z̄2)
n(x̄L/κ)n−1

[1+(x̄L/κ)n]
2

k
η(z̄1+z̄2)

Multiplicative k
1+(x̄L/κ)n

z̄1
z̄1+z̄2

k
1+(x̄L/κ)n

[
z̄1
κ
n(x̄L/κ)n−1

1+(x̄L/κ)n − β
η(z̄1+z̄2)

]
kz̄1/κ

η(z̄1+z̄2)
n(x̄L/κ)n−1

[1+(x̄L/κ)n]
2

1
1+(x̄L/κ)n

k
η(z̄1+z̄2)

Degradation k z̄1
z̄1+z̄2

nδx̄1x̄
n−1
L − βk

η(z̄1+z̄2)
nδx̄1x̄

n−1
L

η(z̄1+z̄2)
k

η(z̄1+z̄2)

Figure 6: Antithetic Proportional-Integral-Derivative Feedback (APIDF) Controllers. (A) APIDF Control Net-
work. An additional production reaction (marked in blue) is appended to the APIF controller of class 1 (see Figure 3) to obtain an
additional derivative action. Intuitively, this additional reaction introduces an incoherent feedforward pathway from XL to X1 that
is cascaded with the standalone AIF controller. Similar to the previously introduced APIF controllers, three different biologically-
relevant inhibition mechanisms are considered. (B) APIDF Controller Block Diagram. Similar to the block diagram of the
APIF controllers depicted in Figure 4, this block diagram represents the dynamics of the linearized closed-loop system obtained by
the proposed APIDF controller with all three inhibition mechanisms. The table shows the PID gains as a function of the various
biological parameters.
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Taking the Laplace transforms yields

x̃L(s) = eTL
(
sI − Ā

)−1
e1ũ(s); where Ā := A− σ3e1e

T
1

ũ(s) = σ1z̃1(s)− σ4x̃L(s)

z̃1(s) =
µ̃(s) + βx̃L(s)− ηz1z̃2(s)

s+ ηz2

z̃2(s) =
θx̃L(s)− ηz2z̃1(s)

s+ ηz1
.

Next, we express z̃1(s) and z̃2(s) in terms of µ̃(s), x̃L(s) and the error ẽ(s) := µ̃(s)− (θ − β) x̃L(s) as

z̃1(s) =

[
µ̃(s) + βx̃L(s) +

ηz1

s
ẽ(s)

]
1

s+ η (z1 + z2)

z̃2(s) =

[
θx̃L(s)− ηz2

s
ẽ(s)

]
1

s+ η (z1 + z2)
.

The feedback control action ũ(s) can thus be written as

ũ(s) =

[
σ1µ̃(s) +

ησ1z1

s
ẽ(s) + σ1βx̃L(s)

]
1

s+ η (z1 + z2)
− σ4x̃L(s)

=

[
σ1µ̃(s) +

ησ1z1

s
ẽ(s)− σ4sx̃L(s)− (σ4η(z1 + z2)− σ1β) x̃L(s)

]
1

s+ η (z1 + z2)
.

This is the controller transfer function that relates the control action ũ to the reference signal µ̃, the error signal
ẽ and the plant output x̃L in the Laplace domain. Therefore, equipped with the controller and plant transfer
functions given by

Controller: ũ(s) =

[
KF µ̃(s) +

KI

s
ẽ(s)−

(
KP +KDs

)
x̃L(s)

]
ωc

s+ ωc

Plant: x̃L(s) = P (s)ũ(s);

where:





KF =
σ1

η(z1 + z2)
, KI = σ1

z1

z1 + z2
, KS = θ − β, KP = σ4 −

σ1β

η(z1 + z2)
,

KD =
σ4

η(z1 + z2)
ωc = η(z1 + z2), P (s) = eTL

(
sI − Ā

)−1
e1,

(10)

we can now draw the block diagram shown in Panel B of Figure 6 which compactly encompasses the proposed
APIDF architectures with three different inhibition mechanisms. Note that for the proposed controller archi-
tecture to properly function as a PID controller, β has to be strictly positive. If β = 0, it can be shown that the
low pass filter annihilates the effect of the derivative component. Observe that the various controller parameters
(η, θ, β, ...) appear mutually in the various PID gains and cutoff frequency. This is the consequence of having an
inseparable PID controller. Recall that for the previously proposed APIF controllers, the sequestration reaction
is assumed to strong (η is large). In contrast, for the proposed two-species APIDF, η cannot be large because
the derivative gain KD := σ4

η(z1+z2) becomes negligible. As a result, to obtain a complete PID architecture, η

should play the role of a tuning parameter that is small enough to control the derivative gain KD.
Next, we investigate the generality of the proposed PID controllers. That is, we aim at answering the follow-

ing question: Are there enough degrees of freedom in the controller to freely tune the PID gains (KP ,KI ,KD)
and cutoff frequency ωc? To answer this question, we consider a particular plant in feedback with the proposed
APIDF controller depicted in Figure 7. It is proved in Appendix B that the achievable PID gains and cutoff
frequency are restricted to the following sets

Additive Inhibition: SA =

{
(KP ,KI ,KD, ωc) : KP < KDωc <

n

n+ 1
(KP + τ)

}

Multiplicative Inhibition: SM =

{
(KP ,KI ,KD, ωc) : KP < KDωc < min{nτ,KP + τ}

}

Degradation Inhibition: SD =

{
(KP ,KI ,KD, ωc) : KP < KDωc <

n

n− 1
(KP + τ)

}
,

(11)

where τ := γ1γ2
k1

is a rate constant that depends solely on the plant. Appendix B also provides exact formulas that
show how to tune the controller parameters µ, θ, η, κ, α, β, δ, ... to achieve a given set of PID gains (KP ,KI ,KD)
and cutoff frequency ωc. Several remarks are worth noting here. Firstly, observe that SA ⊂ SM ⊂ SD. This
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means that more possible values of the PID gains and the cutoff frequency are achievable with degradation than
with multiplicative and additive inhibitions. In fact, for n = 1, SD becomes independent of the plant and KDωc
has to respect a lower bound only. This is as opposed to SM and SA where the plant rate constant τ imposes
an upper bound on KDωc. Secondly, it is clear that not all PID gains and cutoff frequencies are achievable.
This is the price that we pay to keep the PID controller simple, that is, involve only two species Z1 and Z2.
However, although these sets limit the achievable gains and cutoff frequency, there is still enough room that
allows us to leverage the benefits of the proposed PID controller and achieve various performance objectives as
will be demonstrated in the subsequent sections.

4.1 Derivative Control Action Stabilizes the Dynamics but Boosts the Variance

To study the effects of the (inseparable) Derivative control action with different inhibition mechanisms, we
consider the closed loop network of Figure 7 Panel A. The plant is the same as the one in Figure 5, however
the controller is different. The Proportional and Integral gains are fixed to be KP = 0.25 and KI = 1.2. The
cutoff frequency is also fixed to be ωc = 10. We only vary the Derivative gain KD to asses its influence on the
transient response and the stationary variance. The plant parameters are set to k1 = γ1 = 2, γ2 = 1 except
for the case of additive inhibition where γ2 = 2 to make the dynamics more stable and circumvent the possible
instabilities that might emerge as shown previously in Figure 5, Panel C. The values of the various controller
network parameters can be calculated from the gains and cutoff frequency using the formulas in Appendix B,
where θ = 2, n = 1 and κ = 1 (for the additive inhibition) are fixed. The deterministic simulation results,
depicted in Panel B of Figure 7, clearly shows that the Derivative gain KD has a stabilizing effect and is capable
of suppressing oscillations. Interestingly, compared to the APIF controller in Panel D of Figure 5, the derivative
component adds an additional knob to improve the transient response. Particularly, recall that with additive
inhibition, the APIF controller was capable to suppress the oscillations but could not get rid of the overshoot.
The APIDF controller, however, is capable of removing the overshoot. Furthermore, with multiplicative and
degradation inhibition, the APIF controller suppresses the oscillations at a price of slowing down the transient
response. The APIDF controller, however, can do the opposite. That is, it suppresses the oscillations while
keeping the initial transient response fast. Therefore, with this additional (Derivative) knob, one has an extra
degree of freedom to optimize the transient response.

In the stochastic setting, the derivative component boosts the variance of the output species Var [X2] when
the inhibition mechanism is additive or multiplicative as depicted in Panel C of Figure 7. Intuitively, this is a
consequence of the fact that the derivative operation is vulnerable to noise. In fact, it is well known in control
theory that the D component hinders the PID controller’s resilience to noise [16, 10.5], and, consequently, it is
either set to zero or low-pass filtered in many industrial applications. This seems to also apply to BCRNs as well.
Nonetheless, with degradation inhibition, increasing KD reduces the stationary variance. At first, this might
seem to contradict our previous observation. However, we will show next that with degradation inhibition,
there is a “hidden” proportional component inside the plant of Figure 6 Panel B. This hidden proportional
component has a gain K ′P that is proportional to the derivative gain KD as depicted in Panel D of Figure 7.
As a result, if KD is increased, K ′P is also increased and thus it counteracts the variance-boosting effect of the
derivative component while maintaining its benefits on the transient response.

To show this hidden proportional control action, recall that the transfer function of the plant is given by

x̃L(s) = P (s)ũ(s), with P (s) = eTL(sI − Ā)−1e1, Ā = A− σ3e1e
T
1 .

This input-output relationship of the plant can be equivalently rewritten in the time domain as

˙̃x = Ax̃+ (ũ− σ3x̃1)e1, x̃L = eTLx̃,

where ũ := σ1z̃1 − σ4x̃L and x̃1 = eT1 x̃. By keeping the term σ3x̃1 separated, one can write the input-state
relationship as x̃(s) = (sI −A)−1e1(ũ− σ3x̃1). Therefore we have that

[
x̃L(s)
x̃1(s)

]
=

[
eTL
eT1

]
(sI −A)−1e1

(
ũ(s)−K ′P x̃1(s)

)
, with K ′P := σ3.

This equation is exactly equivalent to the block diagram in Panel D of Figure 7. Finally to show that K ′P is

proportional to KD, recall that σ3 := −∂x1h(z1, x1, xL) = δrn and KD = nδx1r
n−1

η(z1+z2) from the table of Figure 6

Panel B. Hence, since ωc := η(z1 + z2), we have that K ′P = rωc
nx1

KD.
Next, we present a theoretical analysis that supports the variance-boosting effect of the derivative component.

Recall that the approximate formulas derived for the stationary variance Varπ [X2] in the case of the APIF
controllers are valid when η is large. This requirement is essential to apply the approximate moment closure
technique in Appendix C. However, for the proposed APIDF controllers, η is required to be small; otherwise,
KD ≈ 0 and the controller operates effectively as a PI controller only. Consequently, it is difficult to derive an
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B APIDF, Deterministic Performance
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C APIDF, Stochastic Performance

Additive Inhibition Multiplicative Inhibition Degradation Inhibition

D Plant Linearized Dynamics

+−
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eT1

]
(sI − A)−1 e1
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K ′P
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ũ x̃L
x̃1

x̃L
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Figure 7: Performance of APIDF Controllers. (A) Gene Expression Network Controlled by APIDF Controllers. (B) and
(C) The PI gains and cutoff frequency KP ,KI and ωc, respectively, are fixed while the derivative gain KD is increased to asses the
effect of the derivative control action on the deterministic and stochastic performances. The derivative control action appears to have
a stabilizing effect on the (deterministic) transient dynamics by suppressing oscillations. For the stochastic dynamics, increasing the
derivative gain seems to boost the stationary variance of the output species in the cases of additive and multiplicative inhibitions.
However, with degradation inhibition, increasing the derivative gain has an opposite effect on the variance. The reason is explained
in Panel (E) which demonstrates that the degradation inhibition gives rise to an additional (hidden) proportional control action
with gain K′

P that is proportional to the derivative gain KD. This additional (hidden) proportional component is capable of
counteracting the variance-boosting effect of the derivative component while simultaneously exploiting its stabilization benefits.
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approximate formula for the stationary variance Varπ [X2] in the case of the proposed APIDF controllers (with
η small).

To this end, we construct, instead, a linear “fictitious” reaction network that has a linear PID control
structure (similar to Figure 1, Panel C) and analyze it. The linearity of the fictitious network is essential to
circumvent the moment closure problem and, thus, obtain an exact formula for the variance. We call it a
fictitious reaction network because the state variables and propensities are theoretically allowed to go negative.
However, this fictitious network can be thought of as zeroth order kinetics, or a linearization of a real nonlinear
reaction network whose state variables and propensities are always non-negative.

Plant: Birth-Death Process

Controller: Fictitous Network

Xφ
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D
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D

Figure 8: A Fictitious (non-biochemical) linear PID controller. A fictitious reaction network is designed (upper table)
that realizes the linear dynamics of the standard PID controller with filtered derivative control. This fictitious reaction network
can be though of as a linearization of a realistic (nonlinear) reaction network, or a network with zeroth-order kinetics. In fact, any
nonlinear PID controller will have a linearization possessing a similar architecture. Since the dynamics are linear, a formula for the
stationary variance is derived and depicted in the lower table. The integral (resp. proportional) control induces an increase (resp.
decrease) in the stationary variance. Furthermore, the derivative control induces a boost in the stationary variance if the cutoff
frequency ωc is large enough (mimicking a pure unfiltered derivative controller). These theoretical conclusions are consistent with
the proposed nonlinear APIDF controllers.

The fictitious network is depicted in Figure 8, where we consider a plant describing a birth-death process
for simplicity. More general unimolecular (linear) plants can also be considered (refer to Appendix D). Observe
that the controller has the basic PID structure where the species X is measured, and compared to the reference
r by computing the error e := r − x. Then the Proportional, Integral, and Derivative terms of the error are
computed and summed up to obtain the control action u that is fed back to the plant as the production rate
of the species X. Note that the derivative term is passed through a low pass filter with a cutoff frequency ωc,
and thus the PID has a filtered derivative component which becomes a pure derivative in the limit as ωc →∞.
The goal is to realize the closed-loop system as a fictitious reaction network and derive an exact formula for the
stationary variance Varπ [X].
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From the block diagram in Figure 8, one can immediately write down the transfer function of the controller
(in the Laplace domain) as

u(s) =

(
KI

s
+KP +KDs

ωc
s+ ωc

)
e(s),

To rewrite this controller relationship in the time domain, we introduce two state variables z1 and z2 defined as

z1(s) :=
e(s)

s
and

se(s)

s+ ωc
=

(
1− ωc

s+ ωc

)
e(s) =: e(s)− z2(s).

The first differential equation in z1 can be easily written as ż1 = r − x. The second differential equation in z2

can be written as ż2 = −ωcz2 + ωcr − ωcx. Therefore, the control action u in the time domain can be written
in terms of z1 and z2 as





u = (KP +KDωc)r − (KP +KDωc)x+KIz1 −KDωcz2

ż1 = r − x
ż2 = −ωcz2 + ωcr − ωcx.

These linear equations can be realized as a set of fictitious reactions listed in the Table of Figure 8. With
the list of reactions at hand, one can construct the stoichiometry matrix and propensity function that are also
depicted in Figure 8. Observe that the propensity function is affine in the state variables, and as a result
there is no moment closure problem, and one can derive exact expressions for the stationary expectations and
variances. In fact, it is shown in Appendix D that, assuming ergodicity of the closed loop system, the stationary
expectation is Eπ [X] = r, regardless of what the plant is. This is a consequence of the integral control action
that ensures RPA. Furthermore, an exact formula for the stationary variance Varπ [X2] is derived and shown in
the lower table of Figure 8. By setting either (KP ,KD) = 0 or KP = 0, we obtain the stationary variance for
the Integral (I) and Proportional-Integral (PI) controllers, respectively. Clearly, the integral gain KI increases
the stationary variance; whereas, the proportional gain KP decreases it. This agrees with the simulations and
theoretical analysis of our proposed APIF controllers and the previous work in [33].

The expression for the stationary variance in the case of full PID control is slightly more complicated, but
two conclusions can be drawn from it. Firstly, recall that to obtain a pure (non-filtered) Derivative control, we
increase the cutoff frequency ωc to infinity. Observe that for large ωc, the stationary variance behaves like

Varπ [X] ≈ r KDωc
KP + γ

(for large ωc),

which is monotonically increasing in KD. This means that for a pure derivative control action (asymptotic limit
as ωc → ∞), the stationary variance blows up to infinity. Even for a finite cutoff frequency ωc, it is shown
in Appendix D that for ωc >

KI√
KP+γ

, the stationary variance is a monotonically increasing function of KD.

Otherwise, for ωc <
KI√
KP+γ

, the stationary variance decreases in KD as long as KD is less than a threshold KTh
D

that is calculated in Appendix D. However, above this threshold, the stationary variance increases in KD again.
This analysis implies that the derivative control action, if not low-pass filtered intensively (low cutoff frequency),
boosts the stationary variance. Indeed for a pure derivative the variance blows up to infinity. This conclusion
is in agreement with the simulation results of the APIDF controller in Figure 7. Secondly, observe that the
stationary variance can not be less than the set point r no matter what the PID gains are. We conjecture
that this is a consequence of the linearity for this PID controller. Interestingly, the proposed nonlinear APIF
controllers are capable of reducing the stationary variance to values lower than the set point as illustrated in
both the appoximate analytical formulas given in Table 1 and the simulations results of Figure 5. It seems that
the nonlinearity of the APIF controllers is beneficial in reducing the variance to small values.

We close this section with a final remark. Although this controller describes a fictitious network, one can
still use it in silico by artificially forcing all fictitious propensities to remain non-negative. For example, one
can replace the fictitious propensity of reaction R6 by max{(KP +KDωc)x+KDωcz2, 0}.

5 Conclusion

This paper proposes a set of (nonlinear) PID controllers that can be realized by biochemical reaction networks.
The main goal of this paper is to keep the PID designs as simple as possible in order to make them amenable for
biological implementations. A general framework for biomolecular feedback controllers is introduced that can
be used to pave the way for other possible controllers in the future. The various PID designs are verified and
assessed using theoretical tools and (deterministic and stochastic) simulations. It is shown that the details of
the PID realizations (particularly, the inhibition mechanisms) have a critical effect on the targeted performance
objectives such as stability, transient dynamics, and variance. We believe that research along this direction
helps building high performance controllers that are capable of reliably manipulating genetic circuits for various
applications.
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APPENDIX

A Derivation of the Stability Conditions of the APIF Controllers

Consider the closed-loop network in Figure 5 Panel A where the APIF controller is in feedback with a particular
plant comprised of two species X1 and X2. We now exploit the Routh-Hurwitz Criterion to derive a necessary
and sufficient condition of stability for all of the proposed APIF controllers. Using the closed loop stoichiometry
matrix and propensity function, shown in Figure 5, one can write the deterministic closed-loop dynamics as

ẋ1 = h(z1, z2, x1, x2)− γ1x1

ẋ2 = k1x1 − γ2x2

ż1 = g(µ, x2)− ηz1z2

ż2 = θx2 − ηz1z2.

(12)

Hence, the Jacobian J , evaluated at the fixed point
[
x1 x2 z1 z2

]T
, of the right hand side is calculated to

be

J =




−(γ1 + σ3) −σ4 σ1 −σ2

k1 −γ2 0 0
0 −σ6 −ηz2 −ηz1

0 θ −ηz2 −ηz1


 ,

where ∂h(z1, z2, x1, x2) =:
[
σ1 −σ2 −σ3 −σ4

]
, and ∂g(µ, x2) =:

[
σ5 −σ6

]
. Note that σi ≥ 0. The

characteristic polynomial p(s) := det(sI − J) is thus calculated to be

p(s) = s4 + (ηz + γ̄1) s3 + (ηzγ̄1 + γ̄2) s2 + [ηzγ̄2 + k1 (θσ2 + σ1σ6)] s+ ηk1 (θ + σ6) (σ1z1 + σ2z2)

where z := z1 + z2, γ̄1 := γ1 + γ2 + σ3, and γ̄2 := (γ1 + σ3)γ2 + k1σ4.

Using the characteristic polynomial we construct the Routh-Hurwitz table:

s4 1 ηzγ̄1 + γ̄2 ηk1(θ + σ6)(σ1z1 + σ2z2)
s3 ηz + γ̄1 ηzγ̄2 + k1(θσ2 + σ1σ6) 0

s2 ηzγ̄1(ηz+γ̄1)+γ̄1γ̄2−k1(θσ2+σ1σ6)
ηz+γ̄1

ηk1(θ + σ6)(σ1z1 + σ2z2) 0

s1
ηzγ̄2 + k1(θσ2 + σ1σ6)

− ηk1(θ+σ6)(σ1z1+σ2z2)(ηz+γ̄1)2

ηγ̄1z(ηz+γ̄1)+γ̄1γ̄2−k1(θσ2+σ1σ6)

0 0

s0 ηk1(θ + σ6)(σ1z1 + σ2z2) 0 0

The Routh-Hurwitz criterion states that the necessary and sufficient condition of local stability of the fixed
point is obtained by forcing all the entries of the first column to be positive. Therefore the exact necessary and
sufficient conditions of stability of the fixed point are

ηzγ̄1(ηz+ γ̄1) + γ̄1γ̄2 > k1(θσ2 +σ1σ6) and ηzγ̄2 +k1(θσ2 +σ1σ6) >
ηk1(θ + σ6)(σ1z1 + σ2z2)(ηz + γ̄1)2

ηγ̄1z(ηz + γ̄1) + γ̄1γ̄2 − k1(θσ2 + σ1σ6)
.

(13)
This condition of stability is cumbersome and not easy to compare for different APIF controllers (that is,
different σi’s and z). However, one can obtain a simpler but approximate condition of stability for the case of
strong sequestration (asymptotic limit as η → ∞). In fact, the first condition in (13) is always satisfied when
η → ∞ assuming that σ1, σ2 and σ6 are finite (which can be easily checked to be a valid assumption for the
proposed APIF controllers). To simplify the second condition in (13), we first examine the asymptotic behavior
of z1 and z2 as η →∞. For any η > 0, we have that z1z2 = θx2/η. Thus, as long as x2 is finite, we have that
z1z2 = 0 in the limit as η → ∞. This means that we have two possibilities in the asymptotic limit as η → ∞:
if z1 > 0 then z2 = 0, and if z2 > 0 then z1 = 0. As a result, as η →∞, the first condition of stability is always
satisfied. The second condition of stability in the limit as η →∞ takes one of the two forms

{
σ1k1(θ + σ6) < γ̄1γ̄2 and (z1 > 0, z2 = 0)

σ2k1(θ + σ6) < γ̄1γ̄2 and (z1 = 0, z2 > 0).

This can be rewritten as
{
σ1k1(θ + σ6) < (γ1 + γ2 + σ3)(γ1γ2 + σ3γ2 + k1σ4) and (z1 > 0, z2 = 0)

σ2k1(θ + σ6) < (γ1 + γ2 + σ3)(γ1γ2 + σ3γ2 + k1σ4) and (z1 = 0, z2 > 0).
(14)
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Equations (14) provide the approximate stability conditions compactly for all the proposed APIF controllers.
To this end, the stability conditions for each APIF controller are obtained by simply computing σi’s, z1, and
z2 for each particular controller architecture, and then take the limit as η → ∞. The calculation results are
tabulated below, where r is the desired set point and is equal to µ/θ for APIF controllers of Class 1 and 2, but
is given by (4) and (5) for the APIF controller of Class 3.

Class Inhibition σi’s z̄1(η →∞) z̄2(η →∞)

A
IF None

σ1 = k, σ5 = 1

σ2 = σ3 = σ4 = σ6 = 0
γ1γ2r
kk1

0

Additive

σ1 = k, σ5 = 1

σ4 =
α

κ

n(r/κ)n−1

[1 + (r/κ)n]2

σ2 = σ3 = σ6 = 0

1
k

[
γ1γ2r
k1
− α

1+(r/κ)n

]
0

Multiplicative

σ1 =
k

1 + (r/κ)n
, σ5 = 1

σ4 =
γ1γ2
k1

n(r/κ)n

1 + (r/κ)n

σ2 = σ3 = σ6 = 0

γ1γ2r
kk1

[1 + (r/κ)n] 0

A
P
IF

C
la
ss

1

Degradation

σ1 = k, σ5 = 1, σ3 = δrn

σ4 = nrn
δγ2
k1

σ2 = σ6 = 0

γ2r
kk1

(γ1 + δrn) 0

Additive

σ1 = k, σ5 = 1

σ2 =
α

κ

n(z̄2/κ)n

1 + (z̄2/κ)n

σ3 = σ4 = σ6 = 0





1

k

(
γ1γ2r

k1
− α

)
if α <

γ1γ2r

k1

0 if α >
γ1γ2r

k1





0 if α <
γ1γ2r

k1

κ n

√
αk1
γ1γ2r

− 1 if α >
γ1γ2r

k1

Multiplicative

σ1 = k, σ5 = 1

σ2 =
kz̄1
κ

n(z̄2/κ)n−1

[1 + (z̄2/κ)n]2

σ3 = σ4 = σ6 = 0

γ1γ2r
kk1

0

A
P
IF

C
la
ss

2

Degradation

σ1 = k, σ5 = 1

σ2 = n
δγ2r

k1
z̄n−12 , σ3 = δz̄n2

σ4 = σ6 = 0

γ1γ2r
kk1

0

Additive

σ1 = k, σ5 = 1

σ6 =
α

κ

n(r/κ)n−1

[1 + (r/κ)n]2

σ2 = σ3 = σ4 = 0

γ1γ2r
kk1

0

A
P
IF

C
la
ss

3

Multiplicative

σ1 = k, σ5 =
1

1 + (r/κ)n

σ6 =
µ

κ

n(r/κ)n−1

[1 + (r/κ)n]2

σ2 = σ3 = σ4 = 0

γ1γ2r
kk1

0

Based on the table and (14), one can write the stability conditions for each APIF controller. The various
stability conditions are tabulated in Figure 5 Panel B.
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B Span of the APIDF controller in the PID parameter space

Lemma 1. Consider the closed loop network given in Figure 7 Panel A whose plant is comprised of two
species and is in feedback with the proposed APIDF controller with additive inhibition and hill coefficient n. Let
τ := γ1γ2

k1
be a rate constant that depends solely on the plant. Then any given set of PID gains (KP ,KI ,KD)

and cutoff frequency ωc satisfying the following constraint

KP < KDωc <
n

n+ 1
(KP + τ), (15)

can be obtained by setting the controller parameters as

α = KDωc
(κn + rn)

2

nrn−1κn

η =
KIωc/r

τ − κn+rn

nrn KDωc

k± =
ωc
(
τ − κn+rn

nrn KDωc
)

2θ

[
1±

√
1− 4KIθ±

ωc
(
τ − κn+rn

nrn KDωc
)
]

β± =
2θ(KDωc −KP )

(
τ − κn+rn

nrn KDωc
)
[

1±
√

1− 4KIθ±

ωc(τ−κ
n+rn

nrn KDωc)

] ,

(16)

where r is the desired set point, and κ and θ± are free parameters that respect the following conditions




κ < r n

√
n

KDωc
[τ − (KDωc −KP )]− 1

θ+ <

[
1− KDωc −KP

τ − κn+rn

nrn KDωc

]
ωc
KI

(KDωc −KP ) , if 1 <
2(KDωc −KP )

τ − κn+rn

nrn KDωc
< 2

θ± <
ωc

4KI

(
τ − κn + rn

nrn
KDωc

)
, if 1 >

2(KDωc −KP )

τ − κn+rn

nrn KDωc

θ− >

[
1− KDωc −KP

τ − κn+rn

nrn KDωc

]
ωc
KI

(KDωc −KP ) , if 1 >
2(KDωc −KP )

τ − κn+rn

nrn KDωc
.

Proof. For the closed loop system under consideration, the actuation propensity is given by h(z1, x2) = kz1 +
α

1+(x2/κ)n , and the closed loop dynamics are given by

ẋ1 = kz1 +
α

1 + (x2/κ)n
− γ1x1

ẋ2 = k1x1 − γ2x2

ż1 = µ+ βx2 − ηz1z2

ż2 = θx2 − ηz1z2.

The fixed point is thus given by

[
x1 x2 z1 z2

]
=
[
γ2r
k1

r 1
k

(
τr − α

1+(r/κ)n

)
kθr
η

1
τr− α

1+(r/κ)n

]
,

where r := µ
θ−β and τ := γ1γ2

k1
. Furthermore, the partial derivatives of h are given by

σ1 := ∂z1h(z1, x2) = k; σ4 := −∂x2
h(z1, x2) =

α

r

n(r/κ)n

[1 + (r/κ)n]
2 .

By substituting the expressions of x2, z1, z2, σ1 and σ4 in (10), we obtain the following set of nonlinear algebraic
equations

σ4 = KDωc =⇒ α

r

n(r/κ)n

[1 + (r/κ)n]
2 = KDωc

σ1ηz1 = KIωc =⇒ η

(
τr − α

1 + (r/κ)n

)
= KIωc

η(z1 + z2) = ωc =⇒ η

k

(
τr − α

1 + (r/κ)n

)
+

kθr

τr − α
1+(r/κ)n

= ωc

σ1β = (KDωc −KP )ωc =⇒ kβ = (KDωc −KP )ωc.

(17)
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The goal is to solve for the controller parameters α, β, η, θ, µ, κ, k, and n given the PID gains (KP ,KI ,KD), the
cutoff frequency ωc, the set point r, and plant time constant τ . The equations in (17) can be solved to obtain

α = KDωc
(κn + rn)

2

nrn−1κn

η =
KIωc/r

τ − κn+rn

nrn KDωc

k± =
ωc
(
τ − κn+rn

nrn KDωc
)

2θ

[
1±

√
1− 4KIθ

ωc
(
τ − κn+rn

nrn KDωc
)
]

β± =
2θ(KDωc −KP )

(
τ − κn+rn

nrn KDωc
) [

1±
√

1− 4KIθ

ωc(τ−κ
n+rn

nrn KDωc)

] ,

where θ, κ, and n are free parameters that should satisfy certain conditions to ensure that the controller param-
eters are positive real numbers. First, we require that η > 0. This imposes a condition on the free parameter κ
and restricts the allowed values of KD and ωc as follows.

τ − κn + rn

nrn
KDωc > 0 =⇒ κ < r n

√
nτ

KDωc
− 1 with KDωc < nτ. (18)

Next, we require that k± to be a real number. This imposes a condition on the free parameter θ.

4KIθ

ωc
(
τ − κn+rn

nrn KDωc
) < 1 =⇒ θ <

ωc
4KI

(
τ − κn + rn

nrn
KDωc

)
. (19)

Furthermore, we require that β± > 0. This restricts the allowed values of KD,KP and ωc as follows.

KDωc −KP > 0 =⇒ KDωc > KP . (20)

Finally, we require that the output x2 = µ
θ−β± > 0, or equivalently β± < θ. We have

2θ(KDωc −KP )
(
τ − κn+rn

nrn KDωc
) [

1±
√

1− 4KIθ

ωc(τ−κ
n+rn

nrn KDωc)

] < θ

=⇒ 2(KDωc −KP )

τ − κn+rn

nrn KDωc
< 1±

√
1− 4KIθ

ωc
(
τ − κn+rn

nrn KDωc
) .

(21)

Observe that if 2(KDωc−KP )

τ−κn+rn

nrn KDωc
> 2, then there is no θ > 0 that satisfies the condition above (for both β±). This

imposes an additional condition on the free parameter κ and restricts the allowed values of KD, ωc and KP as
follows.

2(KDωc −KP )

τ − κn+rn

nrn KDωc
< 2 =⇒ κ < r n

√
n

KDωc
[τ − (KDωc −KP )]− 1 with KDωc <

n

n+ 1
(τ +KP ).

(22)
It is easy to see that the upper bounds on κ and KDωc given in (22) dominate the previously obtained upper
bounds in (18) since KP < KDωc < nτ . Under conditions (22), we seek for θ > 0 that satisfies (21). Two cases
arise here.

First, if 1 < 2(KDωc−KP )

τ−κn+rn

nrn KDωc
< 2, then β− is rejected, and the condition becomes

2(KDωc −KP )

τ − κn+rn

nrn KDωc
< 1 +

√
1− 4KIθ+

ωc
(
τ − κn+rn

nrn KDωc
)

=⇒ θ+ <

[
1− KDωc −KP

τ − κn+rn

nrn KDωc

]
ωc
KI

(KDωc −KP ) .

(23)

It is also easy to see that condition (23) dominates condition (19) when 1 < 2(KDωc−KP )

τ−κn+rn

nrn KDωc
< 2.

Second, if 2(KDωc−KP )

τ−κn+rn

nrn KDωc
< 1, then both β± > 0 are possible. In fact, under this condition, only (19) is

enough to satisfy β+ < θ. However, for β−, we have

2(KDωc −KP )

τ − κn+rn

nrn KDωc
< 1−

√
1− 4KIθ−

ωc
(
τ − κn+rn

nrn KDωc
)

=⇒ θ− >

[
1− KDωc −KP

τ − κn+rn

nrn KDωc

]
ωc
KI

(KDωc −KP ) .

(24)
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Note that (19) and (24) provide an upper and lower bounds for θ when 2(KDωc−KP )

τ−κn+rn

nrn KDωc
< 1.

Lemma 2. Consider the closed loop network given in Figure 7 Panel A whose plant is comprised of two species
and is in feedback with the proposed APIDF controller with multiplicative inhibition and hill coefficient n. Let
τ := γ1γ2

k1
be a plant rate constant. Then any given set of PID gains (KP ,KI ,KD) and cutoff frequency ωc

satisfying the following constraint
KP < KDωc < min{nτ,KP + τ} (25)

can be obtained by setting the controller parameters as

κ = r n

√
nτ

KDωc
− 1

η =
KIωc
τr

k± =
τωc

2θ
(
1− KDωc

nτ

)
[

1±
√

1− 4KIθ

τωc

]

β± =
2θ(KDωc −KP )

τ
[
1±

√
1− 4KIθ

τωc

] ,

(26)

where r is the desired set point, and θ is a free parameter that respects the following condition




θ+ <
ωc
KIτ

(KDωc −KP )(τ +KP −KDωc) if KDωc >
τ

2
+KP

θ± <
τωc
4KI

if KDωc <
τ

2
+KP

θ− >
ωc
KIτ

(KDωc −KP ) (τ +KP −KDωc) if KDωc <
τ

2
+KP .

Proof. For the closed loop system under consideration, the actuation propensity is given by h(z1, x2) = kz1
1+(x2/κ)n ,

and the closed loop dynamics are given by

ẋ1 =
kz1

1 + (x2/κ)n
− γ1x1

ẋ2 = k1x1 − γ2x2

ż1 = µ+ βx2 − ηz1z2

ż2 = θx2 − ηz1z2.

The fixed point is thus given by

[
x1 x2 z1 z2

]
=
[
γ2r
k1

r τr
k [1 + (r/κ)n] kθ

ητ [1+(r/κ)n]

]
,

where r := µ
θ−β and τ := γ1γ2

k1
. Furthermore, the partial derivatives of h are given by

σ1 := ∂z1h(z1, x2) =
k

1 + (r/κ)n
; σ4 := −∂x2

h(z1, x2) = τ
n(r/κ)n

1 + (r/κ)n
.

By substituting the expressions of x2, z1, z2, σ1 and σ4 in (10), we obtain

σ4 = KDωc =⇒ κ = r n

√
nτ

KDωc
− 1 with KDωc < nτ

σ1ηz1 = KIωc =⇒ η =
KIωc
τr

η(z1 + z2) = ωc =⇒ k± =
τωc

2θ
(
1− KDωc

nτ

)
[

1±
√

1− 4KIθ

τωc

]
with θ <

τωc
4KI

σ1β = (KDωc −KP )ωc =⇒ β± =
2θ(KDωc −KP )

τ
[
1±

√
1− 4KIθ

τωc

] with KDωc > KP .

(27)

Finally, we require that the output x2 = µ
θ−β± > 0, or equivalently β± < θ. We have

2θ(KDωc −KP )

τ
[
1±

√
1− 4KIθ

τωc

] < θ =⇒ KDωc −KP

τ
<

1

2

[
1±

√
1− 4KIθ

τωc

]
. (28)
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Observe that if KDωc −KP > τ , then there is no θ > 0 that can satisfy (28). This imposes the condition that
needs to be satisfied: KDωc < KP + τ . Under the latter condition we seek for θ > 0 that satisfies (28). Two
cases arise here.

First, if 1
2 <

KDωc−KP
τ < 1, then β− is rejected and condition (28) becomes

KDωc −KP

τ
<

1

2

[
1 +

√
1− 4KIθ+

τωc

]
=⇒ θ+ <

ωc
KIτ

(KDωc −KP )(τ +KP −KDωc),

which dominates the condition θ+ < τωc
4KI

when 1
2 <

KDωc−KP
τ < 1.

Second, if KDωc−KP
τ < 1

2 , then both β± > 0 are possible. In fact, under this condition, only θ+ < τωc
4KI

is

enough to satisfy β+ < θ+. However, for β−, we have

KDωc −KP

τ
<

1

2

[
1±

√
1− 4KIθ

τωc

]
=⇒ θ− >

ωc
KIτ

(KDωc −KP ) (τ +KP −KDωc) .

Therefore, under the condition KDωc−KP
τ < 1

2 , there is a lower and upper bounds on θ−.

Lemma 3. Consider the closed loop network given in Figure 7 Panel A whose plant is comprised of two species
and is in feedback with the proposed APIDF controller with degradation inhibition. Let τ := γ1γ2

k1
be a plant

rate constant. Then any given set of PID gains (KP ,KI ,KD) and cutoff frequency ωc satisfying the following
constraint

KP < KDωc <
n

n− 1
(KP + τ) (29)

can be obtained by setting the controller parameters as

δ =
KDωc
nτrn

γ1

η =
KIωc

τr [1 + (δ/γ1)rn]

k± =
ωc
(
τ + KDωc

n

)

2θ

[
1±

√
1− 4KIθ

τωc [1 + (δ/γ1)rn]

]

β± =
2θ(KDωc −KP )

(
τ + KDωc

n

) [
1±

√
1− 4KIθ

τωc[1+(δ/γ1)rn]

] ,

(30)

where r is the desired set point, and θ is a free parameter that respects the following condition





θ+ <
τωc [1 + (δ/γ1)rn]

KI

(
τ + KDωc

n

)
(

1− KDωc −KP

τ + KDωc
n

)
(KDωc −KP ) if KDωc >

n

2n− 1
(τ + 2KP )

θ± <
τωc
4KI

[1 + (δ/γ1)rn] if KDωc <
n

2n− 1
(τ + 2KP )

θ− >
τωc [1 + (δ/γ1)rn]

KI

(
τ + KDωc

n

)
(

1− KDωc −KP

τ + KDωc
n

)
(KDωc −KP ) if KDωc <

n

2n− 1
(τ + 2KP ).

Proof. For the closed loop system under consideration, the actuation propensity is given by h(z1, x2) = kz1 −
δx1x

n
2 , and the closed loop dynamics are given by

ẋ1 = kz1 − δx1x
n
2 − γ1x1

ẋ2 = k1x1 − γ2x2

ż1 = µ+ βx2 − ηz1z2

ż2 = θx2 − ηz1z2.

The fixed point is thus given by

[
x1 x2 z1 z2

]
=
[
γ2r
k1

r τr
k [1 + (δ/γ1)rn] kθ

ητ [1+(δ/γ1)rn]

]
,

where r := µ
θ−β and τ := γ1γ2

k1
. Furthermore, the partial derivatives of h are given by

σ1 := ∂z1h(z1, x2) = k; σ4 := −∂x2
h(z1, x2) = nτ(δ/γ1)rn.

29
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By substituting the expressions of x2, z1, z2, σ1 and σ4 in (10), we obtain the following set of nonlinear algebraic
equations

σ4 = KDωc =⇒ δ =
KDωc
nτrn

γ1

σ1ηz1 = KIωc =⇒ η =
KIωc

τr [1 + (δ/γ1)rn]

η(z1 + z2) = ωc =⇒ k± =
ωc
(
τ + KDωc

n

)

2θ

[
1±

√
1− 4KIθ

τωc [1 + (δ/γ1)rn]

]

σ1β = (KDωc −KP )ωc =⇒ β± =
2θ(KDωc −KP )

(
τ + KDωc

n

) [
1±

√
1− 4KIθ

τωc[1+(δ/γ1)rn]

] with KDωc > KP ,

(31)
where θ < τωc

4KI
[1 + (δ/γ1)rn] has to be satisfied to guarantee that k± is a real number.

Finally, we require that the output x2 = µ
θ−β± > 0, or equivalently β± < θ. We have

2θ(KDωc −KP )
(
τ + KDωc

n

) [
1±

√
1− 4KIθ

τωc[1+(δ/γ1)rn]

] < θ =⇒ KDωc −KP

τ + KDωc
n

<
1

2

[
1±

√
1− 4KIθ

τωc [1 + (δ/γ1)rn]

]
.

(32)
Observe that if KDωc−KP > τ+ KDωc

n , then there is no θ > 0 that can satisfy (32). This imposes the condition
that needs to be satisfied: KDωc <

n
n−1 (KP + τ). Under the latter condition we seek for θ > 0 that satisfies

(32). Two cases arise here.
First, if 1

2 <
KDωc−KP
τ+

KDωc
n

< 1, then β− is rejected and condition (32) becomes

KDωc −KP

τ + KDωc
n

<
1

2

[
1 +

√
1− 4KIθ+

τωc [1 + (δ/γ1)rn]

]

=⇒ θ+ <
τωc [1 + (δ/γ1)rn]

KI

(
τ + KDωc

n

)
(

1− KDωc −KP

τ + KDωc
n

)
(KDωc −KP ) ,

which dominates the previous condition θ < τωc
4KI

[1 + (δ/γ1)rn] when 1
2 <

KDωc−KP
τ+

KDωc
n

< 1.

Second, if KDωc−KP
τ+

KDωc
n

< 1
2 , then both β± > 0 are possible. In fact, under this condition, only θ+ <

τωc
4KI

[1 + (δ/γ1)rn] is enough to satisfy β+ < θ+. However, for β−, we have

KDωc −KP

τ
<

1

2

[
1±

√
1− 4KIθ

τωc

]
=⇒ θ− >

ωc
KIτ

(KDωc − τ) (τ +KP −KDωc)

=⇒ θ− >
τωc [1 + (δ/γ1)rn]

KI

(
τ + KDωc

n

)
(

1− KDωc −KP

τ + KDωc
n

)
(KDωc −KP ) .

Therefore, under the condition KDωc−KP
τ+

KDωc
n

< 1
2 , there is a lower and upper bounds on θ−.

C Stationary Variance Approximation for the APIF Controllers

Consider the closed loop network depicted in Panel A of Figure 5 where a gene expression plant is connected in
feedback with a class of APIF controllers. The goal of this section is to derive an approximate formula for the
stationary variance of the output species X2. We only consider APIF controllers of Class 1. First, we consider
a general plant to write down the evolution equations of the variance. Then, we derive a closed formula for the
output stationary variance in the case of the particular gene expression plant given in Panel A of Figure 5.

C.1 Evolution of the Covariances for a General Plant

Let Xcl :=

[
X
Z

]
denote the closed loop state variable encrypting the copy numbers of the plant and controller

species X and Z, respectively. Define the instantaneous covariance of the closed loop state variable as

Cov [Xcl(t)] := E
[(
Xcl(t)− E [Xcl(t)]

)(
Xcl(t)− E [Xcl(t)]

)T]
,
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whose evolution is described by the following differential equation (we drop the time variable for notational
convenience)

d

dt
Cov [Xcl] = SclD

(
E [λcl(Xcl)]

)
STcl + SclCov [λcl(Xcl), Xcl] + Cov [Xcl, λcl(Xcl)]S

T
cl, (33)

where Scl and λcl, depicted in Figure 3, denote the closed loop stoichiometry matrix and propensity function,
respectively. Note that D is the diagonal operator such that for any vector x, D(x) is a diagonal matrix whose
diagonal entries are x. Define the matrices and vector

Sm :=




0 0 0 1 −1
...

...
... 0 0

...
...

...
...

...
0 0 0 0 0



L×5

, Sc :=

[
0 −1 1 0 0
1 −1 0 0 0

]
, λc(x, z) :=




θxL
ηz1z2

µ
h+(z1, xL)
h−(x1, xL)



,

so that the closed loop stoichiometry matrix and propensity function can be written as Scl =

[
S Sm
0 Sc

]
and

λcl(x, z) =

[
λ(x)

λc(x, z)

]
, respectively. Note that h+ and h− are functions that can take the forms given in Figure 3.

By substituting the plant and controller components of Xcl, Scl, and λcl in (33), we proceed as follows

d

dt

[
Cov [X] Cov [X,Z]

Cov [Z,X] Cov [Z]

]
=

[
S Sm
0 Sc

] [
D
(
E [λ(X)]

)
0

0 D
(
E [λc(X,Z)]

)
] [
ST 0
STm STc

]

+

[
S Sm
0 Sc

] [
Cov [λ(X), X] Cov [λ(X), Z]

Cov [λc(X,Z), X] Cov [λc(X,Z), Z]

]

+

[
Cov [X,λ(X)] Cov [X,λc(X,Z)]
Cov [Z, λ(X)] Cov [Z, λc(X,Z)]

] [
ST 0
STm STc

]

Thus we have

d

dt
Cov [X] = SD

(
E [λ(X)]

)
ST + SmD

(
E [λc(X,Z)]

)
STm + SCov [λ(X), X] + SmCov [λc(X,Z), X]

+ Cov [X,λ(X)]ST + Cov [X,λc(X,Z)]STm
d

dt
Cov [X,Z] = SmD

(
E [λc(X,Z)]

)
STc + SCov [λ(X), Z] + SmCov [λc(X,Z), Z] + Cov [X,λc(X,Z)]STc

d

dt
Cov [Z] = ScD

(
E [λc(X,Z)]

)
STc + ScCov [λc(X,Z), Z] + Cov [Z, λc(X,Z)]STc .

Next, by substituting for Sm, Sc and λc(X,Z) and doing some algebraic calculations, we obtain





d

dt
Cov [X] = SD

(
E [λ(X)]

)
ST + E [h (Z1, X1, Xl)] e1e

T
1 + SCov [λ(X), X] + e1Cov [h (Z1, X1, XL) , X]

+ Cov [X,λ(X)]ST + Cov [X,h (Z1, X1, XL)] eT1
d

dt
Cov [X,Z1] = SCov [λ(X), Z1] + Cov [h(Z1, X1, XL), Z1] e1 − ηCov [X,Z1Z2]

d

dt
Cov [X,Z2] = SCov [λ(X), Z2] + Cov [h(Z1, X1, XL), Z2] e1 − ηCov [X,Z1Z2] + θCov [X,XL]

d

dt
Var [Z1] = µ+ ηE [Z1Z2]− 2ηCov [Z1, Z1Z2]

d

dt
Var [Z2] = θE [XL] + ηE [Z1Z2]− 2ηCov [Z2, Z1Z2] + 2θCov [XL, Z2]

d

dt
Cov [Z1, Z2] = ηE [Z1Z2]− ηCov [Z1 + Z2, Z1Z2] + θCov [XL, Z1] ,

(34)
where, as in Figure 3, the actuation propensity function is defined as h(z1, x1, xL) := h+(z1, xL)− h−(x1, xL),
and ei is a vector whose entries are all zeros except the ith entry is one. Note that h does not depend on z2 in this
section because only APIF controllers of Class 1 are considered. The set of differential equations in (34) describe
the evolution of the various covariances in the closed loop network. Observe that it does not involve first and
second order moments only (expectations and covariances), but also third order moments like Cov [X,Z1Z2]
and Cov [Z1 + Z2, Z1Z2] that have there own differential equations. This, in addition to the nonlinearity of λ
and h (in general), give rise to the moment closure problem.
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C.2 Steady-State (Stationary) Analysis

Let Eπ [·] ,Varπ [·], and Covπ [·, ·] denote the the stationary expectation, variance and covariance, respectively.
Assuming that the closed loop system is ergodic, the various time derivatives in (7) and (34) are set to zero at
stationarity. Particularly, we have the following relationships that hold regardless of what the plant is

d

dt
(Eπ [Z1]− Eπ [Z2]) = 0 =⇒ Eπ [XL] =

µ

θ
d

dt
Eπ [Z1] = 0 =⇒ Eπ [Z1Z2] =

µ

η

d

dt
Varπ [Z1] = 0 =⇒ Covπ [Z1, Z1Z2] =

µ

η

d

dt
(Varπ [Z1] + Varπ [Z2]− 2Covπ [Z1, Z2]) = 0 =⇒ Covπ [XL, Z1 − Z2] =

µ

θ
d

dt
Varπ [Z2] = 0 =⇒ Covπ [Z2, Z1Z2] =

µ+ θCovπ [XL, Z2]

η
.

(35)

These relationships will be useful in what follows, particularly in the asymptotic limit as η →∞.

C.3 Application to Gene Expression

Consider the case where the plant is simple gene expression described in Panel A of Figure 5. The plant
stoichiometry matrix and propensity vector are given by

S =

[
0 −1 0
1 0 −1

]
and λ(x) =



k1x1

γ1x1

γ2x2


 .

Then, by substituting S and λ in (7) and (34), we obtain the the following set of differential equations for the
expectations and covariances 




d

dt
E [X1] = E [h(Z1, X1, X2)]− γ1E [X1]

d

dt
E [X2] = k1E [X1]− γ2E [X2]

d

dt
E [Z1] = µ− ηE [Z1Z2]

d

dt
E [Z2] = θE [X2]− ηE [Z1Z2] ,





d

dt
Var [X1] = γ1E [X1] + E [h(Z1, X1, X2)]− 2γ1Var [X1] + 2Cov [X1, h(Z1, X1, X2)]

d

dt
Var [X2] = γ2E [X2] + k1E [X1]− 2γ2Var [X2] + 2k1Cov [X1, X2]

d

dt
Cov [X1, X2] = k1Var [X1]− (γ1 + γ2) Cov [X1, X2] + Cov [X2, h(Z1, X1, X2)]

d

dt
Cov [X1, Z1] = −γ1Cov [X1, Z1] + Cov [h(Z1, X1, X2), Z1]− ηCov [X1, Z1Z2]

d

dt
Cov [X1, Z2] = −γ1Cov [X1, Z2] + Cov [h(Z1, X1, X2), Z2]− ηCov [X1, Z1Z2] + θCov [X1, X2]

d

dt
Cov [X2, Z1] = −γ2Cov [X2, Z1] + k1Cov [X1, Z1]− ηCov [X2, Z1Z2]

d

dt
Cov [X2, Z2] = −γ2Cov [X2, Z2] + k1Cov [X1, Z2]− ηCov [X2, Z1Z2] + θVar [X2]

d

dt
Var [Z1] = µ+ ηE [Z1Z2]− 2ηCov [Z1Z2, Z1]

d

dt
Var [Z2] = θE [X2] + ηE [Z1Z2]− 2ηCov [Z1Z2, Z2] + 2θCov [X2, Z2]

d

dt
Cov [Z1, Z2] = ηE [Z1Z2]− ηCov [Z1Z2, Z1 + Z2] + θCov [X2, Z1]

Steady-State (Stationary) Analysis: Assuming that the closed loop system is ergodic, the time derivatives
at stationarity are set to zero. We have

Eπ [X2] =
µ

θ
; Eπ [X1] =

γ2

k1

µ

θ
; Eπ [h(Z1, X1, X2)] =

γ1γ2

k1

µ

θ
; Eπ [Z1Z2] =

µ

η
;
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To compute the steady-state variance Varπ [X2], we use the following set of algebraic equations

d

dt
Varπ [X2] = 0 =⇒ Varπ [X2] =

µ

θ
+
k1

γ2
Covπ [X1, X2]

d

dt
Covπ [X1, X2] = 0 =⇒ Covπ [X1, X2] =

k1

γ1 + γ2
Varπ [X1] +

1

γ1 + γ2
Covπ [X2, h(Z1, X1, X2)]

d

dt
Varπ [X1] = 0 =⇒ Varπ [X1] =

γ2

k1

µ

θ
+

1

γ1
Covπ [X1, h(Z1, X1, X2)]

d

dt
Covπ [X2, Z1 − Z2] = 0 =⇒ Covπ [X1, Z1 − Z2] =

γ2

k1

µ

θ
+

θ

k1
Varπ [X2] ,

(36)
where the last equality follows by exploiting the fact that Covπ [X2, Z1 − Z2] = µ/θ from (35). Observe that
these algebraic equations cannot be solved exactly for Varπ [X2] because of the moment closure problem. How-
ever, to proceed, we give an approximation for the covariance terms Covπ [Xi, h(Z1, X1, X2)] for i = 1, 2. The
approximation essentially (1) exploits a second order Taylor expansion of the function h around the stationary
expected values , and (2) exploits the fact that for large η, Eπ [Z1Z2] = µ

η ≈ 0 and Z2 is assumed to be close to
zero unlike Z1 which takes positive values actuating the plant. In fact, these approximations are summarized
below.

Eπ [Z1Z2] ≈ 0, Covπ [X1, Z2] ≈ 0, Covπ [X2, Z2] ≈ 0

h(Z1, X1, X2) ≈ h̄+
[
∂z1 h̄ ∂x1 h̄ ∂x2 h̄

]


Z1 − Eπ [Z1]
X1 − Eπ [X1]
X2 − Eπ [X2]




+
1

2



Z1 − Eπ [Z1]
X1 − Eπ [X1]
X2 − Eπ [X2]



T 


∂2
z1 h̄ ∂z1∂x1

h̄ ∂z1∂x2
h̄

∂x1
∂z1 h̄ ∂2

x1
h̄ ∂x1

∂x2
h̄

∂x2
∂z1 h̄ ∂x2

∂x1
h̄ ∂2

x2
h̄





Z1 − Eπ [Z1]
X1 − Eπ [X1]
X2 − Eπ [X2]


 ,

where h̄ := h
(
Eπ [Z1] ,Eπ [X1] ,Eπ [X2]

)
. Using Appendix F (with X :=

[
Z1 X1 X2

]T
, F (X) = X1, and

G(X) = h(Z1, X1, X2)), we can approximate Covπ [X1, h(Z1, X1, X2)] up to first order (or second order if the
stationary distribution is close to a normal distribution) as

Covπ [X1, h(Z1, X1, X2)] ≈
[
0 1 0

]



Varπ [Z1] Covπ [Z1, X1] Covπ [Z1, X2]
Covπ [X1, Z1] Varπ [X1] Covπ [X1, X2]
Covπ [X2, Z1] Covπ [X2, X1] Varπ [X2]





∂z1 h̄
∂x1 h̄
∂x2 h̄




≈ σ1Covπ [X1, Z1]− σ3Varπ [X1]− σ4Covπ [X1, X2] ,

where
σ1 := ∂z1h(Eπ [Z1] ,Eπ [X1] ,Eπ [X2]) > 0

σ3 := −∂x1
h(Eπ [Z1] ,Eπ [X1] ,Eπ [X2]) ≥ 0

σ4 := −∂x2
h(Eπ [Z1] ,Eπ [X1] ,Eπ [X2]) ≥ 0.

Similarly, we can approximate Covπ [X2, h(Z1, X1, X2)] as

Covπ [X2, h(Z1, X1, X2)] ≈
[
0 0 1

]



Varπ [Z1] Covπ [Z1, X1] Covπ [Z1, X2]
Covπ [X1, Z1] Varπ [X1] Covπ [X1, X2]
Covπ [X2, Z1] Covπ [X2, X1] Varπ [X2]





∂z1 h̄
∂x1

h̄
∂x2

h̄




≈ σ1Covπ [X2, Z1]− σ3Covπ [X2, X1]− σ4Varπ [X2] .

Invoking the approximations Covπ [X1, Z2] ≈ Covπ [X2, Z2] ≈ 0 and the last equation in (36), we obtain

Covπ [X1, Z1] ≈ Covπ [X1, Z1 − Z2] =
γ2

k1

µ

θ
+

θ

k1
Varπ [X2]

Covπ [X2, Z1] ≈ Covπ [X2, Z1 − Z2] =
µ

θ
.

Then we have

Covπ [X1, h(Z1, X1, X2)] ≈ σ1
γ2

k1

µ

θ
+ σ1

θ

k1
Varπ [X2]− σ3Varπ [X1]− σ4Covπ [X1, X2]

Covπ [X2, h(Z1, X1, X2)] ≈ σ1
µ

θ
− σ3Covπ [X1, X2]− σ4Varπ [X2] .
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Finally, by substituting for Covπ [X1, h(Z1, X1, X2)] and Covπ [X2, h(Z1, X1, X2)] in (36), we obtain the follow-
ing set of algebraic (approximate) equations

Varπ [X2] ≈ µ

θ
+
k1

γ2
Covπ [X1, X2]

Covπ [X1, X2] ≈ k1

γ1 + γ2
Varπ [X1] +

1

γ1 + γ2

(
σ1
µ

θ
− σ4Varπ [X2]− σ3Cov [X1, X2]

)

Varπ [X1] ≈ γ2

k1

µ

θ
+

1

γ1

(
σ1
γ2

k1

µ

θ
+ σ1

θ

k1
Varπ [X2]− σ3Varπ [X1]− σ4Covπ [X1, X2]

)
.

This can be written in matrix form as




1 + σ3

γ1
−σ1

γ1
θ
k1

σ4

γ1

0 1 −k1γ2
−k1 σ4 γ1 + γ2 + σ3






Varπ [X1]
Varπ [X2]

Covπ [X1, X2]


 =




(
1 + σ1

γ1

)
γ2
k1

µ
θ

µ
θ

σ1
µ
θ


 .

Finally, solving for Varπ [X2], we arrive at

Varπ [X2] ≈ µ

θ

[
(γ1 + γ2 + σ3) (γ1γ2 + γ2σ3 + σ1k1) + k1γ2(γ1 + σ4)

(γ1 + γ2 + σ3) (γ1γ2 + γ2σ3 + k1σ4)− σ1k1θ

]
.

This is a general formula that encompasses the standalone AIF controller and the three APIF controllers of
Class 1, that are addressed as a special case next.

AIF: For this controller, the propensities of the actuation reactions are given by

h+(z1, x2) = kz1 and h−(x1, x2) = 0,

which implies that h(z1, x1, x2) = kz1. Then σ1 = k and σ3 = σ4 = 0.

APIF of Class 1 with Additive Inhibition: The propensities of the actuation reactions are given by

h+(z1, x2) = kz1 +
α

1 + (x2/κ)n
and h−(x1, x2) = 0,

which implies that h(z1, x1, x2) = kz1 + α
1+(x2/κ)n . Then we have

σ1 = k, σ3 = 0, and σ4 =
α

r

n(r/κ)n

[1 + (r/κ)n]
2 .

APIF of Class 1 with Multiplicative Inhibition: The propensities of the actuation reactions are given
by

h+(z1, x2) =
kz1

1 + (x2/κ)n
and h−(x1, x2) = 0,

which implies that h(z1, x1, x2) = kz1
1+(x2/κ)n . Then we have

σ1 =
k

1 + (r/κ)n
, σ3 = 0, and σ4 =

kEπ [Z1]

r

n(r/κ)n

[1 + (r/κ)n)]
2 .

We are left with approximating Eπ [Z1]. This can be done by recalling that Eπ [h(Z1, X1, X2)] = γ1γ2
k1

µ
θ and

using a first order Taylor series expansion of h around stationarity. That is

Eπ
[
h
(
Eπ [Z1] ,Eπ [X1] ,Eπ [X2]

)]
≈ γ1γ2

k1
r

kEπ [Z1]

1 + (r/κ)n
≈ γ1γ2

k1
r

Eπ [Z1] ≈ γ1γ2

kk1
r [1 + (r/κ)n] .

Finally, substituting for Eπ [Z1] in σ4 yields

σ4 =
γ1γ2

k1

n(r/κ)n

1 + (r/κn)
.
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APIF of Class 1 with Degradation Inhibition: The propensities of the actuation reactions are given by

h+(z1, x2) = kz1 and h−(x1, x2) = δx1x
n
2 ,

which implies that h(z1, x1, x2) = kz1 − δx1x
n
2 . Then we have

σ1 = k, σ3 = δrn, and σ4 = n
δγ2

k1
rn.

The results are summarized in Table 1.

D Stochastic Analysis of the Fictitious PID Controller

Consider the closed loop network depicted in Figure 8 but with a general (linear) unimolecular plant that
constitutes L species denote by X := {X1, X2, XL}. First we write down the evolution equations of the
covaraince for the general linear plant. Then we derive a closed formula for the stationary variance of the
output species XL when L = 1.

D.1 Evolution of the Expectations and Covariances for a General Unimolecular
Plant

Let Xcl :=

[
X
Z

]
denote the closed loop state variable encrypting the copy numbers of the plant and controller

species X and Z, respectively. Let Scl and λcl denote the closed loop stoichiometry matrix and propensity
function, respectively. By exploiting the structure of the controller in Figure 8, we can write the closed loop
stoichiometry matrix and propensity function as

Scl =

[
S Sm
0 Sc

]
with Sm :=




0 0 0 0 1 −1
...

...
...

... 0 0
...

...
...

...
...

...
0 0 0 0 0 0



L×6

and Sc :=

[
1 −1 0 0 0 0
0 0 1 −1 0 0

]

λcl(xcl) = Wclxcl + wcl; Wcl :=

[
W 0
Wc1 Wc2

]
; wcl :=

[
w
wc

]
;

Wc1 :=




0
eTL
0

ωce
T
L

0
(KP +KDωc)e

T
L




6×L

; Wc2 :=




0 0
0 0
0 0
0 ωc
KI 0
0 KDωc




; wc :=




r
0
ωcr
0

(KP +KDωc)r
0



,

where λ(x) = Wx+ w is the affine propensity function the general unimolecular plant.

D.1.1 Evolution of Expectations

The evolution of the first moment is described by the following differential equation

d

dt
E [Xcl(t)] = SclE

[
λcl

(
X(t), Z(t)

)]
= Scl (WclE [Xcl] + wcl) =: AE [Xcl] + b,

where

A =

[
S Sm
0 Sc

] [
W 0
Wc1 Wc2

]
=

[
SW + SmWc1 SmWc2

ScWc1 ScWc2

]
=



SW − (KP +KDωc)e1e

T
L KIe1 −KDωce1

−eTL 0 0
−ωceTL 0 −ωc




b =

[
S Sm
0 Sc

] [
w
wc

]
=

[
Sw + Smwc

Scwc

]
=



Sw + (KP +KDωc)re1

r
ωcr


 .

Therefore, the evolution of the expectations is governed by the following set of differential equations




d

dt
E [X] = SWE [X] + Sw + E [U ] e1; U := −(KP +KDωc)XL +KIZ1 −KDωcZ2 + (KP +KDωc)r

d

dt
E [Z1] = r − E [XL]

d

dt
E [Z2] = −ωcE [Z2] + ωc (r − E [XL]) .
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D.1.2 Evolution of the Covariances

Define the covariance of the closed loop state variable as

Cov [Xcl(t)] := E
[(
Xcl(t)− E [Xcl(t)]

)(
Xcl(t)− E [Xcl(t)]

)T]
.

The evolution of the covariances is described by the following differential equation (we drop the time variable
for notational convenience)

d

dt
Cov [Xcl] = SclD

(
E [λcl(Xcl)]

)
STcl + SclCov [λcl(Xcl), Xcl] + Cov [Xcl, λcl(Xcl)]S

T
cl

= SclD
(
WclE [Xcl] + wcl

)
STcl + SclWclCov [Xcl] + Cov [Xcl]W

T
clS

T
cl.

Note that D is the diagonal operator such that for any vector x, D(x) is a diagonal matrix whose diagonal
entries are x. Therefore, the dynamics of the covariance can be rewritten, in matrix form, as a differential
Lyapunov equation

d

dt
Cov [Xcl] = ACov [Xcl] + Cov [Xcl]A

T +Q,

where A :=



SW − (KP +KDωc)e1e

T
L KIe1 −KDωce1

−eTL 0 0
−ωceTL 0 −ωc




Q(t) :=



SD (WE [X(t)] + w)ST + E [V (t)] e1e

T
1 0

0
E [XL(t)] + r 0

0 ωc(E [XL(t)] + E [Z2(t)] + r)




V (t) := (KP +KDωc)(XL(t) + r) +KIZ1(t) +KDωcZ2(t).

Particularly, we the following differential equations for Var [Z1] ,Var [Z2] and Cov [Z1, Z2], regardless of what
the plant is: 




d

dt
Var [Z1] = E [XL] + r − 2Cov [XL, Z1]

d

dt
Var [Z2] = ωc (r + E [XL] + E [Z2]− 2Cov [XL, Z2]− 2Var [Z2])

d

dt
Cov [Z1, Z2] = −Cov [XL, Z2]− ωcCov [Z1, XL]− ωcCov [Z1, Z2] .

D.2 Stationary Analysis for a General Unimolecular Plant

Let Eπ [·] ,Varπ [·], and Covπ [·, ·] denote the the stationary expectation, variance and covariance. Assuming
ergodicity of the closed loop system, the various time derivatives are set to zero at stationarity. We have the
following relationships, regardless of what the plant is

d

dt
Eπ [Z1] = 0 =⇒ Eπ [XL] = r

d

dt
Eπ [Z2] = 0 =⇒ Eπ [Z2] = 0

d

dt
Varπ [Z1] = 0 =⇒ Covπ [XL, Z1] = r

d

dt
Varπ [Z2] = 0 =⇒ Covπ [Z2, Xl + Z2] = r

d

dt
Covπ [Z1, Z2] = 0 =⇒ Covπ [Z2, XL + ωcZ1] = −ωcr.

Stationary Expectations: Define X̂ :=
[
X1 · · · XL−1

]T
so that X =

[
X̂T XL

]T
. Furthermore, par-

tition the matrix W :=
[
W1 WL

]
where WL is a column vector. At stationary, we have Eπ [XL] = r and
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Eπ [Z2] = 0 and thus

S (WEπ [X] + w) +KIEπ [Z1] e1 = 0

=⇒ S

(
[
W1 WL

]
[
Eπ
[
X̂
]

r

]
+ w

)
+KIEπ [Z1] e1 = 0

=⇒ S
(
W1Eπ

[
X̂
]

+WLr + w
)

+KIEπ [Z1] e1 = 0

=⇒ SW1Eπ
[
X̂
]

+KIEπ [Z1] e1 = −S(WLr + w)

=⇒
[
SW1 KIe1

]
[
Eπ
[
X̂
]

Eπ [Z1]

]
= −S(WLr + w).

The last equation is a system of linear equations that can be solved for Eπ
[
X̂1

]
and Eπ [Z1].

Stationary Covariances: The stationary covariance satisfies the following algebraic Lyapunov equation

ACovπ [Xcl] + Covπ [Xcl]A
T +Qss = 0,

where

Qss :=



SD (WEπ [X] + w)ST + (2r(KP +KDωc) +KIEπ [Z1]) e1e

T
1 0

0
2r 0
0 2ωcr


 .

D.3 Application to a Plant with One Species

Consider the case where the plant is comprised of only one species given in Figure 8. The plant stoichiometry
matrix and propensity vector are given by

S = −1 and λ(x) = γx.

That is, W = γ and w = 0 and the index L = 1 is suppressed. Then we have

A :=



−(KP +KDωc + γ) KI −KDωc

−1 0 0
−ωc 0 −ωc




Q(t) :=



γE [X(t)] + E [V (t)] 0 0

0 E [X(t)] + r 0
0 0 ωc(E [X] + E [Z2] + r)




V (t) := (KP +KDωc)(X(t) + r) +KIZ1(t) +KDωcZ2(t)

b :=




(KP +KDωc)r
r
ωcr


 .

Deterministic Stability: The differential equation describing the deterministic dynamics (or equivalently
the expectation dynamics) is given by

ẋcl = Axcl + b.

The characteristic polynomial is given by

p(s) := det(sI −A) = s3 + (KP +KDωc + ωc + γ) s2 + (KI + ωcKP + ωcγ) s+ ωcKI .

To determine the stability conditions, we construct the Routh table.

s3 1 KI + ωcKP + ωcγ
s2 (KP +KDωc + ωc + γ) ωcKI

s1 ω2
c(KP+γ)+(KP+KDωc+γ)(KI+ωcKP+ωcγ)

KP+KDωc+ωc+γ
0

s0 ωcKI 0

Clearly the deterministic dynamics (and first moment dynamics) are unconditionally stable for all
ωc,KI ,KP ,KD, γ > 0.
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Expectation and Covariance Evolution: The evolution of the expectations are governed by the following
set of differential equations





d

dt
E [X1] = −γE [X] + E [U ] ; U := (KP +KDωc)(r −X) +KIZ1 −KDωcZ2

d

dt
E [Z1] = r − E [X]

d

dt
E [Z2] = −ωcE [Z2] + ωc (r − E [X]) .

and the evolution of the covariances are governed by the following differential Lyapunov equation

d

dt
Cov [Xcl] = ACov [Xcl] + Cov [Xcl]A

T +Q,

where A :=



−(KP +KDωc + γ) KI −KDωc

−1 0 0
−ωc 0 −ωc




Q :=



γE [X] + E [V ] 0 0

0 E [X] + r 0
0 0 ωc(E [X] + E [Z2] + r)




V := (KP +KDωc)(X2 + r) +KIZ1 +KDωcZ2.

Steady-State (Stationary) Analysis: Assuming that the closed loop system is ergodic, the time derivatives
of the stationary variances and covariances are set to zero. We have

Eπ [X] = r; Eπ [Z2] = 0; Eπ [Z1] =
γ

KI
r.

To calculate the steady-state variance Varπ [X], we solve the algebraic Lyapunov equation

ACovπ [Xcl] + Covπ [Xcl]A
T +Qss = 0; with Qss :=




2 (γ +KP +KDωc) r+ 0 0
0 2r 0
0 0 2ωcr


 .

Finally, we obtain

Varπ [X] = r

(
1 +

ωcKI(KP +KDωc + γ) + ω2
c (KI +KDωc) +K2

Dω
3
c +K2

I

(KP +KDωc + γ)(KI + ωc(KP + γ)) + ω2
c (KP + γ)

)
.

The derivative component in the controller is filtered with a cutoff frequency ωc. The larger ωc is, the more
the filtered derivative resembles a pure derivative controller. In fact, in the asymptotic limit as ωc → ∞, the
stationary variance grows like KDωc

KP+γ to infinity. This also shows that for large ωc, the stationary variance
increases with the derivative gain.

Let us study the effect of KD on the stationary variance for finite values of the cutoff frequency ωc. For
simplicity, let K̄P := KP + γ. We have

d

dKD
Varπ [X] = r

(
c2K

2
D + 2c1KD + c0

T 2

)

c2 := ω4
c

(
KI + ωcK̄P

)

c1 := ω3
cK̄P

(
ω2
c + ωcK̄P +KI

)

c0 := ωc
(
ω2
c + ωcK̄P +KI

) (
ω2
cK̄P −K2

I

)

T := (K̄P +KDωc)(KI + ωcK̄P ) + ω2
cK̄P .

The derivative of the stationary variance with respect to KD can be zero for the following two values of KD

K±D =
−c1 ±

√
c21 − c2c0
c2

.

Clearly K−D is either negative or imaginary. On the other hand, K+
D is either negative or imaginary when c0 > 0.

This means that for c0 > 0, the derivative is positive for all KD ≥ 0. But when c0 < 0, one can show that
K+
D > 0 for all parameters ωc,KP , and KD. This follows because

c21 − c2c0 = ω6
cK̄

2
P

[
ω2
c + ωcK̄P +KI

]2 − ω5
c

[
KI + ωcK̄P

] (
ω2
c + ωcK̄P +KI

) (
ω2
cK̄P −K2

I

)

= ω5
c

[
ω2
c + ωcK̄P +KI

] [
ωcK̄

2
P [ωc + ωcK̄P +KI ]− [KI + ωcK̄P ][ω2

cK̄P −K2
I ]
]

= ω5
c

[
ω2
c + ωcK̄P +KI

] [(
K2
I − ω2

cK̄P

)(
KI + ωcK̄P

)
+ ωcK̄

2
P

(
KI + ωcK̄P + ω2

c

)]
,
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which shows that c21 − c2c0 > 0 when K2
I − ω2

cK̄P > 0 (i.e. c0 < 0). This calculation verifies that K+
D is a real

number. Finally, it is straight forward to see that it is also positive when c0 < 0. The conclusion that can be
drawn here is that when ωc > KI/

√
KP + γ, the stationary variance Varπ [X] increases with KD. But when

ωc < KI/
√
KP + γ, the stationary variance Varπ [X] first decreases with KD until KD = KTh

D :=
−c1+
√
c21−c2c0
c2

,
after which the stationary variance starts to increase. The results are summarized in the table of Figure 8.

E Useful Covariance Identities

Let X,Y and Z be two vector-valued random variables of possibly different dimensions. Let X :=

[
X1

X2

]
and

Y :=

[
Y1

Y2

]
, where X1, X2, Y1 and Y2 are all vector-valued random variables. Let A and B be two deterministic

matrices with suitable dimensions. Furthermore, let b be a deterministic vector. We have the following identities.

1. Cov [X,Y ] := E
[(
X − E [X]

)(
Y − E [Y ]

)T ]
= E

[
XY T

]
− E [X]E

[
Y T
]

2. Cov [X,Y ] = Cov [Y,X]
T

3. Cov [b,X] = 0

4. Cov [AX,BY ] = ACov [X,Y ]BT .

5. Cov [X,Y ] =
[
Cov [X,Y1] Cov [X,Y2]

]
=

[
Cov [X1, Y ]
Cov [X2, Y ]

]
=

[
Cov [X1, Y1] Cov [X1, Y2]
Cov [X2, Y1] Cov [X2, Y2]

]

6. Cov [X1 +X2, Y1 + Y2] = Cov [X1, Y1] + Cov [X1, Y2] + Cov [X2, Y1] + Cov [X2, Y2]

7. Cov
[
bTX,XTAX

]
=
∑
i,j,k

bkAijCov [Xk, XiXj ]

8. Cov
[
XTAX,XTBX

]
=
∑
i,j,k,l

AijBk,lCov [XiXj , XkXl]

The proofs of 1 through 6 are straight forward. The proofs of 7 and 8 are given below.

Proof of 7.

Cov
[
bTX,XTAX

]
= E

[
bTXXTAX

]
− E

[
bTX

]
E
[
XTAX

]

= E


∑

k

bkXk

∑

i,j

AijXiXj


− E

[∑

k

bkXk

]
E


∑

i,j

AijXiXj




=
∑

i,j,k

bkAij

(
E [XkXiXj ]− E [Xk]E [XiXj ]

)

=
∑

i,j,k

bkAijCov [Xk, XiXj ]

Proof of 8.

Cov
[
XTAX,XTBX

]
= E

[
XTAXXTBX

]
− E

[
XTAX

]
E
[
XTBX

]

= E


∑

i,j

AijXiXj

∑

k,l

BklXkXl


− E


∑

i,j

AijXiXj


E


∑

k,l

BklXkXl




=
∑

i,j,k,l

AijBkl

(
E [XiXjXkXl]− E [XiXj ]E [XkXl]

)

=
∑

i,j,k,l

AijBklCov [XiXj , XkXl]
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F Useful Expectation and Covariance Approximations

Let F,G : Rn → R and X ∈ Rn. We have the following approximations

1. E [F (X)] ≈ F (E [X]) + 1
2 tr
{
∂2F (E [X])Cov [X]

}

2. Cov [F (X), G(X)] ≈ ∂F (E [X])Cov [X] ∂G(E [X])T

3. If X follows a multivariate normal distribution, we have

Cov [F (X), G(X)] ≈ ∂F (E [X])Cov [X] ∂G(E [X])T +
1

2
tr
{
∂2F (E [X])Cov [X] ∂2G(E [X])Cov [X]

}
.

Note that (1) and (3) are second order approximations while (2) is a first order approximation.

Proof of 1. A second order approximation of F around the expected value of X, denoted here as X̄ for conve-
nience, can be written as

F (X) ≈ F (X̄) + ∂F (X̄)(X − X̄) +
1

2
(X − X̄)T∂2F (X̄)(X − X̄),

where ∂F (X̄) (resp. ∂2F (X̄)) is a row vector (resp. square matrix) whose dimension is n (resp. n × n) that
represents the directional derivative of F (respectively Hessian), evaluated at X̄. Taking the expectation of
F (X) yields

E [F (X)] ≈ F (X̄) +
1

2
E
[
(X − X̄)T∂2F (X̄)(X − X̄)

]

≈ F (X̄) +
1

2
tr
{
∂2F (X̄)Cov [X]

}
,

where the first approximate equality follows from the fact that E
[
X − X̄

]
= 0, and the second approximate

equality follows from the circular property of the trace operator.

Proof of 2. Using a first order Taylor expansion for F and G around the expectation of X, denoted here by X̄
for convenience, we proceed as follows

Cov [F (X), G(X)] ≈ Cov
[
F (X̄) + ∂F (X̄)(X − X̄), G(X̄) + ∂G(X̄)(X − X̄)

]

≈ Cov
[
∂F (X̄)(X − X̄), ∂G(X̄)(X − X̄)

]

≈ ∂F (X̄)Cov
[
X − X̄

]
∂G(X̄)T ,

which follows by exploiting identity 4 in Appendix E. The proof is complete since Cov
[
X − X̄

]
= Cov [X].

Proof of 3. Using a second order Taylor expansion for F and G around the expectation of X, denoted here by
X̄, we proceed as follows

Cov [F (X), G(X)]

≈ Cov

[
F (X̄) + ∂F (X̄)(X − X̄) +

1

2
(X − X̄)T∂2F (X̄)(X − X̄), G(X̄) + ∂G(X̄)(X − X̄) +

1

2
(X − X̄)T∂2G(X̄)(X − X̄)

]

≈ Cov

[
∂F (X̄)(X − X̄) +

1

2
(X − X̄)T∂2F (X̄)(X − X̄), ∂G(X̄)(X − X̄) +

1

2
(X − X̄)T∂2G(X̄)(X − X̄)

]

≈ ∂F (X̄)Cov
[
X − X̄

]
∂G(X̄)T +

1

2
∂F (X̄)Cov

[
X − X̄, (X − X̄)T∂2G(X̄)(X − X̄)

]

+
1

2
Cov

[
(X − X̄)T∂2F (X̄)(X − X̄), X − X̄

]
∂G(X̄)T

+
1

4
Cov

[
(X − X̄)T∂2F (X̄)(X − X̄), (X − X̄)T∂2G(X̄)(X − X̄)

]

Define the following deterministic vectors a := ∂F (X̄)T and b := ∂G(X̄)T and define the following symmetric
matrices A := ∂2F (X̄) and B := ∂2G(X̄). Then we have

Cov [F (X), G(X)] ≈ aTCov
[
X − X̄

]
b+

1

2
Cov

[
aT (X − X̄), (X − X̄)TB(X − X̄)

]

+
1

2
Cov

[
bT (X − X̄), (X − X̄)TA(X − X̄)

]

+
1

4
Cov

[
(X − X̄)TA(X − X̄), (X − X̄)TB(X − X̄)

]
.
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Now, let’s calculate each term separately. First we have that Cov
[
X − X̄

]
= Cov [X]. The second term is

calculated next using property 7.

Cov
[
aT (X − X̄), (X − X̄)TB(X − X̄)

]
=
∑

i,j,k

akBi,jCov
[
Xk − X̄k, (Xi − X̄i)(Xj − X̄j)

]
= 0,

because the odd central moments of a multivariate normal distribution are all zeros. The second term is also
zero for the same reason. We are left with the last term which we calculate using property 8.

Cov
[
(X − X̄)TA(X − X̄), (X − X̄)TB(X − X̄)

]
=
∑

i,j,k,l

AijBklE
[
(Xi − X̄i)(Xj − X̄j)(Xk − X̄k)(Xl − X̄l)

]

−
∑

i,j,k,l

AijBklE
[
(Xi − X̄i)(Xj − X̄j)

]
E
[
(Xk − X̄k)(Xl − X̄l)

]

Using the fourth and second order moments of the multivariate normal distribution, we can write the right hand
side as

∑

i,j,k,l

AijBkl

(
Cov [Xi, Xj ] Cov [Xk, Xl] + Cov [Xi, Xl] Cov [Xj , Xk] + Cov [Xi, Xk] Cov [Xl, Xj ]− Cov [Xi, Xj ] Cov [Xk, Xl]

)

=
∑

i,j,k,l

AijBkl

(
Cov [Xi, Xl] Cov [Xj , Xk] + Cov [Xi, Xk] Cov [Xl, Xj ]

)

= 2
∑

i,j,k,l

AijBklCov [Xi, Xl] Cov [Xj , Xk] ,

where the last equality follows because A is symmetric. Now let’s write the sum in matrix form by exploiting
the symmetry of A and B.

∑

i,j,k,l

AijBklCov [Xi, Xl] Cov [Xj , Xk] =
∑

i,j,k,l

AjiCov [Xi, Xl]BlkCov [Xk, Xj ]

=
∑

j,l

(∑

i

AjiCov [Xi, Xl]

)(∑

k

BlkCov [Xk, Xj ]

)

=
∑

j,l

AjCov [X,Xl]BlCov [X,Xj ]

=
∑

j

Aj

(∑

l

Cov [X,Xl]Bl

)
Cov [X,Xj ]

=
∑

j

AjCov [X]BCov [X,Xj ]

=
∑

j

eTj ACov [X]BCov [X] ej = tr {ACov [X]BCov [X]} .

Therefore, we have

Cov [F (X), G(X)] ≈ ∂F (X̄)Cov [X] ∂G(X̄)T +
1

2
tr
{
∂2F (X̄)Cov [X] ∂2G(X̄)Cov [X]

}
.
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