
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2020

[Re] Parameterized Explainer for Graph Neural Network

Lars Holdijk1, ID , Maarten Boon1, ID , Stijn Henckens1, ID , and Lysander de Jong1, ID
1University of Amsterdam, Amsterdam, Netherlands

Edited by
Koustuv Sinha,
Sasha Luccioni

Reviewed by
Anonymous Reviewers

Received
29 January 2021

Published
27 May 2021

DOI
10.5281/zenodo.4834242

Reproducibility Summary

Scope of Reproducibility
In thisworkweperforma replication study of the paperParameterizedExplainer forGraph
Neural Network. The replication experiment focuses on three main claims: (1) Is it pos-
sible to reimplement the proposed method in a different framework? (2) Do the main
claims with respect to the GNNExplainer hold? (3) Is the used evaluationmethod a valid
method for explaining the classification decision by Graph Neural Networks?

Methodology
The authorsʼ TensorFlow code was largely used as starting point for our reimplemen-
tation in PyTorch. However, large parts of the evaluation setup were missing and dif-
ferences were found between the listed configurations in the paper and the code. As a
result, our codebase contains a large portion of novel code and introduces a different
method for tracking experimental configurations. Using the new codebase all experi-
ments are replicated. In addition to this, a short ablation study is performed.

Results
Due to numerous inconsistencies between code and paper, it is not possible to replicate
the original results using the paper alone. With help of the original codebase, a number
of the original results can be retrieved. The main comparison claim of the paper, to
improve over the preceding GNNExplainer, does hold. However, after performing the
replication experiments, some questions regarding the validity of the used evaluation
setup in the original paper remain.

What was easy
Themethodproposedby the authors for explaining theGraphNeuralNetworks is easy to
comprehend and intuitive. Re-implementation of the method is straightforward using
a modern deep learning framework. The datasets used for the experimental setup were
all provided together with their codebase.

Copyright © 2021 L. Holdijk et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Lars Holdijk (larsholdijk@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks. – SWH
swh:1:dir:541677177d4dbb9dc5b612dfc41373fad40b08f0.
Open peer review is available at https://openreview.net/forum?id=8JHrucviUf.

ReScience C 7.2 (#7) – Holdijk et al. 2021 1

https://orcid.org/0000-0002-0634-8169
https://orcid.org/0000-0002-9849-6838
https://orcid.org/0000-0001-7956-6282
https://orcid.org/0000-0003-2454-3280
mailto:larsholdijk@gmail.com
https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks
https://archive.softwareheritage.org/swh:1:dir:541677177d4dbb9dc5b612dfc41373fad40b08f0/
https://openreview.net/forum?id=8JHrucviUf
https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

What was difficult
The main difficulty arose from the difference between the experimental configurations
discussed in the paper and implemented in the code. There were a number of small
inconsistencies (eg. incorrect hyperparameter settings), but also some major ones (eg.
using batch-normalization in training mode during evaluation). This issue was wors-
ened by the fractured reporting of configurations in the code.

Communication with original authors
Contact was made with the authors on two occasions. During the first exchange the
authors confirmed a number of clarifying questions and confirmed that the configura-
tions as presented in the codebasewere to be used instead of those provided in the paper.
In the second exchange our reservations concerning the used experimental evaluation
were conveyed to the authors. The authors did not share our concerns.

1 Introduction

Graph Neural Networks (GNNs) emerged as state-of-the-art models in machine learn-
ing, capturing both graph structure and node features through recursively incorporat-
ing a graphs̓ previous node information. GNNs are able to deliver state-of-the-art per-
formances in matters such as graph/node classification and link prediction.
As for most Neural Networks, the ʼreasoningʼ towards classification inside GNNs is not
intuitive to humans. The authors of the paperGNNExplainer: Generating Explanations for
Graph Neural Networks [1] address this problem and try to solve it by introducing GNNEX-
PLAINER; an optimization task thatmaximizes themutual information between a GNN s̓
prediction and a distribution of possible sub-graph structures. The GNNExplainer s̓ al-
gorithm can identify the sub-graph and node structure responsible for a given classifi-
cation. Based on the work done in [1], Luo, D. et al. claim to have further developed
GNNExplainer in their paper Parameterized Explainer for Graph Neural Network [2]. The
paper introduces PGEXPLAINER; a general parameterized explainer that applies to any
GNN based models in both transductive and inductive settings.
The authors of the paper first formulate the learning objective of PGExplainer. Using
the same datasets as [1], they claim to outperform GNNExplainer up to 24.7% in Area
under the ROC Curve (AUC) [3] score. Furthermore the authors state that PGExplainer
can speedup computations up to 108 times faster thanGNNExplainer. These and further
claimsmade in the PGExplainer paper will be evaluated in this report by replicating and
extending the performed evaluation in a replication study.

Scope of reproducibility The focus of our reproducibility study is on the experimental
comparison between the PGExplainer and the preceding GNNExplainer. The authors
of the original PGExplainer paper include a number of other benchmarks in their eval-
uation, but focus their comparison primarily on the GNNExplainer. For this reason it
makes sense for us to do the same.
In contrast to the original paper, we will base our entire comparison on reimplementa-
tions of bothmethods. In the original paper, the authors partly copy the results from the
GNNExplainer and partly use their own re-implementation to obtain the GNNExplainer
scores. In communication the authors stated that the decision to partly copy the results
was made due to lackluster results in their own re-implementation. As the quality of
an explanation is highly dependent on the model it aims to explain, we believe that it
would be beneficial to re-implement bothmethods in the same framework and perform
their evaluation on equal footing. We will use PyTorch as the framework for doing so.
For the reimplementation of the PGExplainer the authorsʼ own TensorFlow-based code-
base provided in their paper will be used as the main starting-point. However, during

ReScience C 7.2 (#7) – Holdijk et al. 2021 2

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

inspection of the codebase, we found that there are a number of significant differences
between the configurations used for both the trainedmodels that wewish to explain and
the PGExplainer itself betweenwhat is described in the paper andwhat is actually imple-
mented in the code. After discussing with the authors, the conclusion was reached that
the configurations used in the code should serve as the starting point for the replication.
Part of our reproduction experiment will focus on validating if these are indeed the cor-
rect configurations. In short, our replication experiment aims to validate the following
aspects of the original paper.

1. Given the original codebase and configuration files provided therein, is it possi-
ble to reimplement the PGExplainer method using a different framework? And if
so, are the provided configurations sufficient to obtain the presented quantitative,
qualitative and efficiency results.

2. The authors claim that their PGExplaimer greatly improves over the previously
proposed GNNExplainer. We aim to validate that this claim holds with both meth-
ods evaluated using the same framework and evaluation.

3. Evaluation of explanation methods is notoriously hard. We wish to validate if the
evaluation method used in the original paper is a sound approach for doing so.

The remainder of this work will be structured as follows. In the next section we will
provide the needed background on the PGExplainer. Following this, we will provide a
short overview of the codebase accompanying this reproduction. In section 4, we will
discuss the original experimental setup in depth and highlight some key components
not discussed in the original paper. Section 5 will present the replicated results and
compare them to the original paper. Based on the highlighted components in section
4 and some results presented in section 5, section 6 will raise some question regarding
the evaluation setup used. In the last section, we will summarize our replication.

2 PGExplainer

The authors start by dividing an input graph Go in two subgraphs, such that Go = Gs +
∆G. Gs represents the explanatory graph that makes important contributions towards
the graph classification, while ∆G represents the remainder of the initial graph. The
main task therefore is to find the optimal subgraphGs. This is achieved throughMutual
Information (MI) maximization:

max
Gs

MI (Yo, Gs) = H (Yo)−H (Yo | G = Gs) , (1)

Which uses the GNN s̓ classification prediction Yo and its input Go. The MI maximiza-
tion is done by deducting the conditional entropy from the marginal entropy. Which is
equivalent to minimizing the conditional entropy.
To avoid having an exploding exponential amount of candidates, the authors assume
the explanatory graphs used are Gilbert random graphs [4], where selections of edges
from the original input graph Go are conditionally independent to each other. Using
relaxation, the learning objective is rewritten as

min
Gs

EGs [H (Yo | G = Gs)] ≈ min
Θ

EGs∼q(Θ) [H (Yo | G = Gs)] , (2)

where q(Θ) is the distribution of the parameterized explanatory graph. Each graph edge
obtains a continuous variable in range (0, 1).
A randomgraph Ĝs is sampled fromedgedistributions and fed to the trainedGNNmodel
obtaining prediction Ŷs. Following [1], the authors modify the conditional entropy with

ReScience C 7.2 (#7) – Holdijk et al. 2021 3

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

cross-entropy H(Yo, Ŷs), where Ŷs is the prediction of the GNN model with Ĝs as input.
Using Monte Carlo approximation, the learning objective becomes

min
Ω

− 1

K

K∑
k=1

C∑
c=1

PΦ (Y = c | G = Go) logPΦ

(
Y = c | G = Ĝ(k)

s

)
, (3)

with Φ as the parameters in the trained GNN,K as the number of sampled graphs, C as
the number of labels and Ĝ

(k)
s the k-th sampled graph, parameterized by Ω.

Furthermore, PGExplainer is used to collectively provide explainations for multiple in-
stances I. The authors present the learning objective of this set of instances as follows.

min
Ψ

−
∑
i∈I

K∑
k=1

C∑
c=1

PΦ

(
Y = c | G = G(i)

o

)
logPΦ

(
Y = c | G = Ĝ(i,k)

s

)
(4)

Here Ψ are parameters in the explanation network, G(i) the input graph and Ĝ(i,k) the
k-th sampled graph for the i-th instance. Using the above, the authors consider two
explainer instances; one for node classification and one for graph classification. Both
cases use a MLP parameterized by Ψ.

3 Reimplementation of code

This section shortly summarizes the main structure of the code accompanying this re-
producibility check and provides the information needed to reproduce the experiments
presented. Our reimplementation of the PGExplainer is based on the PyTorch [5] frame-
work. More specifically, it uses the third party extension of PyTorch for Graph Neural
Networks called PyTorch-Geometric [6].
The codebase is structured for the two main tasks performed in this paper; training the
GNNs that will be explained by the PGExplainer and performing a replication of the
original experiments. Additional scripts are included for performing the evaluations
presented in the appendix. Each script is self-contained, handling things such as load-
ing the dataset, loading the correct model and setting the hyperparameters. Each of
these things are predefined in json configuration files.

3.1 Experiment configuration files
The codebase contains a large number of predefined configuration files. These config-
uration files are the main working horse for making the experiments presented in this
work reproducible. There are two different types of configurations, one for each of the
twomain tasks mentioned previously. Shared between tasks is the common occurrence
of the dataset, model and seed used. If a task is to be performed a number of times to
achieve an average, the seed is replaced with a list of seeds. A full description of the
configuration file setup can be found in Appendix A.
As these configuration files provide a reliable source for all relevant information needed
to perform our evaluation, wewill—for the remainder of this paper—only disclose the in-
formation needed to comprehend the experiment. For details irrelevant to understand-
ing the results—e.g. the used learning rate and specific framework versions—we refer
to the provided configuration and codebase1. We understand that this breaks the pa-
pers self-containment. However, we believe that regarding the balance between page
restrictions and replicability completeness, separating the concern of replicability from
paper to codebase is the correct way to go. A single source of replicability information
also prevents inconsistencies between the paper and the code base. As the paper under
consideration will highlight, this is a concern.

1https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks

ReScience C 7.2 (#7) – Holdijk et al. 2021 4

https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks
https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

4 Experiment Setup

In this section we will introduce the setup of the experimental evaluation performed
by the authors of the PGExplainer. While replicating their evaluation, we found that
a number of steps were making assumptions that were not well documented. This in-
cludes the samples used for calculating the AUC score. In this section we will spend
time on these steps. Additionally, someminor mistakes made in the original evaluation
were rectified during our reproduction. These changes will also be highlighted here.
The experimental setup used by the authors of the PGExplainer follows that of the GN-
NExplainer [1] with a number of extensions. To clarify, the authorsʼ proposed method
serves the purpose of explaining the classification decision of a GNN. Hence, the ex-
periments used to evaluate the PGExplainer focus on the explanations provided by the
PGExplainer for the underlying model. Specifically, the evaluation is repeated for six
different datasets, and thus, for six different underlying models. The six datasets span
two different classification tasks; node-classification and graph-classification.

4.1 Datasets
Thenode classification task is performedusing four synthetic datasets (a-d). All ofwhich
are first introduced in the GNNExplainer paper [1]. The graph classification task is per-
formed using two datasets (e-f), one synthetic and one real.
A reoccurring concept in all synthetic datasets is the so called motif. Motifs are highly
structured subgraphs—e.g. 9 nodes connected in a 2D grid. These subgraphs are then
expanded by attaching them to a randomly generated graph of a different structural
form—e.g. Barabasi-Albert (BA) graph [7] or trees. Motifs play a crucial role in deter-
mining ground-truth explanations for our evaluations, as we will see later.
(a) The BA-Shapes dataset consists of single base BA-graph with 300 nodes, 80 “house”-
structuredmotifs—each attached to randomBAnodes—and some extra randomly added
edges. (b) BA-Community closely resembles BA-Shapes, connecting two BA-Shapes and
utilizing a Gaussian distributions for each BA-Shape to sample node features. (c) Tree-
Cycles adopts an 8-level balanced binary tree as the base graph with a set of 80 six-node
cycle motifs attached to randomly selected nodes. (d) The Tree-Grids dataset is similar
to Tree-Cycles, replacing cyclemotifs with 3×3 gridmotifs. (e) The authors constructed
the BA-2motifs dataset consisting of 1000 BA graphs. Half of the graphs contain ”house”
motifs, the other half contain five-node cycle motifs attached to the BA graph. These
two types of graphs serve as the two classes for the dataset. (f) The real-lifeMutagenicity
dataset copied from [1], consisting of 4337molecule graphs. These should be classified
as either mutagenic or nonmutagenic.

4.2 Model
There are a number of large differences between the implementation of the models
trained for each dataset and how they are described in the paper. These changes are
different between the node and graph classification tasks.

Node classification The authors describe the model for node classification to be three
consecutive Graph Convolution layers feeding directly into the fully connected classifi-
cation. The model in the codebase however first concatenates the three intermediate
outputs of the Graph Convolution layers before using this enlarged embedding as the
input for the fully connected classification layer. The coded version of themodels is sim-
ilar to what is used for evaluation in the GNNExplainer paper [1]. To keep the evaluation
consistent, we will therefore use the coded model version instead of the one described
in the paper for our evaluation. Moreover, we were not able to get the model described
in the paper to train to the same accuracy using the provided hyperparameters.

ReScience C 7.2 (#7) – Holdijk et al. 2021 5

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

In addition to the architecture change, we found the node classificationmodels to use an
undocumented batch normalization layer after the first and second Graph Convolution
layer. Unfortunately, the original codebase contained an error that resulted in these
batch-normalization layers being kept in training mode during evaluation. This obser-
vation was confirmed by the authors in communication and has since been resolved. In
the same communication the authors expressed that to be able to reproduce their re-
sults, the batch normalization layers will have to be kept in training mode. We believe
that this will compromise the usability of our reproducibility experiment and therefore
decided to remove the batch normalization layers all together. For completeness full
replication of the authors evaluation with a model containing batch normalization is
included in Appendix B.

Graph classification The graph classification models are more in line with the models
described in the paper than the node classification models. The difference is the use of
bothmax andmean pooling over the output of the final Graph Convolution layer. These
two pooling types are concatenated to form inputs for fully connected layers.

4.3 Evaluation metrics
For each dataset, the explanations are evaluated using three broad categories; quantita-
tive, qualitative and efficiency.

Quantitative evaluation — For each dataset the explanations provided by the PGExplainer
are compared to ground-truth explanations. These ground-truths describe for each sam-
plewhich edges should or should not be included in the explanation. Using thismethod-
ology, the quantitative evaluation can be performed similar to a binary classification
task. For this reason, the authors present the quantitative score using the AUC scoring
metric.

GroundTruth Fornode classification the ground-truth explanation is determined globally—
i.e. for all node samples the edges have the same ground-truth explanation label. Specif-
ically, for each edge it is determined if the two nodes it connects are part of a motif.
When this is the case, the edge is labelled as positive for the ground-truth explanation.
Otherwise, the edge is labelled as negative for the ground-truth explanation. For graph
classifications this is dependent on the dataset used and how the ground-truth explana-
tions are generated. For the BA-2motif dataset, being synthetic, this is done the same
way as for the node datasets. The only difference being that the process is repeated for
every graph in the dataset. As there are no motifs defined for the Mutagenicity dataset,
the ground-truth labels can not be defined based on them. Instead, for this dataset edge
labels are used, as provided by the original dataset repository2.

AUC score With the explanation mask provided by the PGExplainer and the ground-
truths defined as above, the AUC score can be computed. However, there are a few
important notes to consider when computing the AUC score. First, for the node clas-
sification datasets, the explanation mask is only determined for a 3-hop graph around
each node. This is done because the GCN model only contains three layers. Second,
only the nodes that are part of a motif are used in the AUC computation. This is because
there is no real definition of ground-truth for the nodes outside the motifs. This evalua-
tion design choice is further discussed in Sec. 6. Third, for the BA-2Motif dataset only a
subset of the graphs is used to determine the AUC score, this is done to reduce compu-
tation time. Lastly, for the Mutagenicity dataset only the mutagenic graphs have a valid

2https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

ReScience C 7.2 (#7) – Holdijk et al. 2021 6

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

ground-truth interpretation. Hence, the AUC is determine using only these graphs. Of
these four considerations, only the last is mentioned in the original paper.

Comparison The authors compare their method against four baselines; a gradient-
based model (GRAD) [1], a graph attention network (ATT) [8] and Gradient [9]. With
the exception of the scores presented for the graph-classification datasets, the scores
presented are reused from the PGExplainer paper (see Table 4). In communication with
the authors, it was mentioned that the reimplementation of these explainers by the au-
thors had resulted in lackluster results. For this reason the decision was made to use
the original scores by the original authors.
For our replication of the evaluation we focus our comparison on the GNNExplainer.
This method is the most similar and was a major inspiration for the PGExplainer. In
contrast the the original evaluation, we do perform the comparison using our own re-
implementation of the GNNExplainer. Our re-implementation of this method is largely
inspired by the implementation in the PyTorch Geometric library. The main difference
is that our re-implementation is adapted to also work with graph-classification datasets.
This is not possible with the plain PyTorch Geometric implementation.

Qualitative evaluation — In order to obtain a visualisation of the chosen sub-graph the sys-
tem takes as input the ground truth labels and the mask provided by the Explainer.
Given the mask, two thresholds are calculated, one for importance to the explanation
and one to determine which other elements to plot for the sub-graph. Then, using these
thresholds all nodes that have an interesting enoughweight are selected. Following this,
only nodes that are in a direct sub-graph together the node-to-be-explained are selected.
When drawing the explanation for the graph classification this sub-graph is selected
using the top-k edges. The original evaluation sets k to be the number of edges in the
defining motif for the synthetic datasets. These edges are plotted with a colour coding
in accordance to their weight, where darker edges have higher weights in themask than
the lighter edges. Finally, the nodes that are connected to the previously plotted edges
are plotted and colour coded by their ground-truth label.

Efficiency evaluation — In the paper, the authors only compare the efficiency of their PG-
Explainer to the GNNExplainer. Unfortunately, we were unable to extract the exact
method for doing so from both the paper and the provided codebase. Our implementa-
tion is therefore mainly our own design.
We compute the inference time as the average over ten runs. During each run we mea-
sure the times it takes to explain all samples that are also used for the quantitative evalu-
ation. This time is divided by the number of samples explained to get the final inference
time per sample in milliseconds. Note that, similar to the paper, for the evaluation of
the PGExplainer only the time to explain each sample is considered. On the other hand,
for the GNNExplainer the time required to train the explainer is also taken into account
because it has to be retrained for each sample.

5 Results

5.1 Model training
In Tab. 1 the final accuracies for all 6 trained models are provided. Note that these
are the accuracies of the models that will be explained by the two explainers, not the
explanation accuracy of the explainers themselves. For most of the models, using the
configurations found in the code, we achieve results comparable to the results presented
in the paper. The two exceptions being the BA-Community and theMutagenicitymodels.
Both of these score lower then their original counterpart.

ReScience C 7.2 (#7) – Holdijk et al. 2021 7

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

Node Classification Graph Classification
Accuracy BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs Mutagenicity

Training 0.97 0.90 0.94 0.96 1.00 0.82
Validation 1.00 0.75 0.98 0.99 1.00 0.82
Testing 1.00 0.72 0.94 0.99 0.99 0.81

Table 1. Accuracies of the trainedmodelwithout batch-normalization. The accuracies are obtained
using early stopping.

Logically this difference could be contributed to the difference in the use of batch nor-
malization. Where the original model in the PGExplainer paper did use batch normal-
ization where we do not. However, as the results presented in Tab. 5 show, replication
with the original batch normalization yields the same reduced accuracies. We hypothe-
sise that therefore the difference might be the result of an undocumented use of weight
regularization. We observed that in the original training script the configuration exist
to use L2-weight regularization, but it is not used.

Replicability study —

Node Classification Graph Classification
BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs Mutagenicity

Visualization (qualitative)

PGExplainer

GNNExplainer
Explanation AUC (quantitative

Original 0.963 ± 0.011 0.945 ± 0.019 0.987 ± 0.007 0.907 ± 0.014 0.926 ± 0.021 0.873 ± 0.013
PGExplainer 0.999 ± 0.000 0.825 ± 0.040 0.760 ± 0.014 0.679 ± 0.008 0.133 ± 0.046 0.843 ± 0.084

GNNExplainer 0.742 ± 0.006 0.708 ± 0.004 0.540 ± 0.017 0.714 ± 0.002 0.499 ± 0.004 0.587 ± 0.002
Improvement 34.6% 16.5% 40.7% -4.9% -375.2% 43.6%
Inference Time (ms) (efficiency)
PGExplainer 3.58 5.23 0.45 0.54 0.33 2.05

GNNExplainer 58.80 91.81 52.81 65.54 5.21 12.32
Speedup 16x 17x 117x 121x 16x 6x

Table 2. Replicated experimental results from the quantitative, qualitative and efficiency study.
The original scores are copied from the paper directly. As the authors of the PGExplainer pa-
per did not report the seeds used for the 10 validation results, we were unable to replicate these
results using the authors own codebase. For the qualitative visualization the samples are hand-
picked similar to the original paper. Node colors represent the node labels (if all colours are the
same the nodes are unlabeled). Darkness of the edges signals importance for the final classifica-
tion decision. In case of the node-classification datasets the bigger node is the one for which the
classification is being explained. For the quantitative explanation the average AUC score for the
PGExplainer and GNNExplainer and the standard deviation is given. The ”original” row reports
the PGExplainer AUC score from the original paper. The inference time reported represents the
time needed to explain a single sample in milliseconds.

Quantitative Quantitatively there is a large difference in the reported AUC scores and
what we were able to achieve using the specified configurations for the PGExplainer.
Only for BA-Shapes a AUC equal or higher then the presented AUC score was observed.
However, BA-Shapes did require some minor modifications to the configurations to get
it to work. With the temperature parameter set as originally presented in the code, the
evaluation crashed. Only when the temperature was changed to the configuration as
presented in the paper we were able to run the evaluation. Similarly, with the configu-
ration as described in the code, the PGExplainer produces the opposite of the expected

ReScience C 7.2 (#7) – Holdijk et al. 2021 8

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

Reg. Size

10 1 0.1 0.01 0.001 0.0001

Entropy

10 0.761 ± 0.014 0.761 ± 0.014 0.762 ± 0.014 0.713 ± 0.156 0.628 ± 0.221 0.634 ± 0.239
1 0.761 ± 0.014 0.760 ± 0.014 0.760 ± 0.015 0.683 ± 0.154 0.700 ± 0.247 0.708 ± 0.226
0.1 0.761 ± 0.014 0.760 ± 0.014 0.758 ± 0.015 0.565 ± 0.246 0.747 ± 0.209 0.764 ± 0.214
0.01 0.761 ± 0.014 0.760 ± 0.014 0.758 ± 0.015 0.551 ± 0.249 0.748 ± 0.216 0.776 ± 0.210
0.001 0.761 ± 0.014 0.760 ± 0.014 0.758 ± 0.015 0.547 ± 0.253 0.753 ± 0.216 0.763 ± 0.211

Table 3. Results of a small ablation study on the effect of the size and entropy regularization on the
AUC score. The ablation study is performed using the Tree-Cycles dataset and follows the setup
of the quantitative evaluation. It averages over 10 runs. The results show that the regularization
has a large effect on both the quantitative quality of the explanations and their consistency. The
best score is shown in bold.

result for the BA-2Motifs dataset. This is reflected both quantitatively and qualitatively.
However, it should be noted that the same drop in AUC score between our implementa-
tion and the one originally reported score can also be seen for the GNNExplainer. Due
to this, the reported improvement of the PGExplainer over the GNNExplainer remains
valid.
We believe that the difference seen between the AUC scores originally reported for the
two explainers andwhat we observed during our reproductionmight be the result of the
undocumented effect of the entropy/size regularizations and used temperature. Based
on empirical observations we found that the final AUC score is highly dependent on
these three hyperparameters. A small follow-up ablation study presented in Tab. 3 con-
firms this.

Qualitative The replicated qualitative evaluation is very similar to the original results.
PGExplainer is very capable of finding the motifs in the graphs and highlighting their
edges. The same holds for the GNNExplainer.
The main observed difference is the Mutagenicity dataset. In our replication, only two
edges are darkened in contrast to the ten edges darkened in the original paper. However,
this difference is created artificially by a difference in the k value reported in the paper
and used in the code. While this difference therefore does not tell us anything about the
quality of the explanation, it does show the importance of the k hyperparameter. This
is further discussed in the Sec. 6.

Efficiency In terms of efficiency, the reimplemention results are consistent with the
claims of the authors. The use of different frameworks between the original implemen-
tation and our reimplementation makes a direct comparison of the result is ill advised,
but the speedup between the PGExplainer and the GNNExplainer is consistent.

6 Ground truth explanations for Graph Explanations

For the evaluation of the PGExplainer the authors made use of predefined ground-truth
explanations. These explanations are made possible by the use of synthetic datasets,
generated based on the notion of motifs. In this section we express some concerns with
regards to the use of motifs for generating ground-truth explanations.

No ground-truth outside motif In the case of the node classification datasets the defi-
nition of the ground-truth explanation is only valid for a small number of nodes within
a graph; those within amotif. In essence, for nodes outside themotifs, the ground-truth
explanation is an empty graph—i.e. all surrounding edges have to be excluded from the
explanation to achieve the maximum score. The same is true for non-mutagenic graphs

ReScience C 7.2 (#7) – Holdijk et al. 2021 9

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

in the Mutagenicity dataset. This is incompatible with the PGExplainers approach to
determine its explanation. An empty graph can never produce the same explanation as
the original graph, hence it will never be the explanation provided by the PGExplainer.
The authors overcome this issue by excluding all nodes outside the motifs from their
quantitative evaluation. However, this reduces the explanation task of the node classi-
fication datasets to a much simpler problem. For nodes outside the motif, the explana-
tion has to be based on the absence instead of presence of edges. Solving these issues
satisfactorily would require a new definition for the ground-truths for graph datasets.
For example, in the case of the tree-cycle dataset, one could define the ground-truth of
a node outside a motif to be the entire 7-hop subgraph as this would be the minimal
number of steps to take before one can conclude that no cycles have been formed. We,
however, believe this to be outside the scope of this replication.

Qualitative evaluation dependent on knowing size of motif The PGExplainer gives as
output amask that describes for each edge in the graph the probability of it being impor-
tant for the models classification decision. To turn this into a visualizable explanations
the top-k edges are selected from each mask, i.e only the k edges that have the highest
influence on the models classification decision are considered part of the explanation.
As a result, k is a crucial hyperparameter for obtaining a visual explanation. If k is set
too high, the explanation could contain edges that actually only contribute to the final
decision marginally. If k is set too low, the explanation could be missing important
parts of the graph. This difference in visual explanation quality was also empirically ob-
served in the difference between the original and our explanations for the Mutagenicity
dataset.
As mentioned in the experimental setup of the qualitative evaluation, the authors, and
preceding works, set the value of k in the evaluation based on the amount of edges in
the defining motif. However, this is not a possibility outside of the synthetic evaluation
datasets. Hence, for real world applicability of the proposed explanation method a dif-
ferent approach has to be found to find k. For this reason, we believe that evaluating the
quality of the explanations based using k preset to the number of edges in the synthetic
dataset is an aspect to reconsider.
In essence, both the k-parameter and the earlier mentioned number of edges selected
for the ground-truth can be considered as hyperparameters for the evaluation pipeline.
By selecting a specific value for these parameters the evaluation can become biased to-
wards assigning high credibility to explanations that have a specific characteristic. By
performing an extensive search over these hyperparameters the results of the explana-
tion evaluation can potentially be improved. In Sec. C of the appendixwe present a short
study on how these hyperparameters can influence the final results of the evaluation.

7 Conclusion

In this work, we have presented a replication of the paper Parameterized Explainer for
Graph Neural Network. The replication experiments have lead us to a number of conclu-
sions. First, based on the paper alone, it is difficult to replicate the presented results.
The main contributing factor is the discrepancy between the provided details in the pa-
per and those in the codebase. Based on communication with the authors, we conclude
that the hyperparameter settings presented in the paper are oversimplified. For the
method to work, more hyperparameter tuning is needed then the paper suggests. This
is validated by our ablation study.
Second, even with the provided codebase, replication of the presented results is still
arduous. With the configurations pulled from the codebase used in our re-evaluation,
we still found lackluster results for a number of the datasets. We accredit this problem
mainly to the structure of the codebase itself. The code is overly convoluted with the

ReScience C 7.2 (#7) – Holdijk et al. 2021 10

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

experiment configurations being overridden in numerous locations. Due to this, it is un-
clear if the configurations we found in the codebase are those that generated the results
presented in the original paper.
Lastly, as discussed in Sec. 6, we are uncertain if the evaluation based on synthetic
datasets as used in the evaluation is valid. However, we can not contribute this issue to
only the authorsʼ paper as it is also used in other graph explanation papers, including
the GNNExplainer. In addition to showing that these issues exists, our extended eval-
uation presented in appendix SecC showed that it is not trivial to solve them based on
the current definition of a ground-truth explanation for motif graphs. Rethinking the
evaluation for Graph Neural Networks Explainers is therefore important future work.

References

1. Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. “Gnnexplainer: Generating explanations for graph neural
networks.” In: Advances in neural information processing systems. 2019, pp. 9244–9255.

2. D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang. “Parameterized Explainer for Graph Neural
Network.” In: vol. 33. 2020.

3. J. A. Hanley and B. J. McNeil. “The meaning and use of the area under a receiver operating characteristic (ROC)
curve.” In: Radiology 143.1 (Apr. 1982), pp. 29–36. URL: http://www.ncbi.nlm.nih.gov/pubmed/7063747.

4. E. N. Gilbert. “Random Graphs.” In: Annals of Mathematical Statistics 30.4 (1959), pp. 1141–1144.
5. A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library.” In: Advances in Neural

Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

6. M. Fey and J. E. Lenssen. “Fast Graph Representation Learning with PyTorch Geometric.” In: CoRR
abs/1903.02428 (2019). URL: http://arxiv.org/abs/1903.02428.

7. A.-L. Barabasi andR. Albert. “Emergence of Scaling in RandomNetworks.” In:Science 286.5439 (1999), pp. 509–
512. DOI: 10.1126/science.286.5439.509. eprint: http://www.sciencemag.org/cgi/reprint/286/5439/509.pdf.
URL: http://www.sciencemag.org/cgi/content/abstract/286/5439/509.

8. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. “Graph attention networks.” In: arXiv
preprint arXiv:1710.10903 (2017).

9. P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, andH. Hoffmann. “Explainabilitymethods for graph convolutional
neural networks.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 10772–10781.

ReScience C 7.2 (#7) – Holdijk et al. 2021 11

http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1903.02428
https://oadoi.org/10.1126/science.286.5439.509
http://www.sciencemag.org/cgi/reprint/286/5439/509.pdf
http://www.sciencemag.org/cgi/content/abstract/286/5439/509
https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

Appendices

A Original data and results PGExplainer

Table 4. Visual representations of the datasets, results and the performance evaluations [2]. Note:
The AUC scores for GRAD and ATT inside Tree-Grid are incorrectly copied by the authors and
should be swapped (as indicated by the red arrows).

B Direct replication of PGExplainer with BatchNorm activated model

Here we present a replication experiment similar to the one presented in our replica-
tion work. However, as discussed in in the main work, the models used in the original
paper contained two batch-normalization layers. These layers were incorrectly kept in
training mode during evaluation. In the replication results presented here, the same
batch-normalization setup was used for the node-classification models.

B.1 Results
Model training Tab. 5 shows that the accuracies of the models trained using the batch
normalization are very similar to those used in the main paper. The BA-Community
dataset still shows the same issues with overfitting as are discussed in the main paper.

Quantitative Quantitatively there is a significant difference between the explanations
of the PGExplainer for models trained with or without batch normalization. However,
the main conclusion based on these results remain the same. The replication experi-
ments show that using the configuration provided in the codebase it is not possible to
directly replicate the results presented in the paper.

ReScience C 7.2 (#7) – Holdijk et al. 2021 12

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

Node Classification
Accuracy BA-Shapes BA-Community Tree-Cycles Tree-Grid

Training 0.98 0.94 0.96 0.96
Validation 0.99 0.74 0.99 0.98
Testing 1.00 0.71 0.97 0.99

Table 5. Accuracies for models trained with batch-normalization. For evaluation of the validation
and test dataset batch-normalization is kept in trainingmode. This is similar to the original paper.

Node Classification
BA-Shapes BA-Community Tree-Cycles Tree-Grid

Visualization

Original

No batch-norm

With batch-norm
Explanation AUC
Original 0.963 ± 0.011 0.945 ± 0.019 0.987 ± 0.007 0.907 ± 0.014
No batch-norm 0.999 ± 0.000 0.825 ± 0.040 0.760 ± 0.014 0.679 ± 0.008
With batch-norm 0.977 ± 0.006 0.970 ± 0.006 0.534 ± 0.186 0.649 ± 0.045
Inference Time (ms)
No batch-norm 3.58 5.23 0.45 0.54
With batch-norm 3.56 5.29 0.40 0.47

Table 6. Replicated experimental results from the quantitative, qualitative and efficiency study.
For the qualitative visualization the samples are handpicked similar to the original paper. Node
colors represent the node labels (if all colours are the same the nodes are unlabeled). Darkness of
the edges signals importance for the final classification decision. In case of the node-classification
datasets, the bigger node is the one for which the classification is being explained. For the quan-
titative explanation the average AUC score and standard deviation is given. The ”original” row
reports the PGExplainer AUC score from the original paper. The inference time reported repre-
sents the time needed to explain a single sample in milliseconds.

ReScience C 7.2 (#7) – Holdijk et al. 2021 13

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

Node Classification
BA-Shapes BA-Community Tree-Cycles Tree-Grid

Explanation AUC
PGExplainer 0.974 ± 0.005 0.576 ± 0.024 0.748 ± 0.014 0.790 ± 0.009
GNNExplainer 0.508 ± 0.008 0.555 ± 0.002 0.482 ± 0.014 0.608 ± 0.009

Table 7. Results of the extended replication study. For each explanation model both the AUC score
over ten runs and the corresponding standard deviation is given.

Qualitative No consistent significant difference in the visualized explanations can be
observed between the two explained models.

Efficiency The time required to explain the classification decision of a single node in
the graph is consistent between the models trained with and without batch normaliza-
tion.

C Extended replication

In this extend replication we perform a simple experiment considering the issues raised
in Sec. 3. Specifically, we redo the quantitative evaluationof the synthetic node-classification
using all test nodes instead of only those located in a motif. The model used for the ex-
planation and the definition of the ground truth remains the same.

C.1 Results
Quantitatively the PGExplainer scores significantly worse in the extended replication
than during the original replication (see Tab. 7). This is a direct result of performing the
evaluation over the entire test set instead of only the nodes within a motif. The ground-
truth for nodes outside the motif and the method used by both the GNNExplainer by
PGExplainer are simply incompatible.
Nevertheless, the improvement claimed by the authors of the PGExplainer over the GN-
NExplainer is still visible. Considering all datasets, the PGExplainer consistently out-
performs the GNNExplainer by a significant margin.

D Configuration

Configuration files are used to provide a stable, flexible and reproducible way to run the
experiments.

D.1 Model configuration files
The first type of configuration is the model configuration as seen in Fig. 1, which con-
tains (from top to bottom) the parameters required for training a GNNmodel. dataset
assigns which dataset the model has to train on, paper defines which paper the model
is build on (either PG, GNN or TAG), lr is the learning rate, epochs is the amount of
epochs used for training and clip_max is the parameter to which determines at what
point the gradient is clipped. Additionally the file includes early_stoppingwhich de-
fines the amount of epochs with no improvement that are required to enact early stop-
ping of training, seed which defines the seed used for training and eval_enabled
which determines whether the model uses it s̓ eval mode.

ReScience C 7.2 (#7) – Holdijk et al. 2021 14

https://rescience.github.io/


[Re] Parameterized Explainer for Graph Neural Network

Figure 1. Example of model config file in JSON format

D.2 Explainer configuration files
The second type of configuration is the explainer configuration an example of which
is shown in Fig. 2, these configuration files contain all parameters required to train an
explainer and perform the the replication experiment using them. It includes the fol-
lowing parameters: dataset defines the dataset that the model that is to be explained
is trained on. model is the type of model that has to be explainer, explainer is the
implementation of the explainer (either PG or GNN). The configuration also contains
the learning rate and number of training epochs (lr and epochs respectively). As well
as sample_bias which determines the sample bias, the parameters reg_size and
reg_ent that determine the size loss and entropy loss coefficients respectively, the
temperatures, seeds the seeds used for training, eval_enabled if the model uses
evaluation mode and thres_snip and thres_min which define the thresholds for
the interesting and sub-graph edges related to the drawing of the result explanations.

Figure 2. Example of explainer configuration file in JSON format

ReScience C 7.2 (#7) – Holdijk et al. 2021 15

https://rescience.github.io/

	Introduction
	PGExplainer
	Reimplementation of code
	Experiment configuration files

	Experiment Setup
	Datasets
	Model
	Evaluation metrics
	Quantitative evaluation
	Qualitative evaluation
	Efficiency evaluation


	Results
	Model training 
	Replicability study


	Ground truth explanations for Graph Explanations
	Conclusion
	Original data and results PGExplainer
	Direct replication of PGExplainer with BatchNorm activated model
	Results

	Extended replication
	Results

	Configuration
	Model configuration files
	Explainer configuration files


